1. 24 10月, 2014 3 次提交
  2. 22 10月, 2014 2 次提交
    • J
      mac80211: add WMM admission control support · 02219b3a
      Johannes Berg 提交于
      Use the currently existing APIs between mac80211 and the low
      level driver to implement WMM admission control.
      
      The low level driver needs to report the media time used by
      each transmitted packet in ieee80211_tx_status. Based on that
      information, mac80211 will modify the QoS parameters of the
      admission controlled Access Category when the limit is
      reached. Once the original QoS parameters can be restored,
      mac80211 will do so.
      
      One issue with this approach is that management frames will
      also erroneously be downgraded, but the upside is that the
      implementation is simple. In the future, it can be extended
      to driver- or device-based implementations that are better.
      Signed-off-by: NEmmanuel Grumbach <emmanuel.grumbach@intel.com>
      Signed-off-by: NJohannes Berg <johannes.berg@intel.com>
      02219b3a
    • J
      cfg80211: make WMM TSPEC support flag an nl80211 feature flag · 723e73ac
      Johannes Berg 提交于
      During the review of the corresponding wpa_supplicant patches we
      noticed that the only way for it to detect that this functionality
      is supported currently is to check for the command support. This
      can be misleading though, as the command was also designed to, in
      the future, support pure 802.11 TSPECs.
      
      Expose the WMM-TSPEC feature flag to nl80211 so later we can also
      expose an 802.11-TSPEC feature flag (if needed) to differentiate
      the two cases.
      
      Note: this change isn't needed in 3.18 as there's no driver there
      yet that supports the functionality at all.
      Signed-off-by: NJohannes Berg <johannes.berg@intel.com>
      723e73ac
  3. 20 10月, 2014 2 次提交
  4. 09 10月, 2014 5 次提交
  5. 07 10月, 2014 5 次提交
  6. 06 10月, 2014 4 次提交
  7. 05 10月, 2014 1 次提交
  8. 04 10月, 2014 3 次提交
    • T
      gue: Receive side for Generic UDP Encapsulation · 37dd0247
      Tom Herbert 提交于
      This patch adds support receiving for GUE packets in the fou module. The
      fou module now supports direct foo-over-udp (no encapsulation header)
      and GUE. To support this a type parameter is added to the fou netlink
      parameters.
      
      For a GUE socket we define gue_udp_recv, gue_gro_receive, and
      gue_gro_complete to handle the specifics of the GUE protocol. Most
      of the code to manage and configure sockets is common with the fou.
      Signed-off-by: NTom Herbert <therbert@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      37dd0247
    • E
      qdisc: validate skb without holding lock · 55a93b3e
      Eric Dumazet 提交于
      Validation of skb can be pretty expensive :
      
      GSO segmentation and/or checksum computations.
      
      We can do this without holding qdisc lock, so that other cpus
      can queue additional packets.
      
      Trick is that requeued packets were already validated, so we carry
      a boolean so that sch_direct_xmit() can validate a fresh skb list,
      or directly use an old one.
      
      Tested on 40Gb NIC (8 TX queues) and 200 concurrent flows, 48 threads
      host.
      
      Turning TSO on or off had no effect on throughput, only few more cpu
      cycles. Lock contention on qdisc lock disappeared.
      
      Same if disabling TX checksum offload.
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      55a93b3e
    • J
      qdisc: bulk dequeue support for qdiscs with TCQ_F_ONETXQUEUE · 5772e9a3
      Jesper Dangaard Brouer 提交于
      Based on DaveM's recent API work on dev_hard_start_xmit(), that allows
      sending/processing an entire skb list.
      
      This patch implements qdisc bulk dequeue, by allowing multiple packets
      to be dequeued in dequeue_skb().
      
      The optimization principle for this is two fold, (1) to amortize
      locking cost and (2) avoid expensive tailptr update for notifying HW.
       (1) Several packets are dequeued while holding the qdisc root_lock,
      amortizing locking cost over several packet.  The dequeued SKB list is
      processed under the TXQ lock in dev_hard_start_xmit(), thus also
      amortizing the cost of the TXQ lock.
       (2) Further more, dev_hard_start_xmit() will utilize the skb->xmit_more
      API to delay HW tailptr update, which also reduces the cost per
      packet.
      
      One restriction of the new API is that every SKB must belong to the
      same TXQ.  This patch takes the easy way out, by restricting bulk
      dequeue to qdisc's with the TCQ_F_ONETXQUEUE flag, that specifies the
      qdisc only have attached a single TXQ.
      
