- 08 7月, 2006 1 次提交
-
-
由 Dave Jones 提交于
[ There's some not quite baked bits in cpufreq-git right now so sending this on as a patch instead ] On Thu, 2006-07-06 at 07:58 -0700, Tom London wrote: > After installing .2356 I get this each time I boot: > ======================================================= > [ INFO: possible circular locking dependency detected ] > ------------------------------------------------------- > S06cpuspeed/1620 is trying to acquire lock: > (dbs_mutex){--..}, at: [<c060d6bb>] mutex_lock+0x21/0x24 > > but task is already holding lock: > (cpucontrol){--..}, at: [<c060d6bb>] mutex_lock+0x21/0x24 > > which lock already depends on the new lock. > make sure the cpu hotplug recursive mutex (yuck) is taken early in the cpufreq codepaths to avoid a AB-BA deadlock. Signed-off-by: NArjan van de Ven <arjan@linux.intel.com> Signed-off-by: NDave Jones <davej@redhat.com> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 01 7月, 2006 1 次提交
-
-
由 Jörn Engel 提交于
Signed-off-by: NJörn Engel <joern@wohnheim.fh-wedel.de> Signed-off-by: NAdrian Bunk <bunk@stusta.de>
-
- 30 6月, 2006 3 次提交
-
-
由 Venkatesh Pallipadi 提交于
Misc cleanups in ondemand. Should have zero functional impact. Also adding Alexey as author. Signed-off-by: NAlexey Starikovskiy <alexey.y.starikovskiy@intel.com> Signed-off-by: NVenkatesh Pallipadi <venkatesh.pallipadi@intel.com> Signed-off-by: NDave Jones <davej@redhat.com>
-
由 Venkatesh Pallipadi 提交于
Make ondemand sampling per CPU and remove the mutex usage in sampling path. Signed-off-by: NAlexey Starikovskiy <alexey.y.starikovskiy@intel.com> Signed-off-by: NVenkatesh Pallipadi <venkatesh.pallipadi@intel.com> Signed-off-by: NDave Jones <davej@redhat.com>
-
由 Venkatesh Pallipadi 提交于
Remove slowdown from ondemand sampling path. This reduces the code path length in dbs_check_cpu() by half. slowdown was not used by ondemand by default. If there are any user level tools that were using this tunable, they may report error now. Signed-off-by: NAlexey Starikovskiy <alexey.y.starikovskiy@intel.com> Signed-off-by: NVenkatesh Pallipadi <venkatesh.pallipadi@intel.com> Signed-off-by: NDave Jones <davej@redhat.com>
-
- 28 6月, 2006 3 次提交
-
-
由 Chandra Seetharaman 提交于
Make notifier_blocks associated with cpu_notifier as __cpuinitdata. __cpuinitdata makes sure that the data is init time only unless CONFIG_HOTPLUG_CPU is defined. Signed-off-by: NChandra Seetharaman <sekharan@us.ibm.com> Cc: Ashok Raj <ashok.raj@intel.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Chandra Seetharaman 提交于
CPUs come online only at init time (unless CONFIG_HOTPLUG_CPU is defined). So, cpu_notifier functionality need to be available only at init time. This patch makes register_cpu_notifier() available only at init time, unless CONFIG_HOTPLUG_CPU is defined. This patch exports register_cpu_notifier() and unregister_cpu_notifier() only if CONFIG_HOTPLUG_CPU is defined. Signed-off-by: NChandra Seetharaman <sekharan@us.ibm.com> Cc: Ashok Raj <ashok.raj@intel.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Chandra Seetharaman 提交于
In 2.6.17, there was a problem with cpu_notifiers and XFS. I provided a band-aid solution to solve that problem. In the process, i undid all the changes you both were making to ensure that these notifiers were available only at init time (unless CONFIG_HOTPLUG_CPU is defined). We deferred the real fix to 2.6.18. Here is a set of patches that fixes the XFS problem cleanly and makes the cpu notifiers available only at init time (unless CONFIG_HOTPLUG_CPU is defined). If CONFIG_HOTPLUG_CPU is defined then cpu notifiers are available at run time. This patch reverts the notifier_call changes made in 2.6.17 Signed-off-by: NChandra Seetharaman <sekharan@us.ibm.com> Cc: Ashok Raj <ashok.raj@intel.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 23 6月, 2006 1 次提交
-
-
由 Andrew Morton 提交于
drivers/cpufreq/cpufreq_ondemand.c: In function 'do_dbs_timer': drivers/cpufreq/cpufreq_ondemand.c:374: warning: implicit declaration of function 'lock_cpu_hotplug' drivers/cpufreq/cpufreq_ondemand.c:381: warning: implicit declaration of function 'unlock_cpu_hotplug' drivers/cpufreq/cpufreq_conservative.c: In function 'do_dbs_timer': drivers/cpufreq/cpufreq_conservative.c:425: warning: implicit declaration of function 'lock_cpu_hotplug' drivers/cpufreq/cpufreq_conservative.c:432: warning: implicit declaration of function 'unlock_cpu_hotplug' Cc: Dave Jones <davej@codemonkey.org.uk> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 22 6月, 2006 1 次提交
