- 13 5月, 2016 2 次提交
-
-
由 Filipe Manana 提交于
Before we start the actual relocation process of a block group, we do calls to flush delalloc of all inodes and then wait for ordered extents to complete. However we do these flush calls just to make sure we don't race with concurrent tasks that have actually already started to run delalloc and have allocated an extent from the block group we want to relocate, right before we set it to readonly mode, but have not yet created the respective ordered extents. The flush calls make us wait for such concurrent tasks because they end up calling filemap_fdatawrite_range() (through btrfs_start_delalloc_roots() -> __start_delalloc_inodes() -> btrfs_alloc_delalloc_work() -> btrfs_run_delalloc_work()) which ends up serializing us with those tasks due to attempts to lock the same pages (and the delalloc flush procedure calls the allocator and creates the ordered extents before unlocking the pages). These flushing calls not only make us waste time (cpu, IO) but also reduce the chances of writing larger extents (applications might be writing to contiguous ranges and we flush before they finish dirtying the whole ranges). So make sure we don't flush delalloc and just wait for concurrent tasks that have already started flushing delalloc and have allocated an extent from the block group we are about to relocate. This change also ends up fixing a race with direct IO writes that makes relocation not wait for direct IO ordered extents. This race is illustrated by the following diagram: CPU 1 CPU 2 btrfs_relocate_block_group(bg X) starts direct IO write, target inode currently has no ordered extents ongoing nor dirty pages (delalloc regions), therefore the root for our inode is not in the list fs_info->ordered_roots btrfs_direct_IO() __blockdev_direct_IO() btrfs_get_blocks_direct() btrfs_lock_extent_direct() locks range in the io tree btrfs_new_extent_direct() btrfs_reserve_extent() --> extent allocated from bg X btrfs_inc_block_group_ro(bg X) btrfs_start_delalloc_roots() __start_delalloc_inodes() --> does nothing, no dealloc ranges in the inode's io tree so the inode's root is not in the list fs_info->delalloc_roots btrfs_wait_ordered_roots() --> does not find the inode's root in the list fs_info->ordered_roots --> ends up not waiting for the direct IO write started by the task at CPU 2 relocate_block_group(rc->stage == MOVE_DATA_EXTENTS) prepare_to_relocate() btrfs_commit_transaction() iterates the extent tree, using its commit root and moves extents into new locations btrfs_add_ordered_extent_dio() --> now a ordered extent is created and added to the list root->ordered_extents and the root added to the list fs_info->ordered_roots --> this is too late and the task at CPU 1 already started the relocation btrfs_commit_transaction() btrfs_finish_ordered_io() btrfs_alloc_reserved_file_extent() --> adds delayed data reference for the extent allocated from bg X relocate_block_group(rc->stage == UPDATE_DATA_PTRS) prepare_to_relocate() btrfs_commit_transaction() --> delayed refs are run, so an extent item for the allocated extent from bg X is added to extent tree --> commit roots are switched, so the next scan in the extent tree will see the extent item sees the extent in the extent tree When this happens the relocation produces the following warning when it finishes: [ 7260.832836] ------------[ cut here ]------------ [ 7260.834653] WARNING: CPU: 5 PID: 6765 at fs/btrfs/relocation.c:4318 btrfs_relocate_block_group+0x245/0x2a1 [btrfs]() [ 7260.838268] Modules linked in: btrfs crc32c_generic xor ppdev raid6_pq psmouse sg acpi_cpufreq evdev i2c_piix4 tpm_tis serio_raw tpm i2c_core pcspkr parport_pc [ 7260.850935] CPU: 5 PID: 6765 Comm: btrfs Not tainted 4.5.0-rc6-btrfs-next-28+ #1 [ 7260.852998] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014 [ 7260.852998] 0000000000000000 ffff88020bf57bc0 ffffffff812648b3 0000000000000000 [ 7260.852998] 0000000000000009 ffff88020bf57bf8 ffffffff81051608 ffffffffa03c1b2d [ 7260.852998] ffff8800b2bbb800 0000000000000000 ffff8800b17bcc58 ffff8800399dd000 [ 7260.852998] Call Trace: [ 7260.852998] [<ffffffff812648b3>] dump_stack+0x67/0x90 [ 7260.852998] [<ffffffff81051608>] warn_slowpath_common+0x99/0xb2 [ 7260.852998] [<ffffffffa03c1b2d>] ? btrfs_relocate_block_group+0x245/0x2a1 [btrfs] [ 7260.852998] [<ffffffff810516d4>] warn_slowpath_null+0x1a/0x1c [ 7260.852998] [<ffffffffa03c1b2d>] btrfs_relocate_block_group+0x245/0x2a1 [btrfs] [ 7260.852998] [<ffffffffa039d9de>] btrfs_relocate_chunk.isra.29+0x66/0xdb [btrfs] [ 7260.852998] [<ffffffffa039f314>] btrfs_balance+0xde1/0xe4e [btrfs] [ 7260.852998] [<ffffffff8127d671>] ? debug_smp_processor_id+0x17/0x19 [ 7260.852998] [<ffffffffa03a9583>] btrfs_ioctl_balance+0x255/0x2d3 [btrfs] [ 7260.852998] [<ffffffffa03ac96a>] btrfs_ioctl+0x11e0/0x1dff [btrfs] [ 7260.852998] [<ffffffff811451df>] ? handle_mm_fault+0x443/0xd63 [ 7260.852998] [<ffffffff81491817>] ? _raw_spin_unlock+0x31/0x44 [ 7260.852998] [<ffffffff8108b36a>] ? arch_local_irq_save+0x9/0xc [ 7260.852998] [<ffffffff811876ab>] vfs_ioctl+0x18/0x34 [ 7260.852998] [<ffffffff81187cb2>] do_vfs_ioctl+0x550/0x5be [ 7260.852998] [<ffffffff81190c30>] ? __fget_light+0x4d/0x71 [ 7260.852998] [<ffffffff81187d77>] SyS_ioctl+0x57/0x79 [ 7260.852998] [<ffffffff81492017>] entry_SYSCALL_64_fastpath+0x12/0x6b [ 7260.893268] ---[ end trace eb7803b24ebab8ad ]--- This is because at the end of the first stage, in relocate_block_group(), we commit the current transaction, which makes delayed refs run, the commit roots are switched and so the second stage will find the extent item that the ordered extent added to the delayed refs. But this extent was not moved (ordered extent completed after first stage finished), so at the end of the relocation our block group item still has a positive used bytes counter, triggering a warning at the end of btrfs_relocate_block_group(). Later on when trying to read the extent contents from disk we hit a BUG_ON() due to the inability to map a block with a logical address that belongs to the block group we relocated and is no longer valid, resulting in the following trace: [ 7344.885290] BTRFS critical (device sdi): unable to find logical 12845056 len 4096 [ 7344.887518] ------------[ cut here ]------------ [ 7344.888431] kernel BUG at fs/btrfs/inode.c:1833! [ 7344.888431] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [ 7344.888431] Modules linked in: btrfs crc32c_generic xor ppdev raid6_pq psmouse sg acpi_cpufreq evdev i2c_piix4 tpm_tis serio_raw tpm i2c_core pcspkr parport_pc [ 7344.888431] CPU: 0 PID: 6831 Comm: od Tainted: G W 4.5.0-rc6-btrfs-next-28+ #1 [ 7344.888431] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014 [ 7344.888431] task: ffff880215818600 ti: ffff880204684000 task.ti: ffff880204684000 [ 7344.888431] RIP: 0010:[<ffffffffa037c88c>] [<ffffffffa037c88c>] btrfs_merge_bio_hook+0x54/0x6b [btrfs] [ 7344.888431] RSP: 0018:ffff8802046878f0 EFLAGS: 00010282 [ 7344.888431] RAX: 00000000ffffffea RBX: 0000000000001000 RCX: 0000000000000001 [ 7344.888431] RDX: ffff88023ec0f950 RSI: ffffffff8183b638 RDI: 00000000ffffffff [ 7344.888431] RBP: ffff880204687908 R08: 0000000000000001 R09: 0000000000000000 [ 7344.888431] R10: ffff880204687770 R11: ffffffff82f2d52d R12: 0000000000001000 [ 7344.888431] R13: ffff88021afbfee8 R14: 0000000000006208 R15: ffff88006cd199b0 [ 7344.888431] FS: 00007f1f9e1d6700(0000) GS:ffff88023ec00000(0000) knlGS:0000000000000000 [ 7344.888431] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 7344.888431] CR2: 00007f1f9dc8cb60 CR3: 000000023e3b6000 CR4: 00000000000006f0 [ 7344.888431] Stack: [ 7344.888431] 0000000000001000 0000000000001000 ffff880204687b98 ffff880204687950 [ 7344.888431] ffffffffa0395c8f ffffea0004d64d48 0000000000000000 0000000000001000 [ 7344.888431] ffffea0004d64d48 0000000000001000 0000000000000000 0000000000000000 [ 7344.888431] Call Trace: [ 7344.888431] [<ffffffffa0395c8f>] submit_extent_page+0xf5/0x16f [btrfs] [ 7344.888431] [<ffffffffa03970ac>] __do_readpage+0x4a0/0x4f1 [btrfs] [ 7344.888431] [<ffffffffa039680d>] ? btrfs_create_repair_bio+0xcb/0xcb [btrfs] [ 7344.888431] [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs] [ 7344.888431] [<ffffffff8108df55>] ? trace_hardirqs_on+0xd/0xf [ 7344.888431] [<ffffffffa039728c>] __do_contiguous_readpages.constprop.26+0xc2/0xe4 [btrfs] [ 7344.888431] [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs] [ 7344.888431] [<ffffffffa039739b>] __extent_readpages.constprop.25+0xed/0x100 [btrfs] [ 7344.888431] [<ffffffff81129d24>] ? lru_cache_add+0xe/0x10 [ 7344.888431] [<ffffffffa0397ea8>] extent_readpages+0x160/0x1aa [btrfs] [ 7344.888431] [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs] [ 7344.888431] [<ffffffff8115daad>] ? alloc_pages_current+0xa9/0xcd [ 7344.888431] [<ffffffffa037cdc9>] btrfs_readpages+0x1f/0x21 [btrfs] [ 7344.888431] [<ffffffff81128316>] __do_page_cache_readahead+0x168/0x1fc [ 7344.888431] [<ffffffff811285a0>] ondemand_readahead+0x1f6/0x207 [ 7344.888431] [<ffffffff811285a0>] ? ondemand_readahead+0x1f6/0x207 [ 7344.888431] [<ffffffff8111cf34>] ? pagecache_get_page+0x2b/0x154 [ 7344.888431] [<ffffffff8112870e>] page_cache_sync_readahead+0x3d/0x3f [ 7344.888431] [<ffffffff8111dbf7>] generic_file_read_iter+0x197/0x4e1 [ 7344.888431] [<ffffffff8117773a>] __vfs_read+0x79/0x9d [ 7344.888431] [<ffffffff81178050>] vfs_read+0x8f/0xd2 [ 7344.888431] [<ffffffff81178a38>] SyS_read+0x50/0x7e [ 7344.888431] [<ffffffff81492017>] entry_SYSCALL_64_fastpath+0x12/0x6b [ 7344.888431] Code: 8d 4d e8 45 31 c9 45 31 c0 48 8b 00 48 c1 e2 09 48 8b 80 80 fc ff ff 4c 89 65 e8 48 8b b8 f0 01 00 00 e8 1d 42 02 00 85 c0 79 02 <0f> 0b 4c 0 [ 7344.888431] RIP [<ffffffffa037c88c>] btrfs_merge_bio_hook+0x54/0x6b [btrfs] [ 7344.888431] RSP <ffff8802046878f0> [ 7344.970544] ---[ end trace eb7803b24ebab8ae ]--- Signed-off-by: NFilipe Manana <fdmanana@suse.com> Reviewed-by: NJosef Bacik <jbacik@fb.com> Reviewed-by: NLiu Bo <bo.li.liu@oracle.com>
-
由 Filipe Manana 提交于
Before the relocation process of a block group starts, it sets the block group to readonly mode, then flushes all delalloc writes and then finally it waits for all ordered extents to complete. This last step includes waiting for ordered extents destinated at extents allocated in other block groups, making us waste unecessary time. So improve this by waiting only for ordered extents that fall into the block group's range. Signed-off-by: NFilipe Manana <fdmanana@suse.com> Reviewed-by: NJosef Bacik <jbacik@fb.com> Reviewed-by: NLiu Bo <bo.li.liu@oracle.com>
-
- 05 4月, 2016 1 次提交
-
-
由 Kirill A. Shutemov 提交于
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 04 4月, 2016 1 次提交
-
-
由 Qu Wenruo 提交于
As one user in mail list report reproducible balance ENOSPC error, it's better to add more debug info for enospc_debug mount option. Reported-by: NMarc Haber <mh+linux-btrfs@zugschlus.de> Signed-off-by: NQu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 14 3月, 2016 1 次提交
-
-
由 Adam Buchbinder 提交于
Signed-off-by: NAdam Buchbinder <adam.buchbinder@gmail.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 18 2月, 2016 3 次提交
-
-
由 Sudip Mukherjee 提交于
We were getting build warning about: fs/btrfs/extent-tree.c:7021:34: warning: ‘used_bg’ may be used uninitialized in this function It is not a valid warning as used_bg is never used uninitilized since locked is initially false so we can never be in the section where 'used_bg' is used. But gcc is not able to understand that and we can initialize it while declaring to silence the warning. Signed-off-by: NSudip Mukherjee <sudip@vectorindia.org> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Josef Bacik 提交于
We will sometimes start background flushing the various enospc related things (delayed nodes, delalloc, etc) if we are getting close to reserving all of our available space. We don't want to do this however when we are actually using this space as it causes unneeded thrashing. We currently try to do this by checking bytes_used >= thresh, but bytes_used is only part of the equation, we need to use bytes_reserved as well as this represents space that is very likely to become bytes_used in the future. My tracing tool will keep count of the number of times we kick off the async flusher, the following are counts for the entire run of generic/027 No Patch Patch avg: 5385 5009 median: 5500 4916 We skewed lower than the average with my patch and higher than the average with the patch, overall it cuts the flushing from anywhere from 5-10%, which in the case of actual ENOSPC is quite helpful. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Reviewed-by: NLiu Bo <bo.li.liu@oracle.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Josef Bacik 提交于
I'm writing a tool to visualize the enospc system in order to help debug enospc bugs and I found weird data and ran it down to when we update the global block rsv. We add all of the remaining free space to the block rsv, do a trace event, then remove the extra and do another trace event. This makes my visualization look silly and is unintuitive code as well. Fix this stuff to only add the amount we are missing, or free the amount we are missing. This is less clean to read but more explicit in what it is doing, as well as only emitting events for values that make sense. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 20 1月, 2016 3 次提交
-
-
由 Zhao Lei 提交于
I see no_space in v4.4-rc1 again in xfstests generic/102. It happened randomly in some node only. (one of 4 phy-node, and a kvm with non-virtio block driver) By bisect, we can found the first-bad is: commit bdced438 ("block: setup bi_phys_segments after splitting")' But above patch only triggered the bug by making bio operation faster(or slower). Main reason is in our space_allocating code, we need to commit page writeback before wait it complish, this patch fixed above bug. BTW, there is another reason for generic/102 fail, caused by disable default mixed-blockgroup, I'll fix it in xfstests. Signed-off-by: NZhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Zhao Lei 提交于
wait_for_snapshot_creation() is in same group with oher two: btrfs_start_write_no_snapshoting() btrfs_end_write_no_snapshoting() Rename wait_for_snapshot_creation() and move it into same place with other two. Signed-off-by: NZhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
While running a stress test I ran into a deadlock when running the delayed iputs at transaction time, which produced the following report and trace: [ 886.399989] ============================================= [ 886.400871] [ INFO: possible recursive locking detected ] [ 886.401663] 4.4.0-rc6-btrfs-next-18+ #1 Not tainted [ 886.402384] --------------------------------------------- [ 886.403182] fio/8277 is trying to acquire lock: [ 886.403568] (&fs_info->delayed_iput_sem){++++..}, at: [<ffffffffa0538823>] btrfs_run_delayed_iputs+0x36/0xbf [btrfs] [ 886.403568] [ 886.403568] but task is already holding lock: [ 886.403568] (&fs_info->delayed_iput_sem){++++..}, at: [<ffffffffa0538823>] btrfs_run_delayed_iputs+0x36/0xbf [btrfs] [ 886.403568] [ 886.403568] other info that might help us debug this: [ 886.403568] Possible unsafe locking scenario: [ 886.403568] [ 886.403568] CPU0 [ 886.403568] ---- [ 886.403568] lock(&fs_info->delayed_iput_sem); [ 886.403568] lock(&fs_info->delayed_iput_sem); [ 886.403568] [ 886.403568] *** DEADLOCK *** [ 886.403568] [ 886.403568] May be due to missing lock nesting notation [ 886.403568] [ 886.403568] 3 locks held by fio/8277: [ 886.403568] #0: (sb_writers#11){.+.+.+}, at: [<ffffffff81174c4c>] __sb_start_write+0x5f/0xb0 [ 886.403568] #1: (&sb->s_type->i_mutex_key#15){+.+.+.}, at: [<ffffffffa054620d>] btrfs_file_write_iter+0x73/0x408 [btrfs] [ 886.403568] #2: (&fs_info->delayed_iput_sem){++++..