- 08 7月, 2011 2 次提交
-
-
由 Christoph Hellwig 提交于
Rename xfs_buf_cond_lock and reverse it's return value to fit most other trylock operations in the Kernel and XFS (with the exception of down_trylock, after which xfs_buf_cond_lock was modelled), and replace xfs_buf_lock_val with an xfs_buf_islocked for use in asserts, or and opencoded variant in tracing. remove the XFS_BUF_* wrappers for all the locking helpers. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NAlex Elder <aelder@sgi.com> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Christoph Hellwig 提交于
Micro-optimize various comparisms by always byteswapping the constant instead of the variable, which allows to do the swap at compile instead of runtime. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NAlex Elder <aelder@sgi.com> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
- 16 6月, 2011 1 次提交
-
-
由 Christoph Hellwig 提交于
There's no reason not to support cache flushing on external log devices. The only thing this really requires is flushing the data device first both in fsync and log commits. A side effect is that we also have to remove the barrier write test during mount, which has been superflous since the new FLUSH+FUA code anyway. Also use the chance to flush the RT subvolume write cache before the fsync commit, which is required for correct semantics. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
- 20 5月, 2011 1 次提交
-
-
由 Dave Chinner 提交于
When we free a vmapped buffer, we need to ensure the vmap address and length we free is the same as when it was allocated. In various places in the log code we change the memory the buffer is pointing to before issuing IO, but we never reset the buffer to point back to it's original memory (or no memory, if that is the case for the buffer). As a result, when we free the buffer it points to memory that is owned by something else and attempts to unmap and free it. Because the range does not match any known mapped range, it can trigger BUG_ON() traps in the vmap code, and potentially corrupt the vmap area tracking. Fix this by always resetting these buffers to their original state before freeing them. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
- 29 4月, 2011 1 次提交
-
-
由 Christoph Hellwig 提交于
Update the extent tree in case we have to reuse a busy extent, so that it always is kept uptodate. This is done by replacing the busy list searches with a new xfs_alloc_busy_reuse helper, which updates the busy extent tree in case of a reuse. This allows us to allow reusing metadata extents unconditionally, and thus avoid log forces especially for allocation btree blocks. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
- 08 4月, 2011 2 次提交
-
-
由 Dave Chinner 提交于
On the Power platform, the log tail debug checks fire excessively causing the system to panic early in testing. The debug checks are known to be racy, though on x86_64 there is no evidence that they trigger at all. We want to keep the checks active on debug systems to alert us to problems with log space accounting, but we need to reduce the impact of a racy check on testing on the Power platform. As a result, convert the ASSERT conditions to warnings, and allow them to fire only once per filesystem mount. This will prevent false positives from interfering with testing, whilst still providing us with the indication that they may be a problem with log space accounting should that occur. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NAlex Elder <aelder@sgi.com>
-
由 Dave Chinner 提交于
When we are short on memory, we want to expedite the cleaning of dirty objects. Hence when we run short on memory, we need to kick the AIL flushing into action to clean as many dirty objects as quickly as possible. To implement this, sample the lsn of the log item at the head of the AIL and use that as the push target for the AIL flush. Further, we keep items in the AIL that are dirty that are not tracked any other way, so we can get objects sitting in the AIL that don't get written back until the AIL is pushed. Hence to get the filesystem to the idle state, we might need to push the AIL to flush out any remaining dirty objects sitting in the AIL. This requires the same push mechanism as the reclaim push. This patch also renames xfs_trans_ail_tail() to xfs_ail_min_lsn() to match the new xfs_ail_max_lsn() function introduced in this patch. Similarly for xfs_trans_ail_push -> xfs_ail_push. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NAlex Elder <aelder@sgi.com>
-
- 07 3月, 2011 1 次提交
-
-
由 Dave Chinner 提交于
Convert the xfs log operations to use the new error logging interfaces. This removes the xlog_{warn,panic} wrappers and makes almost all errors emit the device they belong to instead of just refering to "XFS". Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NAlex Elder <aelder@sgi.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 12 1月, 2011 1 次提交
-
-
由 Dave Chinner 提交于