-
-
由 Venkatesh Pallipadi 提交于
Rootcaused the bug to a deadlock in cpufreq and ondemand. Due to non-existent ordering between cpu_hotplug lock and dbs_mutex. Basically a race condition between cpu_down() and do_dbs_timer(). cpu_down() flow: * cpu_down() call for CPU 1 * Takes hot plug lock * Calls pre down notifier * cpufreq notifier handler calls cpufreq_driver_target() which takes cpu_hotplug lock again. OK as cpu_hotplug lock is recursive in same process context * CPU 1 goes down * Calls post down notifier * cpufreq notifier handler calls ondemand event stop which takes dbs_mutex So, cpu_hotplug lock is taken before dbs_mutex in this flow. do_dbs_timer is triggerred by a periodic timer event. It first takes dbs_mutex and then takes cpu_hotplug lock in cpufreq_driver_target(). Note the reverse order here compared to above. So, if this timer event happens at right moment during cpu_down, system will deadlok. Attached patch fixes the issue for both ondemand and conservative. Signed-off-by: NVenkatesh Pallipadi <venkatesh.pallipadi@intel.com> Signed-off-by: NDave Jones <davej@redhat.com>
-
- 05 6月, 2006 1 次提交
-
-
由 Jan Beulich 提交于
Remove KERN_* suffixes from some cpufreq driver's dprintk-s. Signed-off-by: NJan Beulich <jbeulich@novell.com> Signed-off-by: NDave Jones <davej@redhat.com>
-
- 31 5月, 2006 4 次提交
-
-
由 Dave Jones 提交于
Signed-off-by: NDave Jones <davej@redhat.com>
-
由 Dave Jones 提交于
Signed-off-by: NDave Jones <davej@redhat.com>
-
由 Dave Jones 提交于
Signed-off-by: NDave Jones <davej@redhat.com>
-
由 Dave Jones 提交于
Signed-off-by: NDave Jones <davej@redhat.com>
-
- 09 5月, 2006 1 次提交
-
-
由 Andi Kleen 提交于
Taking the cpu hotplug semaphore in a normal events workqueue is unsafe because other tasks can wait for any workqueues with it hold. This results in a deadlock. Move the DBS timer into its own work queue which is not affected by other work queue flushes to avoid this. Has been acked by Venkatesh. Cc: venkatesh.pallipadi@intel.com Cc: cpufreq@lists.linux.org.uk Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 26 4月, 2006 1 次提交
-
-
由 Chandra Seetharaman 提交于
Few of the notifier_chain_register() callers use __init in the definition of notifier_call. It is incorrect as the function definition should be available after the initializations (they do not unregister them during initializations). This patch fixes all such usages to _not_ have the notifier_call __init section. Signed-off-by: NChandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 19 4月, 2006 2 次提交
-
-
由 Adrian Bunk 提交于
This patch removes the EXPORT_SYMBOL_GPL of the static function cpufreq_parse_governor(). Signed-off-by: NAdrian Bunk <bunk@stusta.de> Signed-off-by: NDave Jones <davej@redhat.com>
-
由 Thomas Renninger 提交于
[CPUFREQ] If max_freq got reduced (e.g. by _PPC) a write to sysfs scaling_governor let cpufreq core stuck at low max_freq for ever The previous patch had bugs (locking and refcount). This one could also be related to the latest DELL reports. But they only slip into this if a user prog (e.g. powersave daemon does when AC got (un) plugged due to a scheme change) echos something to /sys/../cpufreq/scaling_governor while the frequencies got limited by BIOS. This one works: Subject: Max freq stucks at low freq if reduced by _PPC and sysfs gov access The problem is reproducable by(if machine is limiting freqs via BIOS): - Unplugging AC -> max freq gets limited - echo ${governor} >/sys/.../cpufreq/scaling_governor (policy->user_data.max gets overridden with policy->max and will never come up again.) This patch exchanged the cpufreq_set_policy call to __cpufreq_set_policy and duplicated it's functionality but did not override user_data.max. The same happens with overridding min/max values. If freqs are limited and you override the min freq value, the max freq global value will also get stuck to the limited freq, even if BIOS allows all freqs again. Last scenario does only happen if BIOS does not reduce the frequency to the lowest value (should never happen, just for correctness...) drivers/cpufreq/cpufreq.c | 17 +++++++++++++++-- 1 files changed, 15 insertions(+), 2 deletions(-) Signed-off-by: NThomas Renninger <trenn@suse.de> Signed-off-by: N"Pallipadi, Venkatesh" <venkatesh.pallipadi@intel.com> Signed-off-by: NDave Jones <davej@redhat.com>