}, at: [<ffffffffa0538823>] btrfs_run_delayed_iputs+0x36/0xbf [btrfs] [ 886.403568] [ 886.403568] stack backtrace: [ 886.403568] CPU: 6 PID: 8277 Comm: fio Not tainted 4.4.0-rc6-btrfs-next-18+ #1 [ 886.403568] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014 [ 886.403568] 0000000000000000 ffff88009f80f770 ffffffff8125d4fd ffffffff82af1fc0 [ 886.403568] ffff88009f80f830 ffffffff8108e5f9 0000000200000000 ffff88009fd92290 [ 886.403568] 0000000000000000 ffffffff82af1fc0 ffffffff829cfb01 00042b216d008804 [ 886.403568] Call Trace: [ 886.403568] [<ffffffff8125d4fd>] dump_stack+0x4e/0x79 [ 886.403568] [<ffffffff8108e5f9>] __lock_acquire+0xd42/0xf0b [ 886.403568] [<ffffffff810c22db>] ? __module_address+0xdf/0x108 [ 886.403568] [<ffffffff8108eb77>] lock_acquire+0x10d/0x194 [ 886.403568] [<ffffffff8108eb77>] ? lock_acquire+0x10d/0x194 [ 886.403568] [<ffffffffa0538823>] ? btrfs_run_delayed_iputs+0x36/0xbf [btrfs] [ 886.489542] [<ffffffff8148556b>] down_read+0x3e/0x4d [ 886.489542] [<ffffffffa0538823>] ? btrfs_run_delayed_iputs+0x36/0xbf [btrfs] [ 886.489542] [<ffffffffa0538823>] btrfs_run_delayed_iputs+0x36/0xbf [btrfs] [ 886.489542] [<ffffffffa0533953>] btrfs_commit_transaction+0x8f5/0x96e [btrfs] [ 886.489542] [<ffffffffa0521d7a>] flush_space+0x435/0x44a [btrfs] [ 886.489542] [<ffffffffa052218b>] ? reserve_metadata_bytes+0x26a/0x384 [btrfs] [ 886.489542] [<ffffffffa05221ae>] reserve_metadata_bytes+0x28d/0x384 [btrfs] [ 886.489542] [<ffffffffa052256c>] ? btrfs_block_rsv_refill+0x58/0x96 [btrfs] [ 886.489542] [<ffffffffa0522584>] btrfs_block_rsv_refill+0x70/0x96 [btrfs] [ 886.489542] [<ffffffffa053d747>] btrfs_evict_inode+0x394/0x55a [btrfs] [ 886.489542] [<ffffffff81188e31>] evict+0xa7/0x15c [ 886.489542] [<ffffffff81189878>] iput+0x1d3/0x266 [ 886.489542] [<ffffffffa053887c>] btrfs_run_delayed_iputs+0x8f/0xbf [btrfs] [ 886.489542] [<ffffffffa0533953>] btrfs_commit_transaction+0x8f5/0x96e [btrfs] [ 886.489542] [<ffffffff81085096>] ? signal_pending_state+0x31/0x31 [ 886.489542] [<ffffffffa0521191>] btrfs_alloc_data_chunk_ondemand+0x1d7/0x288 [btrfs] [ 886.489542] [<ffffffffa0521282>] btrfs_check_data_free_space+0x40/0x59 [btrfs] [ 886.489542] [<ffffffffa05228f5>] btrfs_delalloc_reserve_space+0x1e/0x4e [btrfs] [ 886.489542] [<ffffffffa053620a>] btrfs_direct_IO+0x10c/0x27e [btrfs] [ 886.489542] [<ffffffff8111d9a1>] generic_file_direct_write+0xb3/0x128 [ 886.489542] [<ffffffffa05463c3>] btrfs_file_write_iter+0x229/0x408 [btrfs] [ 886.489542] [<ffffffff8108ae38>] ? __lock_is_held+0x38/0x50 [ 886.489542] [<ffffffff8117279e>] __vfs_write+0x7c/0xa5 [ 886.489542] [<ffffffff81172cda>] vfs_write+0xa0/0xe4 [ 886.489542] [<ffffffff811734cc>] SyS_write+0x50/0x7e [ 886.489542] [<ffffffff814872d7>] entry_SYSCALL_64_fastpath+0x12/0x6f [ 1081.852335] INFO: task fio:8244 blocked for more than 120 seconds. [ 1081.854348] Not tainted 4.4.0-rc6-btrfs-next-18+ #1 [ 1081.857560] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1081.863227] fio D ffff880213f9bb28 0 8244 8240 0x00000000 [ 1081.868719] ffff880213f9bb28 00ffffff810fc6b0 ffffffff0000000a ffff88023ed55240 [ 1081.872499] ffff880206b5d400 ffff880213f9c000 ffff88020a4d5318 ffff880206b5d400 [ 1081.876834] ffffffff00000001 ffff880206b5d400 ffff880213f9bb40 ffffffff81482ba4 [ 1081.880782] Call Trace: [ 1081.881793] [<ffffffff81482ba4>] schedule+0x7f/0x97 [ 1081.883340] [<ffffffff81485eb5>] rwsem_down_write_failed+0x2d5/0x325 [ 1081.895525] [<ffffffff8108d48d>] ? trace_hardirqs_on_caller+0x16/0x1ab [ 1081.897419] [<ffffffff81269723>] call_rwsem_down_write_failed+0x13/0x20 [ 1081.899251] [<ffffffff81269723>] ? call_rwsem_down_write_failed+0x13/0x20 [ 1081.901063] [<ffffffff81089fae>] ? __down_write_nested.isra.0+0x1f/0x21 [ 1081.902365] [<ffffffff814855bd>] down_write+0x43/0x57 [ 1081.903846] [<ffffffffa05211b0>] ? btrfs_alloc_data_chunk_ondemand+0x1f6/0x288 [btrfs] [ 1081.906078] [<ffffffffa05211b0>] btrfs_alloc_data_chunk_ondemand+0x1f6/0x288 [btrfs] [ 1081.908846] [<ffffffff8108d461>] ? mark_held_locks+0x56/0x6c [ 1081.910409] [<ffffffffa0521282>] btrfs_check_data_free_space+0x40/0x59 [btrfs] [ 1081.912482] [<ffffffffa05228f5>] btrfs_delalloc_reserve_space+0x1e/0x4e [btrfs] [ 1081.914597] [<ffffffffa053620a>] btrfs_direct_IO+0x10c/0x27e [btrfs] [ 1081.919037] [<ffffffff8111d9a1>] generic_file_direct_write+0xb3/0x128 [ 1081.920754] [<ffffffffa05463c3>] btrfs_file_write_iter+0x229/0x408 [btrfs] [ 1081.922496] [<ffffffff8108ae38>] ? __lock_is_held+0x38/0x50 [ 1081.923922] [<ffffffff8117279e>] __vfs_write+0x7c/0xa5 [ 1081.925275] [<ffffffff81172cda>] vfs_write+0xa0/0xe4 [ 1081.926584] [<ffffffff811734cc>] SyS_write+0x50/0x7e [ 1081.927968] [<ffffffff814872d7>] entry_SYSCALL_64_fastpath+0x12/0x6f [ 1081.985293] INFO: lockdep is turned off. [ 1081.986132] INFO: task fio:8249 blocked for more than 120 seconds. [ 1081.987434] Not tainted 4.4.0-rc6-btrfs-next-18+ #1 [ 1081.988534] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1081.990147] fio D ffff880218febbb8 0 8249 8240 0x00000000 [ 1081.991626] ffff880218febbb8 00ffffff81486b8e ffff88020000000b ffff88023ed75240 [ 1081.993258] ffff8802120a9a00 ffff880218fec000 ffff88020a4d5318 ffff8802120a9a00 [ 1081.994850] ffffffff00000001 ffff8802120a9a00 ffff880218febbd0 ffffffff81482ba4 [ 1081.996485] Call Trace: [ 1081.997037] [<ffffffff81482ba4>] schedule+0x7f/0x97 [ 1081.998017] [<ffffffff81485eb5>] rwsem_down_write_failed+0x2d5/0x325 [ 1081.999241] [<ffffffff810852a5>] ? finish_wait+0x6d/0x76 [ 1082.000306] [<ffffffff81269723>] call_rwsem_down_write_failed+0x13/0x20 [ 1082.001533] [<ffffffff81269723>] ? call_rwsem_down_write_failed+0x13/0x20 [ 1082.002776] [<ffffffff81089fae>] ? __down_write_nested.isra.0+0x1f/0x21 [ 1082.003995] [<ffffffff814855bd>] down_write+0x43/0x57 [ 1082.005000] [<ffffffffa05211b0>] ? btrfs_alloc_data_chunk_ondemand+0x1f6/0x288 [btrfs] [ 1082.007403] [<ffffffffa05211b0>] btrfs_alloc_data_chunk_ondemand+0x1f6/0x288 [btrfs] [ 1082.008988] [<ffffffffa0545064>] btrfs_fallocate+0x7c1/0xc2f [btrfs] [ 1082.010193] [<ffffffff8108a1ba>] ? percpu_down_read+0x4e/0x77 [ 1082.011280] [<ffffffff81174c4c>] ? __sb_start_write+0x5f/0xb0 [ 1082.012265] [<ffffffff81174c4c>] ? __sb_start_write+0x5f/0xb0 [ 1082.013021] [<ffffffff811712e4>] vfs_fallocate+0x170/0x1ff [ 1082.013738] [<ffffffff81181ebb>] ioctl_preallocate+0x89/0x9b [ 1082.014778] [<ffffffff811822d7>] do_vfs_ioctl+0x40a/0x4ea [ 1082.015778] [<ffffffff81176ea7>] ? SYSC_newfstat+0x25/0x2e [ 1082.016806] [<ffffffff8118b4de>] ? __fget_light+0x4d/0x71 [ 1082.017789] [<ffffffff8118240e>] SyS_ioctl+0x57/0x79 [ 1082.018706] [<ffffffff814872d7>] entry_SYSCALL_64_fastpath+0x12/0x6f This happens because we can recursively acquire the semaphore fs_info->delayed_iput_sem when attempting to allocate space to satisfy a file write request as shown in the first trace above - when committing a transaction we acquire (down_read) the semaphore before running the delayed iputs, and when running a delayed iput() we can end up calling an inode's eviction handler, which in turn commits another transaction and attempts to acquire (down_read) again the semaphore to run more delayed iput operations. This results in a deadlock because if a task acquires multiple times a semaphore it should invoke down_read_nested() with a different lockdep class for each level of recursion. Fix this by simplifying the implementation and use a mutex instead that is acquired by the cleaner kthread before it runs the delayed iputs instead of always acquiring a semaphore before delayed references are run from anywhere. Fixes: d7c15171 (btrfs: Fix NO_SPACE bug caused by delayed-iput) Cc: stable@vger.kernel.org # 4.1+ Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 16 1月, 2016 2 次提交
-
-
由 Dan Carpenter 提交于
If we return 1 here, then the caller treats it as an error and returns -EINVAL. It causes a static checker warning to treat positive returns as an error. Fixes: 1aba86d6 ('Btrfs: fix easily get into ENOSPC in mixed case') Signed-off-by: NDan Carpenter <dan.carpenter@oracle.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Jeff Mahoney 提交于
Overloading extent_map->bdev to struct map_lookup * might have started out as a means to an end, but it's a pattern that's used all over the place now. Let's get rid of the casting and just add a union instead. Signed-off-by: NJeff Mahoney <jeffm@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 07 1月, 2016 3 次提交
-
-
由 David Sterba 提交于
Replace the integers by enums for better readability. The value 2 does not have any meaning since a7175319 "Btrfs: do less aggressive btree readahead" (2009-01-22). Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Byongho Lee 提交于