We currently have a global error message buffer in cmn_err that is protected by a spin lock that disables interrupts. Recently there have been reports of NMI timeouts occurring when the console is being flooded by SCSI error reports due to cmn_err() getting stuck trying to print to the console while holding this lock (i.e. with interrupts disabled). The NMI watchdog is seeing this CPU as non-responding and so is triggering a panic. While the trigger for the reported case is SCSI errors, pretty much anything that spams the kernel log could cause this to occur. Realistically the only reason that we have the intemediate message buffer is to prepend the correct kernel log level prefix to the log message. The only reason we have the lock is to protect the global message buffer and the only reason the message buffer is global is to keep it off the stack. Hence if we can avoid needing a global message buffer we avoid needing the lock, and we can do this with a small amount of cleanup and some preprocessor tricks: 1. clean up xfs_cmn_err() panic mask functionality to avoid needing debug code in xfs_cmn_err() 2. remove the couple of "!" message prefixes that still exist that the existing cmn_err() code steps over. 3. redefine CE_* levels directly to KERN_* 4. redefine cmn_err() and friends to use printk() directly via variable argument length macros. By doing this, we can completely remove the cmn_err() code and the lock that is causing the problems, and rely solely on printk() serialisation to ensure that we don't get garbled messages. A series of followup patches is really needed to clean up all the cmn_err() calls and related messages properly, but that results in a series that is not easily back portable to enterprise kernels. Hence this initial fix is only to address the direct problem in the lowest impact way possible. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
- 21 12月, 2010 2 次提交
-
-
由 Dave Chinner 提交于
The only thing that the grant lock remains to protect is the grant head manipulations when adding or removing space from the log. These calculations are already based on atomic variables, so we can already update them safely without locks. However, the grant head manpulations require atomic multi-step calculations to be executed, which the algorithms currently don't allow. To make these multi-step calculations atomic, convert the algorithms to compare-and-exchange loops on the atomic variables. That is, we sample the old value, perform the calculation and use atomic64_cmpxchg() to attempt to update the head with the new value. If the head has not changed since we sampled it, it will succeed and we are done. Otherwise, we rerun the calculation again from a new sample of the head. This allows us to remove the grant lock from around all the grant head space manipulations, and that effectively removes the grant lock from the log completely. Hence we can remove the grant lock completely from the log at this point. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
The log grant ticket wait queues are currently protected by the log grant lock. However, the queues are functionally independent from each other, and operations on them only require serialisation against other queue operations now that all of the other log variables they use are atomic values. Hence, we can make them independent of the grant lock by introducing new locks just to protect the lists operations. because the lists are independent, we can use a lock per list and ensure that reserve and write head queuing do not contend. To ensure forced shutdowns work correctly in conjunction with the new fast paths, ensure that we check whether the log has been shut down in the grant functions once we hold the relevant spin locks but before we go to sleep. This is needed to co-ordinate correctly with the wakeups that are issued on the ticket queues so we don't leave any processes sleeping on the queues during a shutdown. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 03 12月, 2010 1 次提交
-
-
由 Dave Chinner 提交于
Convert the log grant heads to atomic64_t types in preparation for converting the accounting algorithms to atomic operations. his patch just converts the variables; the algorithmic changes are in a separate patch for clarity. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 21 12月, 2010 1 次提交
-
-
由 Dave Chinner 提交于
log->l_tail_lsn is currently protected by the log grant lock. The lock is only needed for serialising readers against writers, so we don't really need the lock if we make the l_tail_lsn variable an atomic. Converting the l_tail_lsn variable to an atomic64_t means we can start to peel back the grant lock from various operations. Also, provide functions to safely crack an atomic LSN variable into it's component pieces and to recombined the components into an atomic variable. Use them where appropriate. This also removes the need for explicitly holding a spinlock to read the l_tail_lsn on 32 bit platforms. Signed-off-by: NDave Chinner <dchinner@redhat.com>
-
- 03 12月, 2010 1 次提交
-
-
由 Dave Chinner 提交于