      Some detail about the flow; dev_hard_start_xmit() will process the skb
      list, and transmit packets individually towards the driver (see
      xmit_one()).  In case the driver stops midway in the list, the
      remaining skb list is returned by dev_hard_start_xmit().  In
      sch_direct_xmit() this returned list is requeued by dev_requeue_skb().
      
      To avoid overshooting the HW limits, which results in requeuing, the
      patch limits the amount of bytes dequeued, based on the drivers BQL
      limits.  In-effect bulking will only happen for BQL enabled drivers.
      
      Small amounts for extra HoL blocking (2x MTU/0.24ms) were
      measured at 100Mbit/s, with bulking 8 packets, but the
      oscillating nature of the measurement indicate something, like
      sched latency might be causing this effect. More comparisons
      show, that this oscillation goes away occationally. Thus, we
      disregard this artifact completely and remove any "magic" bulking
      limit.
      
      For now, as a conservative approach, stop bulking when seeing TSO and
      segmented GSO packets.  They already benefit from bulking on their own.
      A followup patch add this, to allow easier bisect-ability for finding
      regressions.
      
      Jointed work with Hannes, Daniel and Florian.
      Signed-off-by: NJesper Dangaard Brouer <brouer@redhat.com>
      Signed-off-by: NHannes Frederic Sowa <hannes@stressinduktion.org>
      Signed-off-by: NDaniel Borkmann <dborkman@redhat.com>
      Signed-off-by: NFlorian Westphal <fw@strlen.de>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      5772e9a3
  9. 03 10月, 2014 4 次提交
  10. 02 10月, 2014 2 次提交
    • W
      net_sched: avoid calling tcf_unbind_filter() in call_rcu callback · a0efb80c
      WANG Cong 提交于
      This fixes the following crash:
      
      [   63.976822] general protection fault: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
      [   63.980094] CPU: 1 PID: 15 Comm: ksoftirqd/1 Not tainted 3.17.0-rc6+ #648
      [   63.980094] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
      [   63.980094] task: ffff880117dea690 ti: ffff880117dfc000 task.ti: ffff880117dfc000
      [   63.980094] RIP: 0010:[<ffffffff817e6d07>]  [<ffffffff817e6d07>] u32_destroy_key+0x27/0x6d
      [   63.980094] RSP: 0018:ffff880117dffcc0  EFLAGS: 00010202
      [   63.980094] RAX: ffff880117dea690 RBX: ffff8800d02e0820 RCX: 0000000000000000
      [   63.980094] RDX: 0000000000000001 RSI: 0000000000000002 RDI: 6b6b6b6b6b6b6b6b
      [   63.980094] RBP: ffff880117dffcd0 R08: 0000000000000000 R09: 0000000000000000
      [   63.980094] R10: 00006c0900006ba8 R11: 00006ba100006b9d R12: 0000000000000001
      [   63.980094] R13: ffff8800d02e0898 R14: ffffffff817e6d4d R15: ffff880117387a30
      [   63.980094] FS:  0000000000000000(0000) GS:ffff88011a800000(0000) knlGS:0000000000000000
      [   63.980094] CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
      [   63.980094] CR2: 00007f07e6732fed CR3: 000000011665b000 CR4: 00000000000006e0
      [   63.980094] Stack:
      [   63.980094]  ffff88011a9cd300 ffffffff82051ac0 ffff880117dffce0 ffffffff817e6d68
      [   63.980094]  ffff880117dffd70 ffffffff810cb4c7 ffffffff810cb3cd ffff880117dfffd8
      [   63.980094]  ffff880117dea690 ffff880117dea690 ffff880117dfffd8 000000000000000a
      [   63.980094] Call Trace:
      [   63.980094]  [<ffffffff817e6d68>] u32_delete_key_freepf_rcu+0x1b/0x1d
      [   63.980094]  [<ffffffff810cb4c7>] rcu_process_callbacks+0x3bb/0x691
      [   63.980094]  [<ffffffff810cb3cd>] ? rcu_process_callbacks+0x2c1/0x691
      [   63.980094]  [<ffffffff817e6d4d>] ? u32_destroy_key+0x6d/0x6d
      [   63.980094]  [<ffffffff810780a4>] __do_softirq+0x142/0x323
      [   63.980094]  [<ffffffff810782a8>] run_ksoftirqd+0x23/0x53
      [   63.980094]  [<ffffffff81092126>] smpboot_thread_fn+0x203/0x221
      [   63.980094]  [<ffffffff81091f23>] ? smpboot_unpark_thread+0x33/0x33
      [   63.980094]  [<ffffffff8108e44d>] kthread+0xc9/0xd1
      [   63.980094]  [<ffffffff819e00ea>] ? do_wait_for_common+0xf8/0x125
      [   63.980094]  [<ffffffff8108e384>] ? __kthread_parkme+0x61/0x61
      [   63.980094]  [<ffffffff819e43ec>] ret_from_fork+0x7c/0xb0
      [   63.980094]  [<ffffffff8108e384>] ? __kthread_parkme+0x61/0x61
      
