1. 23 7月, 2010 1 次提交
  2. 29 4月, 2010 1 次提交
  3. 02 4月, 2010 2 次提交
    • A
      x86, hpet: Fix bug in RTC emulation · b4a5e8a1
      Alok Kataria 提交于
      We think there exists a bug in the HPET code that emulates the RTC.
      
      In the normal case, when the RTC frequency is set, the rtc driver tells
      the hpet code about it here:
      
      int hpet_set_periodic_freq(unsigned long freq)
      {
              uint64_t clc;
      
              if (!is_hpet_enabled())
                      return 0;
      
              if (freq <= DEFAULT_RTC_INT_FREQ)
                      hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
              else {
                      clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
                      do_div(clc, freq);
                      clc >>= hpet_clockevent.shift;
                      hpet_pie_delta = (unsigned long) clc;
              }
              return 1;
      }
      
      If freq is set to 64Hz (DEFAULT_RTC_INT_FREQ) or lower, then
      hpet_pie_limit (a static) is set to non-zero.  Then, on every one-shot
      HPET interrupt, hpet_rtc_timer_reinit is called to compute the next
      timeout.  Well, that function has this logic:
      
              if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
                      delta = hpet_default_delta;
              else
                      delta = hpet_pie_delta;
      
      Since hpet_pie_limit is not 0, hpet_default_delta is used.  That
      corresponds to 64Hz.
      
      Now, if you set a different rtc frequency, you'll take the else path
      through hpet_set_periodic_freq, but unfortunately no one resets
      hpet_pie_limit back to 0.
      
      Boom....now you are stuck with 64Hz RTC interrupts forever.
      
      The patch below just resets the hpet_pie_limit value when requested freq
      is greater than DEFAULT_RTC_INT_FREQ, which we think fixes this problem.
      Signed-off-by: NAlok N Kataria <akataria@vmware.com>
      LKML-Reference: <201003112200.o2BM0Hre012875@imap1.linux-foundation.org>
      Signed-off-by: NDaniel Hecht <dhecht@vmware.com>
      Cc: Venkatesh Pallipadi <venkatesh.pallipadi@gmail.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Ingo Molnar <mingo@elte.hu>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NH. Peter Anvin <hpa@zytor.com>
      b4a5e8a1
    • P
      x86, hpet: Erratum workaround for read after write of HPET comparator · 8da854cb
      Pallipadi, Venkatesh 提交于
      On Wed, Feb 24, 2010 at 03:37:04PM -0800, Justin Piszcz wrote:
      > Hello,
      >
      > Again, on the Intel DP55KG board:
      >
      > # uname -a
      > Linux host 2.6.33 #1 SMP Wed Feb 24 18:31:00 EST 2010 x86_64 GNU/Linux
      >
      > [    1.237600] ------------[ cut here ]------------
      > [    1.237890] WARNING: at arch/x86/kernel/hpet.c:404 hpet_next_event+0x70/0x80()
      > [    1.238221] Hardware name:
      > [    1.238504] hpet: compare register read back failed.
      > [    1.238793] Modules linked in:
      > [    1.239315] Pid: 0, comm: swapper Not tainted 2.6.33 #1
      > [    1.239605] Call Trace:
      > [    1.239886]  <IRQ>  [<ffffffff81056c13>] ? warn_slowpath_common+0x73/0xb0
      > [    1.240409]  [<ffffffff81079608>] ? tick_dev_program_event+0x38/0xc0
      > [    1.240699]  [<ffffffff81056cb0>] ? warn_slowpath_fmt+0x40/0x50
      > [    1.240992]  [<ffffffff81079608>] ? tick_dev_program_event+0x38/0xc0
      > [    1.241281]  [<ffffffff81041ad0>] ? hpet_next_event+0x70/0x80
      > [    1.241573]  [<ffffffff81079608>] ? tick_dev_program_event+0x38/0xc0
      > [    1.241859]  [<ffffffff81078e32>] ? tick_handle_oneshot_broadcast+0xe2/0x100
      > [    1.246533]  [<ffffffff8102a67a>] ? timer_interrupt+0x1a/0x30
      > [    1.246826]  [<ffffffff81085499>] ? handle_IRQ_event+0x39/0xd0
      > [    1.247118]  [<ffffffff81087368>] ? handle_edge_irq+0xb8/0x160
      > [    1.247407]  [<ffffffff81029f55>] ? handle_irq+0x15/0x20
      > [    1.247689]  [<ffffffff810294a2>] ? do_IRQ+0x62/0xe0
      > [    1.247976]  [<ffffffff8146be53>] ? ret_from_intr+0x0/0xa
      > [    1.248262]  <EOI>  [<ffffffff8102f277>] ? mwait_idle+0x57/0x80
      > [    1.248796]  [<ffffffff8102645c>] ? cpu_idle+0x5c/0xb0
      > [    1.249080] ---[ end trace db7f668fb6fef4e1 ]---
      >
      > Is this something Intel has to fix or is it a bug in the kernel?
      