-
- 03 4月, 2006 1 次提交
-
-
由 Erik Mouw 提交于
Update LART site URL. The LART website moved to http://www.lartmaker.nl/. This patch updates the URL in CpuFreq specific files. Signed-off-by: NErik Mouw <erik@bitwizard.nl> Signed-off-by: NDave Jones <davej@redhat.com>
-
- 02 4月, 2006 1 次提交
-
-
由 Dave Jones 提交于
< 0 checks on unsigned variables are pointless. Signed-off-by: NDave Jones <davej@redhat.com>
-
- 29 3月, 2006 3 次提交
-
-
由 Dave Jones 提交于
Signed-off-by: NDave Jones <davej@redhat.com>
-
由 Dave Jones 提交于
Snipped from an otherwise rejected patch by Jan Beulich <jbeulich@novell.com> Signed-off-by: NDave Jones <davej@redhat.com>
-
由 Mattia Dongili 提交于
Keep the value of ignore_nice_load and freq_step of the conservative governor after the governor is deselected and reselected. Signed-off-by: NMattia Dongili <malattia@linux.it> Signed-off-by: NDave Jones <davej@redhat.com>
-
- 28 3月, 2006 1 次提交
-
-
由 Alan Stern 提交于
The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: NAlan Stern <stern@rowland.harvard.edu> Signed-off-by: NChandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: NJes Sorensen <jes@sgi.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 26 3月, 2006 7 次提交
-
-
由 Dominik Brodowski 提交于
Assert that cpufreq_target is, at least, called with the minimum frequency allowed by this policy, not something lower. It triggered problems on ARM. Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Eric Piel 提交于
Keep the value of ignore_nice_load of the ondemand governor even after the governor has been deselected and selected back. This is the behavior of the other exported values of the ondemand governor and it's much more user-friendly. Signed-off-by: NEric Piel <eric.piel@tremplin-utc.net> Acked-by: NVenkatesh Pallipadi <venkatesh.pallipadi@intel.com> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Eric Piel 提交于
Display a warning if the ondemand governor can not be selected due to a transition latency of the cpufreq driver which is too long. Signed-off-by: NEric Piel <eric.piel@tremplin-utc.net> Acked-by: NVenkatesh Pallipadi <venkatesh.pallipadi@intel.com> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Alexander Clouter 提交于
Venki, author of cpufreq_ondemand, came up with a neater way to remove the initialiser code from the main loop of my code and out to the point when the governor is actually initialised. Not only does it look but it also feels cleaner, plus its simpler to understand. It also saves a bunch of pointless conditional statements in the main loop. Signed-off-by: NAlexander Clouter <alex-kernel@digriz.org.uk> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Alexander Clouter 提交于
All these changes should make cpufreq_conservative safe in regards to the x86 for_each_cpu cpumask.h changes and whatnot. Whilst making it safe a number of pointless for loops related to the cpu mask's were removed. I was never comfortable with all those for loops, especially as the iteration is over the same data again and again for each CPU you had in a single poll, an O(n^2) outcome to frequency scaling. The approach I use is to assume by default no CPU's exist and it sets the requested_freq to zero as a kind of flag, the reasoning is in the source ;) If the CPU is queried and requested_freq is zero then it initialises the variable to current_freq and then continues as if nothing happened which should be the same net effect as before? Signed-off-by: NAlexander Clouter <alex-kernel@digriz.org.uk> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Alexander Clouter 提交于
The sensible approach to making conservative less responsive than ondemand :) As mentioned in patch [1/4]. We do not want conservative to shoot through all the frequencies, its point (by default) is to slowly move through them. By default its ten times less responsive. Signed-off-by: NAlexander Clouter <alex-kernel@digriz.org.uk> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Alexander Clouter 提交于
