- 14 5月, 2018 1 次提交
-
-
由 Mel Gorman 提交于
Threads share an address space and each can change the protections of the same address space to trap NUMA faults. This is redundant and potentially counter-productive as any thread doing the update will suffice. Potentially only one thread is required but that thread may be idle or it may not have any locality concerns and pick an unsuitable scan rate. This patch uses independent scan period but they are staggered based on the number of address space users when the thread is created. The intent is that threads will avoid scanning at the same time and have a chance to adapt their scan rate later if necessary. This reduces the total scan activity early in the lifetime of the threads. The different in headline performance across a range of machines and workloads is marginal but the system CPU usage is reduced as well as overall scan activity. The following is the time reported by NAS Parallel Benchmark using unbound openmp threads and a D size class: 4.17.0-rc1 4.17.0-rc1 vanilla stagger-v1r1 Time bt.D 442.77 ( 0.00%) 419.70 ( 5.21%) Time cg.D 171.90 ( 0.00%) 180.85 ( -5.21%) Time ep.D 33.10 ( 0.00%) 32.90 ( 0.60%) Time is.D 9.59 ( 0.00%) 9.42 ( 1.77%) Time lu.D 306.75 ( 0.00%) 304.65 ( 0.68%) Time mg.D 54.56 ( 0.00%) 52.38 ( 4.00%) Time sp.D 1020.03 ( 0.00%) 903.77 ( 11.40%) Time ua.D 400.58 ( 0.00%) 386.49 ( 3.52%) Note it's not a universal win but we have no prior knowledge of which thread matters but the number of threads created often exceeds the size of the node when the threads are not bound. However, there is a reducation of overall system CPU usage: 4.17.0-rc1 4.17.0-rc1 vanilla stagger-v1r1 sys-time-bt.D 48.78 ( 0.00%) 48.22 ( 1.15%) sys-time-cg.D 25.31 ( 0.00%) 26.63 ( -5.22%) sys-time-ep.D 1.65 ( 0.00%) 0.62 ( 62.42%) sys-time-is.D 40.05 ( 0.00%) 24.45 ( 38.95%) sys-time-lu.D 37.55 ( 0.00%) 29.02 ( 22.72%) sys-time-mg.D 47.52 ( 0.00%) 34.92 ( 26.52%) sys-time-sp.D 119.01 ( 0.00%) 109.05 ( 8.37%) sys-time-ua.D 51.52 ( 0.00%) 45.13 ( 12.40%) NUMA scan activity is also reduced: NUMA alloc local 1042828 1342670 NUMA base PTE updates 140481138 93577468 NUMA huge PMD updates 272171 180766 NUMA page range updates 279832690 186129660 NUMA hint faults 1395972 1193897 NUMA hint local faults 877925 855053 NUMA hint local percent 62 71 NUMA pages migrated 12057909 9158023 Similar observations are made for other thread-intensive workloads. System CPU usage is lower even though the headline gains in performance tend to be small. For example, specjbb 2005 shows almost no difference in performance but scan activity is reduced by a third on a 4-socket box. I didn't find a workload (thread intensive or otherwise) that suffered badly. Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20180504154109.mvrha2qo5wdl65vr@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 05 5月, 2018 1 次提交
-
-
由 Peter Zijlstra 提交于
> kernel/sched/core.c:6921 cpu_weight_nice_write_s64() warn: potential spectre issue 'sched_prio_to_weight' Userspace controls @nice, so sanitize the value before using it to index an array. Reported-by: NDan Carpenter <dan.carpenter@oracle.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: <stable@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 04 5月, 2018 2 次提交
-
-
由 Rohit Jain 提交于
In paravirt configurations today, spinlocks figure out whether a vCPU is running to determine whether or not spinlock should bother spinning. We can use the same logic to prioritize CPUs when scheduling threads. If a vCPU has been pre-empted, it will incur the extra cost of VMENTER and the time it actually spends to be running on the host CPU. If we had other vCPUs which were actually running on the host CPU and idle we should schedule threads there. Performance numbers: Note: With patch is referred to as Paravirt in the following and without patch is referred to as Base. 1) When only 1 VM is running: a) Hackbench test on KVM 8 vCPUs, 10,000 loops (lower is better): +-------+-----------------+----------------+ |Number |Paravirt |Base | |of +---------+-------+-------+--------+ |Threads|Average |Std Dev|Average| Std Dev| +-------+---------+-------+-------+--------+ |1 |1.817 |0.076 |1.721 | 0.067 | |2 |3.467 |0.120 |3.468 | 0.074 | |4 |6.266 |0.035 |6.314 | 0.068 | |8 |11.437 |0.105 |11.418 | 0.132 | |16 |21.862 |0.167 |22.161 | 0.129 | |25 |33.341 |0.326 |33.692 | 0.147 | +-------+---------+-------+-------+--------+ 2) When two VMs are running with same CPU affinities: a) tbench test on VM 8 cpus Base: VM1: Throughput 220.59 MB/sec 1 clients 1 procs max_latency=12.872 ms Throughput 448.716 MB/sec 2 clients 2 procs max_latency=7.555 ms Throughput 861.009 MB/sec 4 clients 4 procs max_latency=49.501 ms Throughput 1261.81 MB/sec 7 clients 7 procs max_latency=76.990 ms VM2: Throughput 219.937 MB/sec 1 clients 1 procs max_latency=12.517 ms Throughput 470.99 MB/sec 2 clients 2 procs max_latency=12.419 ms Throughput 841.299 MB/sec 4 clients 4 procs max_latency=37.043 ms Throughput 