We use many constants to represent size and offset value. And to make code readable we use '256 * 1024 * 1024' instead of '268435456' to represent '256MB'. However we can make far more readable with 'SZ_256MB' which is defined in the 'linux/sizes.h'. So this patch replaces 'xxx * 1024 * 1024' kind of expression with single 'SZ_xxxMB' if 'xxx' is a power of 2 then 'xxx * SZ_1M' if 'xxx' is not a power of 2. And I haven't touched to '4096' & '8192' because it's more intuitive than 'SZ_4KB' & 'SZ_8KB'. Signed-off-by: NByongho Lee <bhlee.kernel@gmail.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 David Sterba 提交于
btrfs_delayed_extent_op can be packed in a better way, it's 40 bytes now and has 8 unused bytes. Reducing the level type to u8 makes it possible to squeeze it to the padding byte after key. The bitfields were switched to bool as there's space to store the full byte without increasing the whole structure, besides that the generated assembly is smaller. struct btrfs_delayed_extent_op { struct btrfs_disk_key key; /* 0 17 */ u8 level; /* 17 1 */ bool update_key; /* 18 1 */ bool update_flags; /* 19 1 */ bool is_data; /* 20 1 */ /* XXX 3 bytes hole, try to pack */ u64 flags_to_set; /* 24 8 */ /* size: 32, cachelines: 1, members: 6 */ /* sum members: 29, holes: 1, sum holes: 3 */ /* last cacheline: 32 bytes */ }; The final size is 32 bytes which gives +26 object per slab page. text data bss dec hex filename 938811 43670 23144 1005625 f5839 fs/btrfs/btrfs.ko.before 938747 43670 23144 1005561 f57f9 fs/btrfs/btrfs.ko.after Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 31 12月, 2015 1 次提交
-
-
由 Filipe Manana 提交于
While running a stress test I ran into the following trace/transaction abort: [471626.672243] ------------[ cut here ]------------ [471626.673322] WARNING: CPU: 9 PID: 19107 at fs/btrfs/extent-tree.c:3740 btrfs_write_dirty_block_groups+0x17c/0x214 [btrfs]() [471626.675492] BTRFS: Transaction aborted (error -2) [471626.676748] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc i2c_piix [471626.688802] CPU: 14 PID: 19107 Comm: fsstress Tainted: G W 4.3.0-rc5-btrfs-next-17+ #1 [471626.690148] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [471626.691901] 0000000000000000 ffff880016037cf0 ffffffff812566f4 ffff880016037d38 [471626.695009] ffff880016037d28 ffffffff8104d0a6 ffffffffa040c84e 00000000fffffffe [471626.697490] ffff88011fe855f8 ffff88000c484cb0 ffff88000d195000 ffff880016037d90 [471626.699201] Call Trace: [471626.699804] [<ffffffff812566f4>] dump_stack+0x4e/0x79 [471626.701049] [<ffffffff8104d0a6>] warn_slowpath_common+0x9f/0xb8 [471626.702542] [<ffffffffa040c84e>] ? btrfs_write_dirty_block_groups+0x17c/0x214 [btrfs] [471626.704326] [<ffffffff8104d107>] warn_slowpath_fmt+0x48/0x50 [471626.705636] [<ffffffffa0403717>] ? write_one_cache_group.isra.32+0x77/0x82 [btrfs] [471626.707048] [<ffffffffa040c84e>] btrfs_write_dirty_block_groups+0x17c/0x214 [btrfs] [471626.708616] [<ffffffffa048a50a>] commit_cowonly_roots+0x1d7/0x25a [btrfs] [471626.709950] [<ffffffffa041e34a>] btrfs_commit_transaction+0x4c4/0x991 [btrfs] [471626.711286] [<ffffffff81081c61>] ? signal_pending_state+0x31/0x31 [471626.712611] [<ffffffffa03f6df4>] btrfs_sync_fs+0x145/0x1ad [btrfs] [471626.715610] [<ffffffff811962a2>] ? SyS_tee+0x226/0x226 [471626.716718] [<ffffffff811962c2>] sync_fs_one_sb+0x20/0x22 [471626.717672] [<ffffffff8116fc01>] iterate_supers+0x75/0xc2 [471626.718800] [<ffffffff8119669a>] sys_sync+0x52/0x80 [471626.719990] [<ffffffff8147cd97>] entry_SYSCALL_64_fastpath+0x12/0x6f [471626.721835] ---[ end trace baf57f43d76693f4 ]--- [471626.722954] BTRFS: error (device sdc) in btrfs_write_dirty_block_groups:3740: errno=-2 No such entry This is a very rare situation and it happened due to a race between a free space endio worker and writing the space caches for dirty block groups at a transaction's commit critical section. The steps leading to this are: 1) A task calls btrfs_commit_transaction() and starts the writeout of the space caches for all currently dirty block groups (i.e. it calls btrfs_start_dirty_block_groups()); 2) The previous step starts writeback for space caches; 3) When the writeback finishes it queues jobs for free space endio work queue (fs_info->endio_freespace_worker) that execute btrfs_finish_ordered_io(); 4) The task committing the transaction sets the transaction's state to TRANS_STATE_COMMIT_DOING and shortly after calls btrfs_write_dirty_block_groups(); 5) A free space endio job joins the transaction, through btrfs_join_transaction_nolock(), and updates a free space inode item in the root tree through btrfs_update_inode_fallback(); 6) Updating the free space inode item resulted in COWing one or more nodes/leaves of the root tree, and that resulted in creating a new metadata block group, which gets added to the transaction's list of dirty block groups (this is a very rare case); 7) The free space endio job has not released yet its transaction handle at this point, so the new metadata block group was not yet fully created (didn't go through btrfs_create_pending_block_groups() yet); 8) The transaction commit task sees the new metadata block group in the transaction's list of dirty block groups and processes it. When it attempts to update the block group's block group item in the extent tree, through write_one_cache_group(), it isn't able to find it and aborts the transaction with error -ENOENT - this is because the free space endio job hasn't yet released its transaction handle (which calls btrfs_create_pending_block_groups()) and therefore the block group item was not yet added to the extent tree. Fix this waiting for free space endio jobs if we fail to find a block group item in the extent tree and then retry once updating the block group item. Signed-off-by: NFilipe Manana <fdmanana@suse.com>
-
- 30 12月, 2015 2 次提交
-
-
由 Chris Mason 提交于
This is a short term solution to make sure btrfs_run_delayed_refs() doesn't change the extent tree while we are scanning it to create the free space tree. Longer term we need to synchronize scanning the block groups one by one, similar to what happens during a balance. Signed-off-by: NChris Mason <clm@fb.com>
-
由 Chris Mason 提交于
Merging in the free space tree deleted a variable needed when CONFIG_BTRFS_DEBUG=y Signed-off-by: NChris Mason <clm@fb.com>
-
- 22 12月, 2015 1 次提交
-
-
由 Filipe Manana 提交于
We call btrfs_write_dirty_block_groups() in the critical section of a transaction's commit, when no other tasks can join the transaction and add more block groups to the transaction's list of dirty block groups, so we not taking the dirty block groups spinlock when checking for the list's emptyness, grabbing its first element or deleting elements from it. However there's a special and rare case where we can have a concurrent task adding elements to this list. We trigger writeback for space caches before at btrfs_start_dirty_block_groups() and in past iterations of the loop at btrfs_write_dirty_block_groups(), this means that when the writeback finishes (which happens asynchronously) it creates a task for the endio free space work queue that executes btrfs_finish_ordered_io() - this function is able to join the transaction, through btrfs_join_transaction_nolock(), and update the free space cache's inode item in the root tree, which can result in COWing nodes of this tree and therefore allocation of a new block group can happen, which gets added to the transaction's list of dirty block groups while the transaction commit task is operating on it concurrently. So fix this by taking the dirty block groups spinlock before doing operations on the dirty block groups list at btrfs_write_dirty_block_groups(). Signed-off-by: NFilipe Manana <fdmanana@suse.com>
-
- 18 12月, 2015 3 次提交
-
-
由 Omar Sandoval 提交于
The free space tree is updated in tandem with the extent tree. There are only a handful of places where we need to hook in: 1. Block group creation 2. Block group deletion 3. Delayed refs (extent creation and deletion) 4. Block group caching Signed-off-by: NOmar Sandoval <osandov@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Omar Sandoval 提交于