log->l_last_sync_lsn is updated in only one critical spot - log buffer Io completion - and is protected by the grant lock here. This requires the grant lock to be taken for every log buffer IO completion. Converting the l_last_sync_lsn variable to an atomic64_t means that we do not need to take the grant lock in log buffer IO completion to update it. This also removes the need for explicitly holding a spinlock to read the l_last_sync_lsn on 32 bit platforms. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 21 12月, 2010 6 次提交
-
-
由 Dave Chinner 提交于
The xlog_grant_push_ail() currently takes the grant lock internally to sample the tail lsn, last sync lsn and the reserve grant head. Most of the callers already hold the grant lock but have to drop it before calling xlog_grant_push_ail(). This is a left over from when the AIL tail pushing was done in line and hence xlog_grant_push_ail had to drop the grant lock. AIL push is now done in another thread and hence we can safely hold the grant lock over the entire xlog_grant_push_ail call. Push the grant lock outside of xlog_grant_push_ail() to simplify the locking and synchronisation needed for tail pushing. This will reduce traffic on the grant lock by itself, but this is only one step in preparing for the complete removal of the grant lock. While there, clean up the formatting of xlog_grant_push_ail() to match the rest of the XFS code. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
The log grant queues are one of the few places left using sv_t constructs for waiting. Given we are touching this code, we should convert them to plain wait queues. While there, convert all the other sv_t users in the log code as well. Seeing as this removes the last users of the sv_t type, remove the header file defining the wrapper and the fragments that still reference it. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
Prepare for switching the grant heads to atomic variables by combining the two 32 bit values that make up the grant head into a single 64 bit variable. Provide wrapper functions to combine and split the grant heads appropriately for calculations and use them as necessary. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
The log grant space calculations are repeated for both write and reserve grant heads. To make it simpler to convert the calculations toa different algorithm, factor them so both the gratn heads use the same calculation functions. Once this is done we can drop the wrappers that are used in only a couple of place to update both grant heads at once as they don't provide any particular value. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
Factor repeated debug code out of grant head manipulation functions into a separate function. This removes ifdef DEBUG spagetti from the code and makes the code easier to follow. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
The grant write and reserve queues use a roll-your-own double linked list, so convert it to a standard list_head structure and convert all the list traversals to use list_for_each_entry(). We can also get rid of the XLOG_TIC_IN_Q flag as we can use the list_empty() check to tell if the ticket is in a list or not. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 19 10月, 2010 2 次提交
-
-
由 Christoph Hellwig 提交于
Stop having two different names for many buffer functions and use the more descriptive xfs_buf_* names directly. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Dave Chinner 提交于
xfs_buf_get_nodaddr() is really used to allocate a buffer that is uncached. While it is not directly assigned a disk address, the fact that they are not cached is a more important distinction. With the upcoming uncached buffer read primitive, we should be consistent with this disctinction. While there, make page allocation in xfs_buf_get_nodaddr() safe against memory reclaim re-entrancy into the filesystem by allowing a flags parameter to be passed. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NAlex Elder <aelder@sgi.com>
-
- 10 9月, 2010 1 次提交
-
-
由 Christoph Hellwig 提交于
Switch to the WRITE_FLUSH_FUA flag for log writes and remove the EOPNOTSUPP detection for barriers. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NTejun Heo <tj@kernel.org> Signed-off-by: NJens Axboe <jaxboe@fusionio.com>
-
- 24 8月, 2010 1 次提交
-
-
由 Dave Chinner 提交于