1240.78 MB/sec 7 clients 7 procs max_latency=77.489 ms Paravirt: VM1: Throughput 222.572 MB/sec 1 clients 1 procs max_latency=7.057 ms Throughput 485.993 MB/sec 2 clients 2 procs max_latency=26.049 ms Throughput 947.095 MB/sec 4 clients 4 procs max_latency=45.338 ms Throughput 1364.26 MB/sec 7 clients 7 procs max_latency=145.124 ms VM2: Throughput 224.128 MB/sec 1 clients 1 procs max_latency=4.564 ms Throughput 501.878 MB/sec 2 clients 2 procs max_latency=11.061 ms Throughput 965.455 MB/sec 4 clients 4 procs max_latency=45.370 ms Throughput 1359.08 MB/sec 7 clients 7 procs max_latency=168.053 ms b) Hackbench with 4 fd 1,000,000 loops +-------+--------------------------------------+----------------------------------------+ |Number |Paravirt |Base | |of +----------+--------+---------+--------+----------+--------+---------+----------+ |Threads|Average1 |Std Dev1|Average2 | Std Dev|Average1 |Std Dev1|Average2 | Std Dev 2| +-------+----------+--------+---------+--------+----------+--------+---------+----------+ | 1 | 3.748 | 0.620 | 3.576 | 0.432 | 4.006 | 0.395 | 3.446 | 0.787 | +-------+----------+--------+---------+--------+----------+--------+---------+----------+ Note that this test was run just to show the interference effect over-subscription can have in baseline c) schbench results with 2 message groups on 8 vCPU VMs +-----------+-------+---------------+--------------+------------+ | | | Paravirt | Base | | +-----------+-------+-------+-------+-------+------+------------+ | |Threads| VM1 | VM2 | VM1 | VM2 |%Improvement| +-----------+-------+-------+-------+-------+------+------------+ |50.0000th | 1 | 52 | 53 | 58 | 54 | +6.25% | |75.0000th | 1 | 69 | 61 | 83 | 59 | +8.45% | |90.0000th | 1 | 80 | 80 | 89 | 83 | +6.98% | |95.0000th | 1 | 83 | 83 | 93 | 87 | +7.78% | |*99.0000th | 1 | 92 | 94 | 99 | 97 | +5.10% | |99.5000th | 1 | 95 | 100 | 102 | 103 | +4.88% | |99.9000th | 1 | 107 | 123 | 105 | 203 | +25.32% | +-----------+-------+-------+-------+-------+------+------------+ |50.0000th | 2 | 56 | 62 | 67 | 59 | +6.35% | |75.0000th | 2 | 69 | 75 | 80 | 71 | +4.64% | |90.0000th | 2 | 80 | 82 | 90 | 81 | +5.26% | |95.0000th | 2 | 85 | 87 | 97 | 91 | +8.51% | |*99.0000th | 2 | 98 | 99 | 107 | 109 | +8.79% | |99.5000th | 2 | 107 | 105 | 109 | 116 | +5.78% | |99.9000th | 2 | 9968 | 609 | 875 | 3116 | -165.02% | +-----------+-------+-------+-------+-------+------+------------+ |50.0000th | 4 | 78 | 77 | 78 | 79 | +1.27% | |75.0000th | 4 | 98 | 106 | 100 | 104 | 0.00% | |90.0000th | 4 | 987 | 1001 | 995 | 1015 | +1.09% | |95.0000th | 4 | 4136 | 5368 | 5752 | 5192 | +13.16% | |*99.0000th | 4 | 11632 | 11344 | 11024| 10736| -5.59% | |99.5000th | 4 | 12624 | 13040 | 12720| 12144| -3.22% | |99.9000th | 4 | 13168 | 18912 | 14992| 17824| +2.24% | +-----------+-------+-------+-------+-------+------+------------+ Note: Improvement is measured for (VM1+VM2) Signed-off-by: NRohit Jain <rohit.k.jain@oracle.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dhaval.giani@oracle.com Cc: matt@codeblueprint.co.uk Cc: steven.sistare@oracle.com Cc: subhra.mazumdar@oracle.com Link: http://lkml.kernel.org/r/1525294330-7759-1-git-send-email-rohit.k.jain@oracle.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Gaurav reported a perceived problem with TASK_PARKED, which turned out to be a broken wait-loop pattern in __kthread_parkme(), but the reported issue can (and does) in fact happen for states that do not do condition based sleeps. When the 'current->state = TASK_RUNNING' store of a previous (concurrent) try_to_wake_up() collides with the setting of a 'special' sleep state, we can loose the sleep state. Normal condition based wait-loops are immune to this problem, but for sleep states that are not condition based are subject to this problem. There already is a fix for TASK_DEAD. Abstract that and also apply it to TASK_STOPPED and TASK_TRACED, both of which are also without condition based wait-loop. Reported-by: NGaurav Kohli <gkohli@codeaurora.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NOleg Nesterov <oleg@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 03 5月, 2018 1 次提交
-
-
由 Peter Zijlstra 提交于
Even with the wait-loop fixed, there is a further issue with kthread_parkme(). Upon hotplug, when we do takedown_cpu(), smpboot_park_threads() can return before all those threads are in fact blocked, due to the placement of the complete() in __kthread_parkme(). When that happens, sched_cpu_dying() -> migrate_tasks() can end up migrating such a still runnable task onto another CPU. Normally the task will have hit schedule() and gone to sleep by the time we do kthread_unpark(), which will then do __kthread_bind() to re-bind the task to the correct CPU. However, when we loose the initial TASK_PARKED store to the concurrent wakeup issue described previously, do the complete(), get migrated, it is possible to either: - observe kthread_unpark()'s clearing of SHOULD_PARK and terminate the park and set TASK_RUNNING, or - __kthread_bind()'s wait_task_inactive() to observe the competing TASK_RUNNING store. Either way the WARN() in __kthread_bind() will trigger and fail to correctly set the CPU affinity. Fix this by only issuing the complete() when the kthread has scheduled out. This does away with all the icky 'still running' nonsense. The alternative is to promote TASK_PARKED to a special state, this guarantees wait_task_inactive() cannot observe a 'stale' TASK_RUNNING and we'll end up doing the right thing, but this preserves the whole icky business of potentially migating the still runnable thing. Reported-by: NGaurav Kohli <gkohli@codeaurora.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 06 4月, 2018 1 次提交