The free space cache has turned out to be a scalability bottleneck on large, busy filesystems. When the cache for a lot of block groups needs to be written out, we can get extremely long commit times; if this happens in the critical section, things are especially bad because we block new transactions from happening. The main problem with the free space cache is that it has to be written out in its entirety and is managed in an ad hoc fashion. Using a B-tree to store free space fixes this: updates can be done as needed and we get all of the benefits of using a B-tree: checksumming, RAID handling, well-understood behavior. With the free space tree, we get commit times that are about the same as the no cache case with load times slower than the free space cache case but still much faster than the no cache case. Free space is represented with extents until it becomes more space-efficient to use bitmaps, giving us similar space overhead to the free space cache. The operations on the free space tree are: adding and removing free space, handling the creation and deletion of block groups, and loading the free space for a block group. We can also create the free space tree by walking the extent tree and clear the free space tree. Signed-off-by: NOmar Sandoval <osandov@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Omar Sandoval 提交于
We're also going to load the free space tree from caching_thread(), so we should refactor some of the common code. Signed-off-by: NOmar Sandoval <osandov@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 10 12月, 2015 1 次提交
-
-
由 Filipe Manana 提交于
As of my previous change titled "Btrfs: fix scrub preventing unused block groups from being deleted", the following warning at extent-tree.c:btrfs_delete_unused_bgs() can be hit when we mount the a filesysten with "-o discard": 10263 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10264 { (...) 10405 if (trimming) { 10406 WARN_ON(!list_empty(&block_group->bg_list)); 10407 spin_lock(&trans->transaction->deleted_bgs_lock); 10408 list_move(&block_group->bg_list, 10409 &trans->transaction->deleted_bgs); 10410 spin_unlock(&trans->transaction->deleted_bgs_lock); 10411 btrfs_get_block_group(block_group); 10412 } (...) This happens because scrub can now add back the block group to the list of unused block groups (fs_info->unused_bgs). This is dangerous because we are moving the block group from the unused block groups list to the list of deleted block groups without holding the lock that protects the source list (fs_info->unused_bgs_lock). The following diagram illustrates how this happens: CPU 1 CPU 2 cleaner_kthread() btrfs_delete_unused_bgs() sees bg X in list fs_info->unused_bgs deletes bg X from list fs_info->unused_bgs scrub_enumerate_chunks() searches device tree using its commit root finds device extent for block group X gets block group X from the tree fs_info->block_group_cache_tree (via btrfs_lookup_block_group()) sets bg X to RO (again) scrub_chunk(bg X) sets bg X back to RW mode adds bg X to the list fs_info->unused_bgs again, since it's still unused and currently not in that list sets bg X to RO mode btrfs_remove_chunk(bg X) --> discard is enabled and bg X is in the fs_info->unused_bgs list again so the warning is triggered --> we move it from that list into the transaction's delete_bgs list, but we can have another task currently manipulating the first list (fs_info->unused_bgs) Fix this by using the same lock (fs_info->unused_bgs_lock) to protect both the list of unused block groups and the list of deleted block groups. This makes it safe and there's not much worry for more lock contention, as this lock is seldom used and only the cleaner kthread adds elements to the list of deleted block groups. The warning goes away too, as this was previously an impossible case (and would have been better a BUG_ON/ASSERT) but it's not impossible anymore. Reproduced with fstest btrfs/073 (using MOUNT_OPTIONS="-o discard"). Signed-off-by: NFilipe Manana <fdmanana@suse.com>
-
- 07 12月, 2015 1 次提交
-
-
由 David Sterba 提交于
Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 25 11月, 2015 5 次提交
-
-
由 Mark Fasheh 提交于
Commit 0ed4792a ('btrfs: qgroup: Switch to new extent-oriented qgroup mechanism.') removed our qgroup accounting during btrfs_drop_snapshot(). Predictably, this results in qgroup numbers going bad shortly after a snapshot is removed. Fix this by adding a dirty extent record when we encounter extents during our shared subtree walk. This effectively restores the functionality we had with the original shared subtree walking code in 1152651a (btrfs: qgroup: account shared subtrees during snapshot delete). The idea with the original patch (and this one) is that shared subtrees can get skipped during drop_snapshot. The shared subtree walk then allows us a chance to visit those extents and add them to the qgroup work for later processing. This ultimately makes the accounting for drop snapshot work. The new qgroup code nicely handles all the other extents during the tree walk via the ref dec/inc functions so we don't have to add actions beyond what we had originally. Signed-off-by: NMark Fasheh <mfasheh@suse.de> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
When a block group becomes unused and the cleaner kthread is currently running, we can end up getting the current transaction aborted with error -ENOENT when we try to commit the transaction, leading to the following trace: [59779.258768] WARNING: CPU: 3 PID: 5990 at fs/btrfs/extent-tree.c:3740 btrfs_write_dirty_block_groups+0x17c/0x214 [btrfs]() [59779.272594] BTRFS: Transaction aborted (error -2) (...) [59779.291137] Call Trace: [59779.291621] [<ffffffff812566f4>] dump_stack+0x4e/0x79 [59779.292543] [<ffffffff8104d0a6>] warn_slowpath_common+0x9f/0xb8 [59779.293435] [<ffffffffa04cb81f>] ? btrfs_write_dirty_block_groups+0x17c/0x214 [btrfs] [59779.295000] [<ffffffff8104d107>] warn_slowpath_fmt+0x48/0x50 [59779.296138] [<ffffffffa04c2721>] ? write_one_cache_group.isra.32+0x77/0x82 [btrfs] [59779.297663] [<ffffffffa04cb81f>] btrfs_write_dirty_block_groups+0x17c/0x214 [btrfs] [59779.299141] [<ffffffffa0549b0d>] commit_cowonly_roots+0x1de/0x261 [btrfs] [59779.300359] [<ffffffffa04dd5b6>] btrfs_commit_transaction+0x4c4/0x99c [btrfs] [59779.301805] [<ffffffffa04b5df4>] btrfs_sync_fs+0x145/0x1ad [btrfs] [59779.302893] [<ffffffff81196634>] sync_filesystem+0x7f/0x93 (...) [59779.318186] ---[ end trace 577e2daff90da33a ]--- The following diagram illustrates a sequence of steps leading to this problem: CPU 1 CPU 2 <at transaction N> adds bg A to list fs_info->unused_bgs adds bg B to list fs_info->unused_bgs <transaction kthread commits transaction N and wakes up the cleaner kthread> cleaner kthread delete_unused_bgs() sees bg A in list fs_info->unused_bgs btrfs_start_transaction() <transaction N + 1 starts> deletes bg A update_block_group(bg C) --> adds bg C to list fs_info->unused_bgs deletes bg B sees bg C in the list fs_info->unused_bgs btrfs_remove_chunk(bg C) btrfs_remove_block_group(bg C) --> checks if the block group is in a dirty list, and because it isn't now, it does nothing --> the block group item is deleted from the extent tree --> adds bg C to list transaction->dirty_bgs some task calls btrfs_commit_transaction(t N + 1) commit_cowonly_roots() btrfs_write_dirty_block_groups() --> sees bg C in cur_trans->dirty_bgs --> calls write_one_cache_group() which returns -ENOENT because it did not find the block group item in the extent tree --> transaction aborte with -ENOENT because write_one_cache_group() returned that error So fix this by adding a block group to the list of dirty block groups before adding it to the list of unused block groups. This happened on a stress test using fsstress plus concurrent calls to fallocate 20G and truncate (releasing part of the space allocated with fallocate). Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
Currently scrub can race with the cleaner kthread when the later attempts to delete an unused block group, and the result is preventing the cleaner kthread from ever deleting later the block group - unless the block group becomes used and unused again. The following diagram illustrates that race: CPU 1 CPU 2 cleaner kthread btrfs_delete_unused_bgs() gets block group X from fs_info->unused_bgs and removes it from that list scrub_enumerate_chunks() searches device tree using its commit root finds device extent for block group X gets block group X from the tree fs_info->block_group_cache_tree (via btrfs_lookup_block_group()) sets bg X to RO sees the block group is already RO and therefore doesn't delete it nor adds it back to unused list So fix this by making scrub add the block group again to the list of unused block groups if the block group is still unused when it finished scrubbing it and it hasn't been removed already. Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