Delayed logging adds some serialisation to the log force process to ensure that it does not deference a bad commit context structure when determining if a CIL push is necessary or not. It does this by grabing the CIL context lock exclusively, then dropping it before pushing the CIL if necessary. This causes serialisation of all log forces and pushes regardless of whether a force is necessary or not. As a result fsync heavy workloads (like dbench) can be significantly slower with delayed logging than without. To avoid this penalty, copy the current sequence from the context to the CIL structure when they are swapped. This allows us to do unlocked checks on the current sequence without having to worry about dereferencing context structures that may have already been freed. Hence we can remove the CIL context locking in the forcing code and only call into the push code if the current context matches the sequence we need to force. By passing the sequence into the push code, we can check the sequence again once we have the CIL lock held exclusive and abort if the sequence has already been pushed. This avoids a lock round-trip and unnecessary CIL pushes when we have racing push calls. The result is that the regression in dbench performance goes away - this change improves dbench performance on a ramdisk from ~2100MB/s to ~2500MB/s. This compares favourably to not using delayed logging which retuns ~2500MB/s for the same workload. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 27 7月, 2010 6 次提交
-
-
由 Christoph Hellwig 提交于
[hch: dropped a few hunks that need structural changes instead] Signed-off-by: NAndi Kleen <ak@linux.intel.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Christoph Hellwig 提交于
We do need a barrier for the first buffer of a split log write. Otherwise we might incorrectly stamp the tail LSN into transactions in the first part of the split write, or not flush data I/O before updating the inode size. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Christoph Hellwig 提交于
By making this member a void pointer we can get rid of a lot of pointless casts. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <david@fromorbit.com>
-
由 Christoph Hellwig 提交于
Dmapi support was never merged upstream, but we still have a lot of hooks bloating XFS for it, all over the fast pathes of the filesystem. This patch drops over 700 lines of dmapi overhead. If we'll ever get HSM support in mainline at least the namespace events can be done much saner in the VFS instead of the individual filesystem, so it's not like this is much help for future work. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
- 24 5月, 2010 6 次提交
-
-
由 Dave Chinner 提交于
If the filesystem is being shut down and the there is no log error, the current code forces out the current log buffers. This code now needs to push the CIL before it forces out the log buffers to acheive the same result. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Dave Chinner 提交于
The delayed logging code only changes in-memory structures and as such can be enabled and disabled with a mount option. Add the mount option and emit a warning that this is an experimental feature that should not be used in production yet. We also need infrastructure to track committed items that have not yet been written to the log. This is what the Committed Item List (CIL) is for. The log item also needs to be extended to track the current log vector, the associated memory buffer and it's location in the Commit Item List. Extend the log item and log vector structures to enable this tracking. To maintain the current log format for transactions with delayed logging, we need to introduce a checkpoint transaction and a context for tracking each checkpoint from initiation to transaction completion. This includes adding a log ticket for tracking space log required/used by the context checkpoint. To track all the changes we need an io vector array per log item, rather than a single array for the entire transaction. Using the new log vector structure for this requires two passes - the first to allocate the log vector structures and chain them together, and the second to fill them out. This log vector chain can then be passed to the CIL for formatting, pinning and insertion into the CIL. Formatting of the log vector chain is relatively simple - it's just a loop over the iovecs on each log vector, but it is made slightly more complex because we re-write the iovec after the copy to point back at the memory buffer we just copied into. This code also needs to pin log items. If the log item is not already tracked in this checkpoint context, then it needs to be pinned. Otherwise it is already pinned and we don't need to pin it again. The only other complexity is calculating the amount of new log space the formatting has consumed. This needs to be accounted to the transaction in progress, and the accounting is made more complex becase we need also to steal space from it for log metadata in the checkpoint transaction. Calculate all this at insert time and update all the tickets, counters, etc correctly. Once we've formatted all the log items in the transaction, attach the busy extents to the checkpoint context so the busy extents live until checkpoint completion and can be processed at that point in time. Transactions can then be freed at this point in time. Now we need to issue checkpoints - we are tracking the amount of log space used by the items in the CIL, so we can trigger background checkpoints when the space usage gets to a certain threshold. Otherwise, checkpoints need ot be triggered when a log synchronisation point is reached - a