      tp could be freed in call_rcu callback too, the order is not guaranteed.
      
      John Fastabend says:
      
      ====================
      Its worth noting why this is safe. Any running schedulers will either
      read the valid class field or it will be zeroed.
      
      All schedulers today when the class is 0 do a lookup using the
      same call used by the tcf_exts_bind(). So even if we have a running
      classifier hit the null class pointer it will do a lookup and get
      to the same result. This is particularly fragile at the moment because
      the only way to verify this is to audit the schedulers call sites.
      ====================
      
      Cc: John Fastabend <john.r.fastabend@intel.com>
      Signed-off-by: NCong Wang <xiyou.wangcong@gmail.com>
      Acked-by: NJohn Fastabend <john.r.fastabend@intel.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      a0efb80c
    • T
      udp: Generalize skb_udp_segment · 8bce6d7d
      Tom Herbert 提交于
      skb_udp_segment is the function called from udp4_ufo_fragment to
      segment a UDP tunnel packet. This function currently assumes
      segmentation is transparent Ethernet bridging (i.e. VXLAN
      encapsulation). This patch generalizes the function to
      operate on either Ethertype or IP protocol.
      
      The inner_protocol field must be set to the protocol of the inner
      header. This can now be either an Ethertype or an IP protocol
      (in a union). A new flag in the skbuff indicates which type is
      effective. skb_set_inner_protocol and skb_set_inner_ipproto
      helper functions were added to set the inner_protocol. These
      functions are called from the point where the tunnel encapsulation
      is occuring.
      
      When skb_udp_tunnel_segment is called, the function to segment the
      inner packet is selected based on the inner IP or Ethertype. In the
      case of an IP protocol encapsulation, the function is derived from
      inet[6]_offloads. In the case of Ethertype, skb->protocol is
      set to the inner_protocol and skb_mac_gso_segment is called. (GRE
      currently does this, but it might be possible to lookup the protocol
      in offload_base and call the appropriate segmenation function
      directly).
      Signed-off-by: NTom Herbert <therbert@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      8bce6d7d
  11. 01 10月, 2014 2 次提交
    • L
      tcp: Change tcp_slow_start function to return void · a12a601e
      Li RongQing 提交于
      No caller uses the return value, so make this function return void.
      Signed-off-by: NLi RongQing <roy.qing.li@gmail.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      a12a601e
    • H
      ipv6: remove rt6i_genid · 705f1c86
      Hannes Frederic Sowa 提交于
      Eric Dumazet noticed that all no-nonexthop or no-gateway routes which
      are already marked DST_HOST (e.g. input routes routes) will always be
      invalidated during sk_dst_check. Thus per-socket dst caching absolutely
      had no effect and early demuxing had no effect.
      
      Thus this patch removes rt6i_genid: fn_sernum already gets modified during
      add operations, so we only must ensure we mutate fn_sernum during ipv6
      address remove operations. This is a fairly cost extensive operations,
      but address removal should not happen that often. Also our mtu update
      functions do the same and we heard no complains so far. xfrm policy
      changes also cause a call into fib6_flush_trees. Also plug a hole in
      rt6_info (no cacheline changes).
      
      I verified via tracing that this change has effect.
      
      Cc: Eric Dumazet <eric.dumazet@gmail.com>
      Cc: YOSHIFUJI Hideaki <hideaki@yoshifuji.org>
      Cc: Vlad Yasevich <vyasevich@gmail.com>
      Cc: Nicolas Dichtel <nicolas.dichtel@6wind.com>
      Cc: Martin Lau <kafai@fb.com>
      Signed-off-by: NHannes Frederic Sowa <hannes@stressinduktion.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      705f1c86
  12. 30 9月, 2014 5 次提交
  13. 29 9月, 2014 2 次提交