      This is a chipset erratum.
      
      Thomas: You mentioned we can retain this check only for known-buggy and
      hpet debug kind of options. But here is the simple workaround patch for
      this particular erratum.
      
      Some chipsets have a erratum due to which read immediately following a
      write of HPET comparator returns old comparator value instead of most
      recently written value.
      
      Erratum 15 in
      "Intel I/O Controller Hub 9 (ICH9) Family Specification Update"
      (http://www.intel.com/assets/pdf/specupdate/316973.pdf)
      
      Workaround for the errata is to read the comparator twice if the first
      one fails.
      Signed-off-by: NVenkatesh Pallipadi <venkatesh.pallipadi@intel.com>
      LKML-Reference: <20100225185348.GA9674@linux-os.sc.intel.com>
      Signed-off-by: NH. Peter Anvin <hpa@zytor.com>
      Cc: Venkatesh Pallipadi <venkatesh.pallipadi@gmail.com>
      Cc: <stable@kernel.org>
      8da854cb
  4. 30 3月, 2010 1 次提交
    • T
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking... · 5a0e3ad6
      Tejun Heo 提交于
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
      
      percpu.h is included by sched.h and module.h and thus ends up being
      included when building most .c files.  percpu.h includes slab.h which
      in turn includes gfp.h making everything defined by the two files
      universally available and complicating inclusion dependencies.
      
      percpu.h -> slab.h dependency is about to be removed.  Prepare for
      this change by updating users of gfp and slab facilities include those
      headers directly instead of assuming availability.  As this conversion
      needs to touch large number of source files, the following script is
      used as the basis of conversion.
      
        http://userweb.kernel.org/~tj/misc/slabh-sweep.py
      
      The script does the followings.
      
      * Scan files for gfp and slab usages and update includes such that
        only the necessary includes are there.  ie. if only gfp is used,
        gfp.h, if slab is used, slab.h.
      
      * When the script inserts a new include, it looks at the include
        blocks and try to put the new include such that its order conforms
        to its surrounding.  It's put in the include block which contains
        core kernel includes, in the same order that the rest are ordered -
        alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
        doesn't seem to be any matching order.
      
      * If the script can't find a place to put a new include (mostly
        because the file doesn't have fitting include block), it prints out
        an error message indicating which .h file needs to be added to the
        file.
      
      The conversion was done in the following steps.
      
      1. The initial automatic conversion of all .c files updated slightly
         over 4000 files, deleting around 700 includes and adding ~480 gfp.h
         and ~3000 slab.h inclusions.  The script emitted errors for ~400
         files.
      
      2. Each error was manually checked.  Some didn't need the inclusion,
         some needed manual addition while adding it to implementation .h or
         embedding .c file was more appropriate for others.  This step added
         inclusions to around 150 files.
      
      3. The script was run again and the output was compared to the edits
         from #2 to make sure no file was left behind.
      
      4. Several build tests were done and a couple of problems were fixed.
         e.g. lib/decompress_*.c used malloc/free() wrappers around slab
         APIs requiring slab.h to be added manually.
      
      5. The script was run on all .h files but without automatically
         editing them as sprinkling gfp.h and slab.h inclusions around .h
         files could easily lead to inclusion dependency hell.  Most gfp.h
         inclusion directives were ignored as stuff from gfp.h was usually
         wildly available and often used in preprocessor macros.  Each
         slab.h inclusion directive was examined and added manually as
         necessary.
      
      6. percpu.h was updated not to include slab.h.
      
      7. Build test were done on the following configurations and failures
         were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
         distributed build env didn't work with gcov compiles) and a few
         more options had to be turned off depending on archs to make things
         build (like ipr on powerpc/64 which failed due to missing writeq).
      
         * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
         * powerpc and powerpc64 SMP allmodconfig
         * sparc and sparc64 SMP allmodconfig
         * ia64 SMP allmodconfig
         * s390 SMP allmodconfig
         * alpha SMP allmodconfig
         * um on x86_64 SMP allmodconfig
      
      8. percpu.h modifications were reverted so that it could be applied as
         a separate patch and serve as bisection point.
      