-
-
由 Mark Rutland 提交于
KASAN splats indicate that in some cases we free a live mm, then continue to access it, with potentially disastrous results. This is likely due to a mismatched mmdrop() somewhere in the kernel, but so far the culprit remains elusive. Let's have __mmdrop() verify that the mm isn't live for the current task, similar to the existing check for init_mm. This way, we can catch this class of issue earlier, and without requiring KASAN. Currently, idle_task_exit() leaves active_mm stale after it switches to init_mm. This isn't harmful, but will trigger the new assertions, so we must adjust idle_task_exit() to update active_mm. Link: http://lkml.kernel.org/r/20180312140103.19235-1-mark.rutland@arm.comSigned-off-by: NMark Rutland <mark.rutland@arm.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 05 4月, 2018 1 次提交
-
-
由 Davidlohr Bueso 提交于
By renaming the functions we can get rid of the skip parameter and have better code redability. It makes zero sense to have things such as: rq_clock_skip_update(rq, false) When the skip request is in fact not going to happen. Ever. Rename things such that we end up with: rq_clock_skip_update(rq) rq_clock_cancel_skipupdate(rq) Signed-off-by: NDavidlohr Bueso <dbueso@suse.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Cc: matt@codeblueprint.co.uk Cc: rostedt@goodmis.org Link: http://lkml.kernel.org/r/20180404161539.nhadkff2aats74jh@linux-n805Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 03 4月, 2018 1 次提交
-
-
由 Dominik Brodowski 提交于
Using the sched-internal do_sched_yield() helper allows us to get rid of the sched-internal call to the sys_sched_yield() syscall. This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Ingo Molnar <mingo@redhat.com> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
- 27 3月, 2018 1 次提交
-
-
由 Davidlohr Bueso 提交于
No changes in refcount semantics, use DEFINE_STATIC_KEY_FALSE() for initialization and replace: static_key_slow_inc|dec() => static_branch_inc|dec() static_key_false() => static_branch_unlikely() Signed-off-by: NDavidlohr Bueso <dbueso@suse.de> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akpm@linux-foundation.org Link: http://lkml.kernel.org/r/20180326210929.5244-4-dave@stgolabs.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 09 3月, 2018 4 次提交
-
-
由 Peter Zijlstra 提交于
The primary observation is that nohz enter/exit is always from the current CPU, therefore NOHZ_TICK_STOPPED does not in fact need to be an atomic. Secondary is that we appear to have 2 nearly identical hooks in the nohz enter code, set_cpu_sd_state_idle() and nohz_balance_enter_idle(). Fold the whole set_cpu_sd_state thing into nohz_balance_{enter,exit}_idle. Removes an atomic op from both enter and exit paths. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Since we already iterate CPUs looking for work on NEWIDLE, use this iteration to age the blocked load. If the domain for which this is done completely spand the idle set, we can push the ILB based aging forward. Suggested-by: NBrendan Jackman <brendan.jackman@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Split the NOHZ idle balancer into doing two separate actions: - update blocked load statistic - actually load-balance Since the latter requires the former, ensure this happens. For now always tag both bits at the same time. Prepares for a future where we can toggle only the STATS bit. Suggested-by: NVincent Guittot <vincent.guittot@linaro.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Using atomic_t allows us to use the more flexible bitops provided there. Also its smaller. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 04 3月, 2018 2 次提交
-
-
由 Ingo Molnar 提交于
Make it easier to concatenate all the scheduler .c files for single-module compilation. Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ingo Molnar 提交于
Do the following cleanups and simplifications: - sched/sched.h already includes <asm/paravirt.h>, so no need to include it in sched/core.c again. - order the <linux/sched/*.h> headers alphabetically - add all <linux/sched/*.h> headers to kernel/sched/sched.h - remove all unnecessary includes from the .c files that are already included in kernel/sched/sched.h. Finally, make all scheduler .c files use a single common header: #include "sched.h" ... which now contains a union of the relied upon headers. This makes the various .c files easier to read and easier to handle. Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 03 3月, 2018 1 次提交