We were using only 1 transaction unit when attempting to delete an unused block group but in reality we need 3 + N units, where N corresponds to the number of stripes. We were accounting only for the addition of the orphan item (for the block group's free space cache inode) but we were not accounting that we need to delete one block group item from the extent tree, one free space item from the tree of tree roots and N device extent items from the device tree. While one unit is not enough, it worked most of the time because for each single unit we are too pessimistic and assume an entire tree path, with the highest possible heigth (8), needs to be COWed with eventual node splits at every possible level in the tree, so there was usually enough reserved space for removing all the items and adding the orphan item. However after adding the orphan item, writepages() can by called by the VM subsystem against the btree inode when we are under memory pressure, which causes writeback to start for the nodes we COWed before, this forces the operation to remove the free space item to COW again some (or all of) the same nodes (in the tree of tree roots). Even without writepages() being called, we could fail with ENOSPC because these items are located in multiple trees and one of them might have a higher heigth and require node/leaf splits at many levels, exhausting all the reserved space before removing all the items and adding the orphan. In the kernel 4.0 release, commit 3d84be79 ("Btrfs: fix BUG_ON in btrfs_orphan_add() when delete unused block group"), we attempted to fix a BUG_ON due to ENOSPC when trying to add the orphan item by making the cleaner kthread reserve one transaction unit before attempting to remove the block group, but this was not enough. We had a couple user reports still hitting the same BUG_ON after 4.0, like Stefan Priebe's report on a 4.2-rc6 kernel for example: http://www.spinics.net/lists/linux-btrfs/msg46070.html So fix this by reserving all the necessary units of metadata. Reported-by: NStefan Priebe <s.priebe@profihost.ag> Fixes: 3d84be79 ("Btrfs: fix BUG_ON in btrfs_orphan_add() when delete unused block group") Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
It's possible to reach a state where the cleaner kthread isn't able to start a transaction to delete an unused block group due to lack of enough free metadata space and due to lack of unallocated device space to allocate a new metadata block group as well. If this happens try to use space from the global block group reserve just like we do for unlink operations, so that we don't reach a permanent state where starting a transaction for filesystem operations (file creation, renames, etc) keeps failing with -ENOSPC. Such an unfortunate state was observed on a machine where over a dozen unused data block groups existed and the cleaner kthread was failing to delete them due to ENOSPC error when attempting to start a transaction, and even running balance with a -dusage=0 filter failed with ENOSPC as well. Also unmounting and mounting again the filesystem didn't help. Allowing the cleaner kthread to use the global block reserve to delete the unused data block groups fixed the problem. Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NJeff Mahoney <jeffm@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 11 11月, 2015 2 次提交
-
-
由 Zhao Lei 提交于
No need to use root->fs_info in btrfs_delete_unused_bgs(), use fs_info directly instead. Signed-off-by: NZhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Zhao Lei 提交于
Reproduce: (In integration-4.3 branch) TEST_DEV=(/dev/vdg /dev/vdh) TEST_DIR=/mnt/tmp umount "$TEST_DEV" >/dev/null mkfs.btrfs -f -d raid1 "${TEST_DEV[@]}" mount -o nospace_cache "$TEST_DEV" "$TEST_DIR" umount "$TEST_DEV" mount -o nospace_cache "$TEST_DEV" "$TEST_DIR" btrfs filesystem usage $TEST_DIR We can see the data chunk changed from raid1 to single: # btrfs filesystem usage $TEST_DIR Data,single: Size:8.00MiB, Used:0.00B /dev/vdg 8.00MiB # Reason: When a empty filesystem mount with -o nospace_cache, the last data blockgroup will be auto-removed in umount. Then if we mount it again, there is no data chunk in the filesystem, so the only available data profile is 0x0, result is all new chunks are created as single type. Fix: Don't auto-delete last blockgroup for a raid type. Test: Test by above script, and confirmed the logic by debug output. Reviewed-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NZhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 03 11月, 2015 1 次提交
-
-
由 chandan 提交于
When executing generic/001 in a loop on a ppc64 machine (with both sectorsize and nodesize set to 64k), the following call trace is observed, WARNING: at /root/repos/linux/fs/btrfs/locking.c:253 Modules linked in: CPU: 2 PID: 8353 Comm: umount Not tainted 4.3.0-rc5-13676-ga5e681d9 #54 task: c0000000f2b1f560 ti: c0000000f6008000 task.ti: c0000000f6008000 NIP: c000000000520c88 LR: c0000000004a3b34 CTR: 0000000000000000 REGS: c0000000f600a820 TRAP: 0700 Not tainted (4.3.0-rc5-13676-ga5e681d9) MSR: 8000000102029032 <SF,VEC,EE,ME,IR,DR,RI> CR: 24444884 XER: 00000000 CFAR: c0000000004a3b30 SOFTE: 1 GPR00: c0000000004a3b34 c0000000f600aaa0 c00000000108ac00 c0000000f5a808c0 GPR04: 0000000000000000 c0000000f600ae60 0000000000000000 0000000000000005 GPR08: 00000000000020a1 0000000000000001 c0000000f2b1f560 0000000000000030 GPR12: 0000000084842882 c00000000fdc0900 c0000000f600ae60 c0000000f070b800 GPR16: 0000000000000000 c0000000f3c8a000 0000000000000000 0000000000000049 GPR20: 0000000000000001 0000000000000001 c0000000f5aa01f8 0000000000000000 GPR24: 0f83e0f83e0f83e1 c0000000f5a808c0 c0000000f3c8d000 c000000000000000 GPR28: c0000000f600ae74 0000000000000001 c0000000f3c8d000 c0000000f5a808c0 NIP [c000000000520c88] .btrfs_tree_lock+0x48/0x2a0 LR [c0000000004a3b34] .btrfs_lock_root_node+0x44/0x80 Call Trace: [c0000000f600aaa0] [c0000000f600ab80] 0xc0000000f600ab80 (unreliable) [c0000000f600ab80] [c0000000004a3b34] .btrfs_lock_root_node+0x44/0x80 [c0000000f600ac00] [c0000000004a99dc] .btrfs_search_slot+0xa8c/0xc00 [c0000000f600ad40] [c0000000004ab878] .btrfs_insert_empty_items+0x98/0x120 [c0000000f600adf0] [c00000000050da44] .btrfs_finish_chunk_alloc+0x1d4/0x620 [c0000000f600af20] [c0000000004be854] .btrfs_create_pending_block_groups+0x1d4/0x2c0 [c0000000f600b020] [c0000000004bf188] .do_chunk_alloc+0x3c8/0x420 [c0000000f600b100] [c0000000004c27cc] .find_free_extent+0xbfc/0x1030 [c0000000f600b260] [c0000000004c2ce8] .btrfs_reserve_extent+0xe8/0x250 [c0000000f600b330] [c0000000004c2f90] .btrfs_alloc_tree_block+0x140/0x590 [c0000000f600b440] [c0000000004a47b4] .__btrfs_cow_block+0x124/0x780 [c0000000f600b530] [c0000000004a4fc0] .btrfs_cow_block+0xf0/0x250 [c0000000f600b5e0] [c0000000004a917c] .btrfs_search_slot+0x22c/0xc00 [c0000000f600b720] [c00000000050aa40] .btrfs_remove_chunk+0x1b0/0x9f0 [c0000000f600b850] [c0000000004c4e04] .btrfs_delete_unused_bgs+0x434/0x570 [c0000000f600b950] [c0000000004d3cb8] .close_ctree+0x2e8/0x3b0 [c0000000f600ba20] [c00000000049d178] .btrfs_put_super+0x18/0x30 [c0000000f600ba90] [c000000000243cd4] .generic_shutdown_super+0xa4/0x1a0 [c0000000f600bb10] [c0000000002441d8] .kill_anon_super+0x18/0x30 [c0000000f600bb90] [c00000000049c898] .btrfs_kill_super+0x18/0xc0 [c0000000f600bc10] [c0000000002444f8] .deactivate_locked_super+0x98/0xe0 [c0000000f600bc90] [c000000000269f94] .cleanup_mnt+0x54/0xa0 [c0000000f600bd10] [c0000000000bd744] .task_work_run+0xc4/0x100 [c0000000f600bdb0] [c000000000016334] .do_notify_resume+0x74/0x80 [c0000000f600be30] [c0000000000098b8] .ret_from_except_lite+0x64/0x68 Instruction dump: fba1ffe8 fbc1fff0 fbe1fff8 7c791b78 f8010010 f821ff21 e94d0290 81030040 812a04e8 7d094a78 7d290034 5529d97e <0b090000> 3b400000 3be30050 3bc3004c The above call trace is seen even on x86_64; albeit very rarely and that too with nodesize set to 64k and with nospace_cache mount option being used. The reason for the above call trace is, btrfs_remove_chunk check_system_chunk Allocate chunk if required For each physical stripe on underlying device, btrfs_free_dev_extent ... Take lock on Device tree's root node btrfs_cow_block("dev tree's root node"); btrfs_reserve_extent find_free_extent index = BTRFS_RAID_DUP; have_caching_bg = false; When in LOOP_CACHING_NOWAIT state, Assume we find a block group which is being cached; Hence have_caching_bg is set to true When repeating the search for the next RAID index, we set have_caching_bg to false. Hence right after completing the LOOP_CACHING_NOWAIT state, we incorrectly skip LOOP_CACHING_WAIT state and move to LOOP_ALLOC_CHUNK state where we allocate a chunk and try to add entries corresponding to the chunk's physical stripe into the device tree. When doing so the task deadlocks itself waiting for the blocking lock on the root node of the device tree. This commit fixes the issue by introducing a new local variable to help indicate as to whether a block group of any RAID type is being cached. Signed-off-by: NChandan Rajendra <chandan@linux.vnet.ibm.com> Reviewed-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 27 10月, 2015 1 次提交