      Given the fact that I had only a couple of failures from tests on step
      6, I'm fairly confident about the coverage of this conversion patch.
      If there is a breakage, it's likely to be something in one of the arch
      headers which should be easily discoverable easily on most builds of
      the specific arch.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
      5a0e3ad6
  5. 05 2月, 2010 1 次提交
  6. 23 1月, 2010 1 次提交
  7. 28 11月, 2009 1 次提交
  8. 28 8月, 2009 1 次提交
  9. 22 8月, 2009 1 次提交
    • J
      x86, hpet: Simplify the HPET code · 5946fa3d
      Jan Beulich 提交于
      On 64-bits, using unsigned long when unsigned int suffices
      needlessly creates larger code (due to the need for REX
      prefixes), and most of the logic in hpet.c really doesn't need
      64-bit operations.
      
      At once this avoids the need for a couple of type casts.
      Signed-off-by: NJan Beulich <jbeulich@novell.com>
      Cc: Shaohua Li <shaohua.li@intel.com>
      Cc: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
      LKML-Reference: <4A8BC9780200007800010832@vpn.id2.novell.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      5946fa3d
  10. 12 8月, 2009 1 次提交
  11. 15 6月, 2009 1 次提交
  12. 22 4月, 2009 2 次提交
  13. 23 2月, 2009 3 次提交
  14. 13 2月, 2009 1 次提交
    • J
      x86, hpet: fix for LS21 + HPET = boot hang · b13e2464
      john stultz 提交于
      Between 2.6.23 and 2.6.24-rc1 a change was made that broke IBM LS21
      systems that had the HPET enabled in the BIOS, resulting in boot hangs
      for x86_64.
      
      Specifically commit b8ce3359, which
      merges the i386 and x86_64 HPET code.
      
      Prior to this commit, when we setup the HPET timers in x86_64, we did
      the following:
      
      	hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
                          HPET_TN_32BIT, HPET_T0_CFG);
      
      However after the i386/x86_64 HPET merge, we do the following:
      
      	cfg = hpet_readl(HPET_Tn_CFG(timer));
      	cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
      			HPET_TN_SETVAL | HPET_TN_32BIT;
      	hpet_writel(cfg, HPET_Tn_CFG(timer));
      
      However on LS21s with HPET enabled in the BIOS, the HPET_T0_CFG register
      boots with Level triggered interrupts (HPET_TN_LEVEL) enabled. This
      causes the periodic interrupt to be not so periodic, and that results in
      the boot time hang I reported earlier in the delay calibration.
      
      My fix: Always disable HPET_TN_LEVEL when setting up periodic mode.
      Signed-off-by: NJohn Stultz <johnstul@us.ibm.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      b13e2464
  15. 06 2月, 2009 1 次提交
  16. 05 2月, 2009 1 次提交
    • P
      x86: fix hpet timer reinit for x86_64 · a6a95406
      Pavel Emelyanov 提交于
      There's a small problem with hpet_rtc_reinit function - it checks
      for the:
      
      	hpet_readl(HPET_COUNTER) - hpet_t1_cmp > 0
      
      to continue increasing both the HPET_T1_CMP (register) and the
      hpet_t1_cmp (variable).
      
      But since the HPET_COUNTER is always 32-bit, if the hpet_t1_cmp
      is 64-bit this condition will always be FALSE once the latter hits
      the 32-bit boundary, and we can have a situation, when we don't
      increase the HPET_T1_CMP register high enough.
      
      The result - timer stops ticking, since HPET_T1_CMP becomes less,
      than the COUNTER and never increased again.
      
      The solution is (based on Linus's suggestion) to not compare 64-bits
      (on 64-bit x86), but to do the comparison on 32-bit signed
      integers.
      Reported-by: NKirill Korotaev <dev@openvz.org>
      Signed-off-by: NPavel Emelyanov <xemul@openvz.org>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      a6a95406
  17. 22 1月, 2009 1 次提交
  18. 12 1月, 2009 1 次提交
  19. 17 12月, 2008 2 次提交
  20. 13 12月, 2008 2 次提交
  21. 25 11月, 2008 1 次提交
  22. 24 11月, 2008 1 次提交
  23. 11 11月, 2008 3 次提交
  24. 16 10月, 2008 8 次提交
  25. 06 9月, 2008 1 次提交