-
-
由 Ingo Molnar 提交于
A good number of small style inconsistencies have accumulated in the scheduler core, so do a pass over them to harmonize all these details: - fix speling in comments, - use curly braces for multi-line statements, - remove unnecessary parentheses from integer literals, - capitalize consistently, - remove stray newlines, - add comments where necessary, - remove invalid/unnecessary comments, - align structure definitions and other data types vertically, - add missing newlines for increased readability, - fix vertical tabulation where it's misaligned, - harmonize preprocessor conditional block labeling and vertical alignment, - remove line-breaks where they uglify the code, - add newline after local variable definitions, No change in functionality: md5: 1191fa0a890cfa8132156d2959d7e9e2 built-in.o.before.asm 1191fa0a890cfa8132156d2959d7e9e2 built-in.o.after.asm Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 21 2月, 2018 3 次提交
-
-
由 Frederic Weisbecker 提交于
Now that the 1Hz tick is offloaded to workqueues, we can safely remove the residual code that used to handle it locally. Signed-off-by: NFrederic Weisbecker <frederic@kernel.org> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Christoph Lameter <cl@linux.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Rik van Riel <riel@redhat.com> Cc: Wanpeng Li <kernellwp@gmail.com> Link: http://lkml.kernel.org/r/1519186649-3242-7-git-send-email-frederic@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Frederic Weisbecker 提交于
When a CPU runs in full dynticks mode, a 1Hz tick remains in order to keep the scheduler stats alive. However this residual tick is a burden for bare metal tasks that can't stand any interruption at all, or want to minimize them. The usual boot parameters "nohz_full=" or "isolcpus=nohz" will now outsource these scheduler ticks to the global workqueue so that a housekeeping CPU handles those remotely. The sched_class::task_tick() implementations have been audited and look safe to be called remotely as the target runqueue and its current task are passed in parameter and don't seem to be accessed locally. Note that in the case of using isolcpus, it's still up to the user to affine the global workqueues to the housekeeping CPUs through /sys/devices/virtual/workqueue/cpumask or domains isolation "isolcpus=nohz,domain". Signed-off-by: NFrederic Weisbecker <frederic@kernel.org> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Christoph Lameter <cl@linux.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Rik van Riel <riel@redhat.com> Cc: Wanpeng Li <kernellwp@gmail.com> Link: http://lkml.kernel.org/r/1519186649-3242-6-git-send-email-frederic@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Frederic Weisbecker 提交于
Do that rename in order to normalize the hrtick namespace. Signed-off-by: NFrederic Weisbecker <frederic@kernel.org> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Christoph Lameter <cl@linux.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Rik van Riel <riel@redhat.com> Cc: Wanpeng Li <kernellwp@gmail.com> Link: http://lkml.kernel.org/r/1519186649-3242-2-git-send-email-frederic@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 13 2月, 2018 2 次提交
-
-
由 Peter Zijlstra 提交于
Mark noticed that he had sporadic "spinlock recursion" warnings from the DEBUG_SPINLOCK code. Now rq->lock is special in that the owner changes in the middle of a context switch. It so happens that we fix up the lock.owner too late, @prev can run (remotely) the moment prev->on_cpu is cleared, this then allows @prev to again try and acquire this rq->lock and trigger this warning. So we have to switch lock.owner before clearing prev->on_cpu. Do this by moving the DEBUG_SPINLOCK annotation from after switch_to() to before switch_to() and collect all lockdep annotations there into prepare_lock_switch() to mirror the existing finish_lock_switch(). Debugged-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NMark Rutland <mark.rutland@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Tejun Heo 提交于
While adding cgroup2 interface for the cpu controller, 0d593634 ("sched: Implement interface for cgroup unified hierarchy") forgot to update input validation and left it to reject cpu.max config if any descendant has set a higher value. cgroup2 officially supports delegation and a descendant must not be able to restrict what its ancestors can configure. For absolute limits such as cpu.max and memory.max, this means that the config at each level should only act as the upper limit at that level and shouldn't interfere with what other cgroups can configure. This patch updates config validation on cgroup2 so that the cpu controller follows the same convention. Signed-off-by: NTejun Heo <tj@kernel.org> Fixes: 0d593634 ("sched: Implement interface for cgroup unified hierarchy") Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org # v4.15+