-
-
由 Qu Wenruo 提交于
Between btrfs_allocerved_file_extent() and btrfs_add_delayed_qgroup_reserve(), there is a window that delayed_refs are run and delayed ref head maybe freed before btrfs_add_delayed_qgroup_reserve(). This will cause btrfs_dad_delayed_qgroup_reserve() to return -ENOENT, and cause transaction to be aborted. This patch will record qgroup reserve space info into delayed_ref_head at btrfs_add_delayed_ref(), to eliminate the race window. Reported-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NQu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 26 10月, 2015 2 次提交
-
-
由 Filipe Manana 提交于
In the kernel 4.2 merge window we had a big changes to the implementation of delayed references and qgroups which made the no_quota field of delayed references not used anymore. More specifically the no_quota field is not used anymore as of: commit 0ed4792a ("btrfs: qgroup: Switch to new extent-oriented qgroup mechanism.") Leaving the no_quota field actually prevents delayed references from getting merged, which in turn cause the following BUG_ON(), at fs/btrfs/extent-tree.c, to be hit when qgroups are enabled: static int run_delayed_tree_ref(...) { (...) BUG_ON(node->ref_mod != 1); (...) } This happens on a scenario like the following: 1) Ref1 bytenr X, action = BTRFS_ADD_DELAYED_REF, no_quota = 1, added. 2) Ref2 bytenr X, action = BTRFS_DROP_DELAYED_REF, no_quota = 0, added. It's not merged with Ref1 because Ref1->no_quota != Ref2->no_quota. 3) Ref3 bytenr X, action = BTRFS_ADD_DELAYED_REF, no_quota = 1, added. It's not merged with the reference at the tail of the list of refs for bytenr X because the reference at the tail, Ref2 is incompatible due to Ref2->no_quota != Ref3->no_quota. 4) Ref4 bytenr X, action = BTRFS_DROP_DELAYED_REF, no_quota = 0, added. It's not merged with the reference at the tail of the list of refs for bytenr X because the reference at the tail, Ref3 is incompatible due to Ref3->no_quota != Ref4->no_quota. 5) We run delayed references, trigger merging of delayed references, through __btrfs_run_delayed_refs() -> btrfs_merge_delayed_refs(). 6) Ref1 and Ref3 are merged as Ref1->no_quota = Ref3->no_quota and all other conditions are satisfied too. So Ref1 gets a ref_mod value of 2. 7) Ref2 and Ref4 are merged as Ref2->no_quota = Ref4->no_quota and all other conditions are satisfied too. So Ref2 gets a ref_mod value of 2. 8) Ref1 and Ref2 aren't merged, because they have different values for their no_quota field. 9) Delayed reference Ref1 is picked for running (select_delayed_ref() always prefers references with an action == BTRFS_ADD_DELAYED_REF). So run_delayed_tree_ref() is called for Ref1 which triggers the BUG_ON because Ref1->red_mod != 1 (equals 2). So fix this by removing the no_quota field, as it's not used anymore as of commit 0ed4792a ("btrfs: qgroup: Switch to new extent-oriented qgroup mechanism."). The use of no_quota was also buggy in at least two places: 1) At delayed-refs.c:btrfs_add_delayed_tree_ref() - we were setting no_quota to 0 instead of 1 when the following condition was true: is_fstree(ref_root) || !fs_info->quota_enabled 2) At extent-tree.c:__btrfs_inc_extent_ref() - we were attempting to reset a node's no_quota when the condition "!is_fstree(root_objectid) || !root->fs_info->quota_enabled" was true but we did it only in an unused local stack variable, that is, we never reset the no_quota value in the node itself. This fixes the remainder of problems several people have been having when running delayed references, mostly while a balance is running in parallel, on a 4.2+ kernel. Very special thanks to Stéphane Lesimple for helping debugging this issue and testing this fix on his multi terabyte filesystem (which took more than one day to balance alone, plus fsck, etc). Also, this fixes deadlock issue when using the clone ioctl with qgroups enabled, as reported by Elias Probst in the mailing list. The deadlock happens because after calling btrfs_insert_empty_item we have our path holding a write lock on a leaf of the fs/subvol tree and then before releasing the path we called check_ref() which did backref walking, when qgroups are enabled, and tried to read lock the same leaf. The trace for this case is the following: INFO: task systemd-nspawn:6095 blocked for more than 120 seconds. (...) Call Trace: [<ffffffff86999201>] schedule+0x74/0x83 [<ffffffff863ef64c>] btrfs_tree_read_lock+0xc0/0xea [<ffffffff86137ed7>] ? wait_woken+0x74/0x74 [<ffffffff8639f0a7>] btrfs_search_old_slot+0x51a/0x810 [<ffffffff863a129b>] btrfs_next_old_leaf+0xdf/0x3ce [<ffffffff86413a00>] ? ulist_add_merge+0x1b/0x127 [<ffffffff86411688>] __resolve_indirect_refs+0x62a/0x667 [<ffffffff863ef546>] ? btrfs_clear_lock_blocking_rw+0x78/0xbe [<ffffffff864122d3>] find_parent_nodes+0xaf3/0xfc6 [<ffffffff86412838>] __btrfs_find_all_roots+0x92/0xf0 [<ffffffff864128f2>] btrfs_find_all_roots+0x45/0x65 [<ffffffff8639a75b>] ? btrfs_get_tree_mod_seq+0x2b/0x88 [<ffffffff863e852e>] check_ref+0x64/0xc4 [<ffffffff863e9e01>] btrfs_clone+0x66e/0xb5d [<ffffffff863ea77f>] btrfs_ioctl_clone+0x48f/0x5bb [<ffffffff86048a68>] ? native_sched_clock+0x28/0x77 [<ffffffff863ed9b0>] btrfs_ioctl+0xabc/0x25cb (...) The problem goes away by eleminating check_ref(), which no longer is needed as its purpose was to get a value for the no_quota field of a delayed reference (this patch removes the no_quota field as mentioned earlier). Reported-by: NStéphane Lesimple <stephane_btrfs@lesimple.fr> Tested-by: NStéphane Lesimple <stephane_btrfs@lesimple.fr> Reported-by: NElias Probst <mail@eliasprobst.eu> Reported-by: NPeter Becker <floyd.net@gmail.com> Reported-by: NMalte Schröder <malte@tnxip.de> Reported-by: NDerek Dongray <derek@valedon.co.uk> Reported-by: NErkki Seppala <flux-btrfs@inside.org> Cc: stable@vger.kernel.org # 4.2+ Signed-off-by: NFilipe Manana <fdmanana@suse.com> Reviewed-by: NQu Wenruo <quwenruo@cn.fujitsu.com>
-
由 Filipe Manana 提交于