Since the conservative govenor was released its codebase has drifted from the the direction and updates that have been applied to the ondemand govornor. This patch addresses the lack of updates in that period and brings conservative back up to date. The resulting diff file between cpufreq_ondemand.c and cpufreq_conservative.c is now much smaller and shows more clearly the differences between the two. Another reason to do this is ages ago, knowingly, I did a piss poor attempt at making conservative less responsive by knocking up DEF_SAMPLING_RATE_LATENCY_MULTIPLIER by two orders of magnitude. I did fix this ages ago but in my dis-organisation I must have toasted the diff and left it the way it was. About two weeks ago a user contacted me saying he was having problems with the conservative governor with his AMD Athlon XP-M 2800+ as /sys/devices/system/cpu/cpu0/cpufreq/conservative showed sampling_rate_min 9950000 sampling_rate_max 1360065408 Nine seconds to decide about changing the frequency....not too responsive :) Signed-off-by: NAlexander Clouter <alex-kernel@digriz.org.uk> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
- 12 3月, 2006 1 次提交
-
-
由 Sam Ravnborg 提交于
cpufreq are the only remaining bit to be solved for me to have a modpost clean build for sparc64 - so I took one more look at it. changelog entry: Fix section mismatch warnings in cpufreq: WARNING: drivers/cpufreq/cpufreq_stats.o - Section mismatch: reference to .init.text: from .data between 'cpufreq_stat_cpu_notifier' (at offset 0xa8) and 'notifier_policy_block' WARNING: drivers/cpufreq/cpufreq_stats.o - Section mismatch: reference to .init.text: from .exit.text after 'cleanup_module' (at offset 0x30) The culprint is the function: cpufreq_stat_cpu_callback It is marked __cpuinit which get's redefined to __init in case HOTPLUG_CPU is not enabled as per. init.h: #ifdef CONFIG_HOTPLUG_CPU #define __cpuinit #else #define __cpuinit __init #endif $> grep HOTPLUG .config CONFIG_HOTPLUG=y But cpufreq_stat_cpu_callback() is used in: __exit cpufreq_stats_exit() static struct notifier_block cpufreq_stat_cpu_notifier cpufreq_stat_cpu_notifier is again used in: __init cpufreq_stats_init() __exit cpufreq_stats_exit() So in both cases used from both __init and __exit context. Only solution seems to drop __cpuinit tag. Signed-off-by: NSam Ravnborg <sam@ravnborg.org> Signed-off-by: NDave Jones <davej@redhat.com>
-
- 05 3月, 2006 1 次提交
-
-
由 Dave Jones 提交于
This patch adds proper logic to cpufreq driver in order to handle CPU Hotplug. When CPUs go on/offline, the affected CPUs data, cpufreq_policy->cpus, is not updated properly. This causes sysfs directories and symlinks to be in an incorrect state after few CPU on/offlines. Signed-off-by: NJacob Shin <jacob.shin@amd.com> Signed-off-by: NDave Jones <davej@redhat.com>
-
- 28 2月, 2006 1 次提交
-
-
由 Dave Jones 提交于
Signed-off-by: NDave Jones <davej@redhat.com>
-
- 03 2月, 2006 2 次提交
-
-
由 Dave Jones 提交于
Signed-off-by: NDave Jones <davej@redhat.com>
-
由 Thomas Renninger 提交于
Check whether driver init did not initialize current freq Signed-off-by: NThomas Renninger <trenn@suse.de> Signed-off-by: NDave Jones <davej@redhat.com>
-
- 01 2月, 2006 1 次提交
-
-
由 Dave Jones 提交于
Introduce caching of cpufreq_cpu_data[freqs->cpu], which allows us to make the function a lot more readable, and as a nice side-effect, it now fits in < 80 column displays again. Signed-off-by: NDave Jones <davej@redhat.com>
-
- 28 1月, 2006 1 次提交
-
-
由 Thomas Renninger 提交于
Userspace governor need not to hold it's own cpufreq_policy, better make use of the global core policy. Also fixes a bug in case of frequency changes via _PPC. Old min/max values have wrongly been passed to __cpufreq_driver_target() (kind of buffered) and when max freq was available again, only the old max(normally lowest freq) was still active. Signed-off-by: NThomas Renninger <trenn@suse.de> Signed-off-by: NVenkatesh Pallipadi <venkatesh.pallipadi@intel.com> Signed-off-by: NDave Jones <davej@redhat.com> cpufreq_userspace.c | 53 +++++++++++++++++++++++++++------------------------- 1 files changed, 28 insertions(+), 25 deletions(-)
-
- 27 1月, 2006 1 次提交
-
-
由 Thomas Renninger 提交于
BIOS might change frequency behind our back when BIOS changes allowed frequencies via _PPC. In this case cpufreq core got out of sync. Ask driver for current freq and notify governors about a change Signed-off-by: NThomas Renninger <trenn@suse.de> Signed-off-by: NVenkatesh Pallipadi <venkatesh.pallipadi@intel.com> Signed-off-by: NDave Jones <davej@redhat.com>
-