-
- 07 2月, 2018 1 次提交
-
-
由 Alexey Dobriyan 提交于
CPUmasks are never big enough to warrant 64-bit code. Space savings: add/remove: 0/0 grow/shrink: 1/4 up/down: 3/-17 (-14) Function old new delta sched_init_numa 1530 1533 +3 compat_sys_sched_setaffinity 160 159 -1 sys_sched_getaffinity 197 195 -2 sys_sched_setaffinity 183 176 -7 compat_sys_sched_getaffinity 179 172 -7 Link: http://lkml.kernel.org/r/20171204165531.GA8221@avx2Signed-off-by: NAlexey Dobriyan <adobriyan@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 2月, 2018 5 次提交
-
-
由 Mel Gorman 提交于
The select_idle_sibling() (SIS) rewrite in commit: 10e2f1ac ("sched/core: Rewrite and improve select_idle_siblings()") ... replaced a domain iteration with a search that broadly speaking does a wrapped walk of the scheduler domain sharing a last-level-cache. While this had a number of improvements, one consequence is that two tasks that share a waker/wakee relationship push each other around a socket. Even though two tasks may be active, all cores are evenly used. This is great from a search perspective and spreads a load across individual cores, but it has adverse consequences for cpufreq. As each CPU has relatively low utilisation, cpufreq may decide the utilisation is too low to used a higher P-state and overall computation throughput suffers. While individual cpufreq and cpuidle drivers may compensate by artifically boosting P-state (at c0) or avoiding lower C-states (during idle), it does not help if hardware-based cpufreq (e.g. HWP) is used. This patch tracks a recently used CPU based on what CPU a task was running on when it last was a waker a CPU it was recently using when a task is a wakee. During SIS, the recently used CPU is used as a target if it's still allowed by the task and is idle. The benefit may be non-obvious so consider an example of two tasks communicating back and forth. Task A may be an application doing IO where task B is a kworker or kthread like journald. Task A may issue IO, wake B and B wakes up A on completion. With the existing scheme this may look like the following (potentially different IDs if SMT is in use but similar principal applies). A (cpu 0) wake B (wakes on cpu 1) B (cpu 1) wake A (wakes on cpu 2) A (cpu 2) wake B (wakes on cpu 3) etc. A careful reader may wonder why CPU 0 was not idle when B wakes A the first time and it's simply due to the fact that A can be rescheduled to another CPU and the pattern is that prev == target when B tries to wakeup A and the information about CPU 0 has been lost. With this patch, the pattern is more likely to be: A (cpu 0) wake B (wakes on cpu 1) B (cpu 1) wake A (wakes on cpu 0) A (cpu 0) wake B (wakes on cpu 1) etc i.e. two communicating casts are more likely to use just two cores instead of all available cores sharing a LLC. The most dramatic speedup was noticed on dbench using the XFS filesystem on UMA as clients interact heavily with workqueues in that configuration. Note that a similar speedup is not observed on ext4 as the wakeup pattern is different: 4.15.0-rc9 4.15.0-rc9 waprev-v1 biasancestor-v1 Hmean 1 287.54 ( 0.00%) 817.01 ( 184.14%) Hmean 2 1268.12 ( 0.00%) 1781.24 ( 40.46%) Hmean 4 1739.68 ( 0.00%) 1594.47 ( -8.35%) Hmean 8 2464.12 ( 0.00%) 2479.56 ( 0.63%) Hmean 64 1455.57 ( 0.00%) 1434.68 ( -1.44%) The results can be less dramatic on NUMA where automatic balancing interferes with the test. It's also known that network benchmarks running on localhost also benefit quite a bit from this patch (roughly 10% on netperf RR for UDP and TCP depending on the machine). Hackbench also seens small improvements (6-11% depending on machine and thread count). The facebook schbench was also tested but in most cases showed little or no different to wakeup latencies. Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180130104555.4125-5-mgorman@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
The whole of ttwu_stat() is guarded by a single schedstat_enabled(), there is absolutely no point in then issuing another static_branch for every single schedstat_inc() in there. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mathieu Desnoyers 提交于
Provide core serializing membarrier command to support memory reclaim by JIT. Each architecture needs to explicitly opt into that support by documenting in their architecture code how they provide the core serializing instructions required when returning from the membarrier IPI, and after the scheduler has updated the curr->mm pointer (before going back to user-space). They should then select ARCH_HAS_MEMBARRIER_SYNC_CORE to enable support for that command on their architecture. Architectures selecting this feature need to either document that they issue core serializing instructions when returning to user-space, or implement their architecture-specific sync_core_before_usermode(). Signed-off-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-9-mathieu.desnoyers@efficios.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mathieu Desnoyers 提交于