log force event. Because the log write code already handles chained log vectors, writing the transaction is trivial, too. Construct a transaction header, add it to the head of the chain and write it into the log, then issue a commit record write. Then we can release the checkpoint log ticket and attach the context to the log buffer so it can be called during Io completion to complete the checkpoint. We also need to allow for synchronising multiple in-flight checkpoints. This is needed for two things - the first is to ensure that checkpoint commit records appear in the log in the correct sequence order (so they are replayed in the correct order). The second is so that xfs_log_force_lsn() operates correctly and only flushes and/or waits for the specific sequence it was provided with. To do this we need a wait variable and a list tracking the checkpoint commits in progress. We can walk this list and wait for the checkpoints to change state or complete easily, an this provides the necessary synchronisation for correct operation in both cases. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Dave Chinner 提交于
The ticket ID is needed to uniquely identify transactions when doing busy extent matching. Delayed logging changes the lifecycle of busy extents with respect to the transaction structure lifecycle. Hence we can no longer use the transaction structure as a means of determining the owner of the busy extent as it may be freed and reused while the busy extent is still active. This commit provides the infrastructure to access the xlog_tid_t held in the ticket from a transaction handle. This avoids the need for callers to peek into the transaction and log structures to find this out. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Dave Chinner 提交于
Push the error message output when a ticket overrun is detected into the ticket printing functions. Also remove the debug version of the code as the production version will still panic just as effectively on a debug kernel via the panic mask being set. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Dave Chinner 提交于
Delayed logging currently requires ticket allocation to succeed, so we need to be able to sleep on allocation. It also should not allow memory allocation to recurse into the filesystem. hence we need to pass allocation flags directing the type of allocation the caller requires. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Dave Chinner 提交于
The transaction ID is written into the log as the unique identifier for transactions during recover. When duplicating a transaction, we reuse the log ticket, which means it has the same transaction ID as the previous transaction. Rather than regenerating a random transaction ID for the duplicated transaction, just add one to the current ID so that duplicated transaction can be easily spotted in the log and during recovery during problem diagnosis. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
- 19 5月, 2010 4 次提交
-
-
由 Alex Elder 提交于
There remains only one user of the l_sectbb_mask field in the log structure. Just kill it off and compute the mask where needed from the power-of-2 sector size. (Only update from last post is to accomodate the changes in the previous patch in the series.) Signed-off-by: NAlex Elder <aelder@sgi.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Alex Elder 提交于
Change struct log so it keeps track of the size (in basic blocks) of a log sector in l_sectBBsize rather than the log-base-2 of that value (previously, l_sectbb_log). The name was chosen for consistency with the other fields in the structure that represent a number of basic blocks. (Updated so that a variable used in computing and verifying a log's sector size is named "log2_size". Also added the "BB" to the structure field name, based on feedback from Eric Sandeen. Also dropped some superfluous parentheses.) Signed-off-by: NAlex Elder <aelder@sgi.com> Reviewed-by: NEric Sandeen <sandeen@sandeen.net>
-
由 Dave Chinner 提交于
The transaction ID that is written to the log for a transaction is currently set by taking the lower 32 bits of the memory address of the ticket structure. This is not guaranteed to be unique as tickets comes from a slab and slots can be reallocated immediately after being freed. As a result, there is no guarantee of uniqueness in the ticket ID value. Fix this by assigning a random number to the ticket ID field so that it is extremely unlikely that duplicates will occur and remove the possibility of transactions being mixed up during recovery due to duplicate IDs. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Christoph Hellwig 提交于
Replace the awkward xlog_write_adv_cnt with an inline helper that makes it more obvious that it's modifying it's paramters, and replace the use of an integer type for "ptr" with a real void pointer. Also move xlog_write_adv_cnt to xfs_log_priv.h as it will be used outside of xfs_log.c in the delayed logging series. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-