In the kernel 4.2 merge window we had a refactoring/rework of the delayed references implementation in order to fix certain problems with qgroups. However that rework introduced one more regression that leads to the following trace when running delayed references for metadata: [35908.064664] kernel BUG at fs/btrfs/extent-tree.c:1832! [35908.065201] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [35908.065201] Modules linked in: dm_flakey dm_mod btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc psmouse i2 [35908.065201] CPU: 14 PID: 15014 Comm: kworker/u32:9 Tainted: G W 4.3.0-rc5-btrfs-next-17+ #1 [35908.065201] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [35908.065201] Workqueue: btrfs-extent-refs btrfs_extent_refs_helper [btrfs] [35908.065201] task: ffff880114b7d780 ti: ffff88010c4c8000 task.ti: ffff88010c4c8000 [35908.065201] RIP: 0010:[<ffffffffa04928b5>] [<ffffffffa04928b5>] insert_inline_extent_backref+0x52/0xb1 [btrfs] [35908.065201] RSP: 0018:ffff88010c4cbb08 EFLAGS: 00010293 [35908.065201] RAX: 0000000000000000 RBX: ffff88008a661000 RCX: 0000000000000000 [35908.065201] RDX: ffffffffa04dd58f RSI: 0000000000000001 RDI: 0000000000000000 [35908.065201] RBP: ffff88010c4cbb40 R08: 0000000000001000 R09: ffff88010c4cb9f8 [35908.065201] R10: 0000000000000000 R11: 000000000000002c R12: 0000000000000000 [35908.065201] R13: ffff88020a74c578 R14: 0000000000000000 R15: 0000000000000000 [35908.065201] FS: 0000000000000000(0000) GS:ffff88023edc0000(0000) knlGS:0000000000000000 [35908.065201] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [35908.065201] CR2: 00000000015e8708 CR3: 0000000102185000 CR4: 00000000000006e0 [35908.065201] Stack: [35908.065201] ffff88010c4cbb18 0000000000000f37 ffff88020a74c578 ffff88015a408000 [35908.065201] ffff880154a44000 0000000000000000 0000000000000005 ffff88010c4cbbd8 [35908.065201] ffffffffa0492b9a 0000000000000005 0000000000000000 0000000000000000 [35908.065201] Call Trace: [35908.065201] [<ffffffffa0492b9a>] __btrfs_inc_extent_ref+0x8b/0x208 [btrfs] [35908.065201] [<ffffffffa0497117>] ? __btrfs_run_delayed_refs+0x4d4/0xd33 [btrfs] [35908.065201] [<ffffffffa049773d>] __btrfs_run_delayed_refs+0xafa/0xd33 [btrfs] [35908.065201] [<ffffffffa04a976a>] ? join_transaction.isra.10+0x25/0x41f [btrfs] [35908.065201] [<ffffffffa04a97ed>] ? join_transaction.isra.10+0xa8/0x41f [btrfs] [35908.065201] [<ffffffffa049914d>] btrfs_run_delayed_refs+0x75/0x1dd [btrfs] [35908.065201] [<ffffffffa04992f1>] delayed_ref_async_start+0x3c/0x7b [btrfs] [35908.065201] [<ffffffffa04d4b4f>] normal_work_helper+0x14c/0x32a [btrfs] [35908.065201] [<ffffffffa04d4e93>] btrfs_extent_refs_helper+0x12/0x14 [btrfs] [35908.065201] [<ffffffff81063b23>] process_one_work+0x24a/0x4ac [35908.065201] [<ffffffff81064285>] worker_thread+0x206/0x2c2 [35908.065201] [<ffffffff8106407f>] ? rescuer_thread+0x2cb/0x2cb [35908.065201] [<ffffffff8106407f>] ? rescuer_thread+0x2cb/0x2cb [35908.065201] [<ffffffff8106904d>] kthread+0xef/0xf7 [35908.065201] [<ffffffff81068f5e>] ? kthread_parkme+0x24/0x24 [35908.065201] [<ffffffff8147d10f>] ret_from_fork+0x3f/0x70 [35908.065201] [<ffffffff81068f5e>] ? kthread_parkme+0x24/0x24 [35908.065201] Code: 6a 01 41 56 41 54 ff 75 10 41 51 4d 89 c1 49 89 c8 48 8d 4d d0 e8 f6 f1 ff ff 48 83 c4 28 85 c0 75 2c 49 81 fc ff 00 00 00 77 02 <0f> 0b 4c 8b 45 30 8b 4d 28 45 31 [35908.065201] RIP [<ffffffffa04928b5>] insert_inline_extent_backref+0x52/0xb1 [btrfs] [35908.065201] RSP <ffff88010c4cbb08> [35908.310885] ---[ end trace fe4299baf0666457 ]--- This happens because the new delayed references code no longer merges delayed references that have different sequence values. The following steps are an example sequence leading to this issue: 1) Transaction N starts, fs_info->tree_mod_seq has value 0; 2) Extent buffer (btree node) A is allocated, delayed reference Ref1 for bytenr A is created, with a value of 1 and a seq value of 0; 3) fs_info->tree_mod_seq is incremented to 1; 4) Extent buffer A is deleted through btrfs_del_items(), which calls btrfs_del_leaf(), which in turn calls btrfs_free_tree_block(). The later returns the metadata extent associated to extent buffer A to the free space cache (the range is not pinned), because the extent buffer was created in the current transaction (N) and writeback never happened for the extent buffer (flag BTRFS_HEADER_FLAG_WRITTEN not set in the extent buffer). This creates the delayed reference Ref2 for bytenr A, with a value of -1 and a seq value of 1; 5) Delayed reference Ref2 is not merged with Ref1 when we create it, because they have different sequence numbers (decided at add_delayed_ref_tail_merge()); 6) fs_info->tree_mod_seq is incremented to 2; 7) Some task attempts to allocate a new extent buffer (done at extent-tree.c:find_free_extent()), but due to heavy fragmentation and running low on metadata space the clustered allocation fails and we fall back to unclustered allocation, which finds the extent at offset A, so a new extent buffer at offset A is allocated. This creates delayed reference Ref3 for bytenr A, with a value of 1 and a seq value of 2; 8) Ref3 is not merged neither with Ref2 nor Ref1, again because they all have different seq values; 9) We start running the delayed references (__btrfs_run_delayed_refs()); 10) The delayed Ref1 is the first one being applied, which ends up creating an inline extent backref in the extent tree; 10) Next the delayed reference Ref3 is selected for execution, and not Ref2, because select_delayed_ref() always gives a preference for positive references (that have an action of BTRFS_ADD_DELAYED_REF); 11) When running Ref3 we encounter alreay the inline extent backref in the extent tree at insert_inline_extent_backref(), which makes us hit the following BUG_ON: BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); This is always true because owner corresponds to the level of the extent buffer/btree node in the btree. For the scenario described above we hit the BUG_ON because we never merge references that have different seq values. We used to do the merging before the 4.2 kernel, more specifically, before the commmits: c6fc2454 ("btrfs: delayed-ref: Use list to replace the ref_root in ref_head.") c43d160f ("btrfs: delayed-ref: Cleanup the unneeded functions.") This issue became more exposed after the following change that was added to 4.2 as well: cffc3374 ("Btrfs: fix order by which delayed references are run") Which in turn fixed another regression by the two commits previously mentioned. So fix this by bringing back the delayed reference merge code, with the proper adaptations so that it operates against the new data structure (linked list vs old red black tree implementation). This issue was hit running fstest btrfs/063 in a loop. Several people have reported this issue in the mailing list when running on kernels 4.2+. Very special thanks to Stéphane Lesimple for helping debugging this issue and testing this fix on his multi terabyte filesystem (which took more than one day to balance alone, plus fsck, etc). Fixes: c6fc2454 ("btrfs: delayed-ref: Use list to replace the ref_root in ref_head.") Reported-by: NPeter Becker <floyd.net@gmail.com> Reported-by: NStéphane Lesimple <stephane_btrfs@lesimple.fr> Tested-by: NStéphane Lesimple <stephane_btrfs@lesimple.fr> Reported-by: NMalte Schröder <malte@tnxip.de> Reported-by: NDerek Dongray <derek@valedon.co.uk> Reported-by: NErkki Seppala <flux-btrfs@inside.org> Cc: stable@vger.kernel.org # 4.2+ Signed-off-by: NFilipe Manana <fdmanana@suse.com> Reviewed-by: NLiu Bo <bo.li.liu@oracle.com>
-
- 22 10月, 2015 4 次提交
-
-
由 Josef Bacik 提交于
If we are extremely fragmented then we won't be able to create a free_cluster. So if this happens set last_ptr->fragmented so that all future allcations will give up trying to create a cluster. When we unpin extents we will unset ->fragmented if we free up a sufficient amount of space in a block group. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Josef Bacik 提交于
We try really really hard to make allocations, but sometimes it is just not going to happen, especially when free space is extremely fragmented. So add a few short cuts through the looping states. For example if we couldn't allocate a chunk, just go straight to the NO_EMPTY_SIZE loop. If there are no uncached block groups and we've done a full search, go straight to the ALLOC_CHUNK stage. And finally if we already have empty_size and empty_cluster set to 0 go ahead and return -ENOSPC. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Josef Bacik 提交于
If we hit ENOSPC when setting up a space cache don't bother setting up any of the other space cache's in this transaction, it'll just induce unnecessary latency. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Josef Bacik 提交于
When we are heavily fragmented we can induce a lot of latency trying to make an allocation happen that is simply not going to happen. Thankfully we keep track of our max_extent_size when going through the allocator, so if we get to the point where we are exiting find_free_extent with ENOSPC then set our space_info->max_extent_size so we can keep future allocations from having to pay this cost. We reset the max_extent_size whenever we release pinned bytes back into this space info so we can redo all the work. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-