Document the membarrier requirement on having a full memory barrier in __schedule() after coming from user-space, before storing to rq->curr. It is provided by smp_mb__after_spinlock() in __schedule(). Document that membarrier requires a full barrier on transition from kernel thread to userspace thread. We currently have an implicit barrier from atomic_dec_and_test() in mmdrop() that ensures this. The x86 switch_mm_irqs_off() full barrier is currently provided by many cpumask update operations as well as write_cr3(). Document that write_cr3() provides this barrier. Signed-off-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-4-mathieu.desnoyers@efficios.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mathieu Desnoyers 提交于
Allow PowerPC to skip the full memory barrier in switch_mm(), and only issue the barrier when scheduling into a task belonging to a process that has registered to use expedited private. Threads targeting the same VM but which belong to different thread groups is a tricky case. It has a few consequences: It turns out that we cannot rely on get_nr_threads(p) to count the number of threads using a VM. We can use (atomic_read(&mm->mm_users) == 1 && get_nr_threads(p) == 1) instead to skip the synchronize_sched() for cases where the VM only has a single user, and that user only has a single thread. It also turns out that we cannot use for_each_thread() to set thread flags in all threads using a VM, as it only iterates on the thread group. Therefore, test the membarrier state variable directly rather than relying on thread flags. This means membarrier_register_private_expedited() needs to set the MEMBARRIER_STATE_PRIVATE_EXPEDITED flag, issue synchronize_sched(), and only then set MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY which allows private expedited membarrier commands to succeed. membarrier_arch_switch_mm() now tests for the MEMBARRIER_STATE_PRIVATE_EXPEDITED flag. Signed-off-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Link: http://lkml.kernel.org/r/20180129202020.8515-3-mathieu.desnoyers@efficios.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 16 1月, 2018 1 次提交
-
-
由 Josh Snyder 提交于
Before commit: e33a9bba ("sched/core: move IO scheduling accounting from io_schedule_timeout() into scheduler") delayacct_blkio_end() was called after context-switching into the task which completed I/O. This resulted in double counting: the task would account a delay both waiting for I/O and for time spent in the runqueue. With e33a9bba, delayacct_blkio_end() is called by try_to_wake_up(). In ttwu, we have not yet context-switched. This is more correct, in that the delay accounting ends when the I/O is complete. But delayacct_blkio_end() relies on 'get_current()', and we have not yet context-switched into the task whose I/O completed. This results in the wrong task having its delay accounting statistics updated. Instead of doing that, pass the task_struct being woken to delayacct_blkio_end(), so that it can update the statistics of the correct task. Signed-off-by: NJosh Snyder <joshs@netflix.com> Acked-by: NTejun Heo <tj@kernel.org> Acked-by: NBalbir Singh <bsingharora@gmail.com> Cc: <stable@vger.kernel.org> Cc: Brendan Gregg <bgregg@netflix.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-block@vger.kernel.org Fixes: e33a9bba ("sched/core: move IO scheduling accounting from io_schedule_timeout() into scheduler") Link: http://lkml.kernel.org/r/1513613712-571-1-git-send-email-joshs@netflix.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 10 1月, 2018 3 次提交
-
-
由 Juri Lelli 提交于
Worker kthread needs to be able to change frequency for all other threads. Make it special, just under STOP class. Signed-off-by: NJuri Lelli <juri.lelli@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Claudio Scordino <claudio@evidence.eu.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luca Abeni <luca.abeni@santannapisa.it> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: alessio.balsini@arm.com Cc: bristot@redhat.com Cc: dietmar.eggemann@arm.com Cc: joelaf@google.com Cc: juri.lelli@redhat.com Cc: mathieu.poirier@linaro.org Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Cc: rjw@rjwysocki.net Cc: rostedt@goodmis.org Cc: tkjos@android.com Cc: tommaso.cucinotta@santannapisa.it Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/20171204102325.5110-4-juri.lelli@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Juri Lelli 提交于
This patch adds the possibility of getting the delivery of a SIGXCPU signal whenever there is a runtime overrun. The request is done through the sched_flags field within the sched_attr structure. Forward port of https://lkml.org/lkml/2009/10/16/170Tested-by: NMathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: NJuri Lelli <juri.lelli@gmail.com> Signed-off-by: NClaudio Scordino <claudio@evidence.eu.com> Signed-off-by: NLuca Abeni <luca.abeni@santannapisa.it> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it> Link: http://lkml.kernel.org/r/1513077024-25461-1-git-send-email-claudio@evidence.eu.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 rodrigosiqueira 提交于
The prepare_lock_switch() function has an unused parameter, and also the function name was not descriptive. To improve readability and remove the extra parameter, do the following changes: * Move prepare_lock_switch() from kernel/sched/sched.h to kernel/sched/core.c, rename it to prepare_task(), and remove the unused parameter. * Split the smp_store_release() out from finish_lock_switch() to a function named finish_task. * Comments ajdustments. Signed-off-by: NRodrigo Siqueira <rodrigosiqueiramelo@gmail.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20171215140603.gxe5i2y6fg5ojfpp@smtp.gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 11 12月, 2017 1 次提交
-
-
由 Randy Dunlap 提交于
Fix the following kernel-doc warnings after code restructuring: ../kernel/sched/core.c:5113: warning: No description found for parameter 't' ../kernel/sched/core.c:5113: warning: Excess function parameter 'interval' description in 'sched_rr_get_interval' get rid of set_fs()") Signed-off-by: NRandy Dunlap <rdunlap@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: abca5fc5 ("sched_rr_get_interval(): move compat to native, Link: http://lkml.kernel.org/r/995c6ded-b32e-bbe4-d9f5-4d42d121aff1@infradead.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 05 12月, 2017 1 次提交
-
-
由 Tejun Heo 提交于
This reverts commit 1599a185. This and the previous commit led to another circular locking scenario and the scenario which is fixed by this commit no longer exists after e8b3f8db ("workqueue/hotplug: simplify workqueue_offline_cpu()") which removes work item flushing from hotplug path. Revert it for now. Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 29 11月, 2017 1 次提交
-
-
由 Paul E. McKenney 提交于
The rcutorture test suite occasionally provokes a splat due to invoking resched_cpu() on an offline CPU: WARNING: CPU: 2 PID: 8 at /home/paulmck/public_git/linux-rcu/arch/x86/kernel/smp.c:128 native_smp_send_reschedule+0x37/0x40 Modules linked in: CPU: 2 PID: 8 Comm: rcu_preempt Not tainted 4.14.0-rc4+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014 task: ffff902ede9daf00 task.stack: ffff96c50010c000 RIP: 0010:native_smp_send_reschedule+0x37/0x40 RSP: 0018:ffff96c50010fdb8 EFLAGS: 00010096 RAX: 000000000000002e RBX: ffff902edaab4680 RCX: 0000000000000003 RDX: 0000000080000003 RSI: 0000000000000000 RDI: 00000000ffffffff RBP: ffff96c50010fdb8 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000000 R11: 00000000299f36ae R12: 0000000000000001 R13: ffffffff9de64240 R14: 0000000000000001 R15: ffffffff9de64240 FS: 0000000000000000(0000) GS:ffff902edfc80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000f7d4c642 CR3: 000000001e0e2000 CR4: 00000000000006e0 Call Trace: resched_curr+0x8f/0x1c0 resched_cpu+0x2c/0x40 rcu_implicit_dynticks_qs+0x152/0x220 force_qs_rnp+0x147/0x1d0 ? sync_rcu_exp_select_cpus+0x450/0x450 rcu_gp_kthread+0x5a9/0x950 kthread+0x142/0x180 ? force_qs_rnp+0x1d0/0x1d0 ? kthread_create_on_node+0x40/0x40 ret_from_fork+0x27/0x40 Code: 14 01 0f 92 c0 84 c0 74 14 48 8b 05 14 4f f4 00 be fd 00 00 00 ff 90 a0 00 00 00 5d c3 89 fe 48 c7 c7 38 89 ca 9d e8 e5 56 08 00 <0f> ff 5d c3 0f 1f 44 00 00 8b 05 52 9e 37 02 85 c0 75 38 55 48 ---[ end trace 26df9e5df4bba4ac ]--- This splat cannot be generated by expedited grace periods because they always invoke resched_cpu() on the current CPU, which is good because expedited grace periods require that resched_cpu() unconditionally succeed. However, other parts of RCU can tolerate resched_cpu() acting as a no-op, at least as long as it doesn't happen too often. This commit therefore makes resched_cpu() invoke resched_curr() only if the CPU is either online or is the current CPU. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org>
-
- 28 11月, 2017 1 次提交
-
-
由 Prateek Sood 提交于
Convert cpuset_hotplug_workfn() into synchronous call for cpu hotplug path. For memory hotplug path it still gets queued as a work item. Since cpuset_hotplug_workfn() can be made synchronous for cpu hotplug path, it is not required to wait for cpuset hotplug while thawing processes. Signed-off-by: NPrateek Sood <prsood@codeaurora.org> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 09 11月, 2017 1 次提交
-
-
由 Patrick Bellasi 提交于
When the kernel is compiled with !CONFIG_SCHED_DEBUG support, we expect that all SCHED_FEAT are turned into compile time constants being propagated to support compiler optimizations. Specifically, we expect that code blocks like this: if (sched_feat(FEATURE_NAME) [&& <other_conditions>]) { /* FEATURE CODE */ } are turned into dead-code in case FEATURE_NAME defaults to FALSE, and thus being removed by the compiler from the finale image. For this mechanism to properly work it's required for the compiler to have full access, from each translation unit, to whatever is the value defined by the sched_feat macro. This macro is defined as: #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) and thus, the compiler can optimize that code only if the value of sysctl_sched_features is visible within each translation unit. Since: 029632fb ("sched: Make separate sched*.c translation units") the scheduler code has been split into separate translation units however the definition of sysctl_sched_features is part of kernel/sched/core.c while, for all the other scheduler modules, it is visible only via kernel/sched/sched.h as an: extern const_debug unsigned int sysctl_sched_features Unfortunately, an extern reference does not allow the compiler to apply constants propagation. Thus, on !CONFIG_SCHED_DEBUG kernel we still end up with code to load a memory reference and (eventually) doing an unconditional jump of a chunk of code. This mechanism is unavoidable when sched_features can be turned on and off at run-time. However, this is not the case for "production" kernels compiled with !CONFIG_SCHED_DEBUG. In this case, sysctl_sched_features is just a constant value which cannot be changed at run-time and thus memory loads and jumps can be avoided altogether. This patch fixes the case of !CONFIG_SCHED_DEBUG kernel by declaring a local version of the sysctl_sched_features constant for each translation unit. This will ultimately allow the compiler to perform constants propagation and dead-code pruning. Tests have been done, with !CONFIG_SCHED_DEBUG on a v4.14-rc8 with and without the patch, by running 30 iterations of: perf bench sched messaging --pipe --thread --group 4 --loop 50000 on a 40 cores Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz using the powersave governor to rule out variations due to frequency scaling. Statistics on the reported completion time: count mean std min 99% max v4.14-rc8 30.0 15.7831 0.176032 15.442 16.01226 16.014 v4.14-rc8+patch 30.0 15.5033 0.189681 15.232 15.93938 15.962 ... show a 1.8% speedup on average completion time and 0.5% speedup in the 99 percentile. Signed-off-by: NPatrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: NChris Redpath <chris.redpath@arm.com> Reviewed-by: NDietmar Eggemann <dietmar.eggemann@arm.com> Reviewed-by: NBrendan Jackman <brendan.jackman@arm.com> Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: http://lkml.kernel.org/r/20171108184101.16006-1-patrick.bellasi@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 27 10月, 2017 4 次提交
-
-
由 Frederic Weisbecker 提交于
We want to centralize the isolation features, to be done by the housekeeping subsystem and scheduler domain isolation is a significant part of it. No intended behaviour change, we just reuse the housekeeping cpumask and core code. Signed-off-by: NFrederic Weisbecker <frederic@kernel.org> Acked-by: NThomas Gleixner <tglx@linutronix.de> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Christoph Lameter <cl@linux.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Wanpeng Li <kernellwp@gmail.com> Link: http://lkml.kernel.org/r/1509072159-31808-11-git-send-email-frederic@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Frederic Weisbecker 提交于
Before we implement isolcpus under housekeeping, we need the isolation features to be more finegrained. For example some people want NOHZ_FULL without the full scheduler isolation, others want full scheduler isolation without NOHZ_FULL. So let's cut all these isolation features piecewise, at the risk of overcutting it right now. We can still merge some flags later if they always make sense together. Signed-off-by: NFrederic Weisbecker <frederic@kernel.org> Acked-by: NThomas Gleixner <tglx@linutronix.de> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Christoph Lameter <cl@linux.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Wanpeng Li <kernellwp@gmail.com> Link: http://lkml.kernel.org/r/1509072159-31808-9-git-send-email-frederic@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Frederic Weisbecker 提交于
Fit it into the housekeeping_*() namespace. Signed-off-by: NFrederic Weisbecker <frederic@kernel.org> Acked-by: NThomas Gleixner <tglx@linutronix.de> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Christoph Lameter <cl@linux.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Wanpeng Li <kernellwp@gmail.com> Link: http://lkml.kernel.org/r/1509072159-31808-7-git-send-email-frederic@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Frederic Weisbecker 提交于
The housekeeping code is currently tied to the NOHZ code. As we are planning to make housekeeping independent from it, start with moving the relevant code to its own file. Signed-off-by: NFrederic Weisbecker <frederic@kernel.org> Acked-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Christoph Lameter <cl@linux.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Wanpeng Li <kernellwp@gmail.com> Link: http://lkml.kernel.org/r/1509072159-31808-2-git-send-email-frederic@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-