- 23 2月, 2014 1 次提交
-
-
由 Li Zefan 提交于
It's a bootstrap function. Signed-off-by: NLi Zefan <lizefan@huawei.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/52F5CC09.1080502@huawei.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 22 2月, 2014 2 次提交
-
-
由 Peter Zijlstra 提交于
Remove a few gratuitous #ifdefs in pick_next_task*(). Cc: Ingo Molnar <mingo@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Juri Lelli <juri.lelli@gmail.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-nnzddp5c4fijyzzxxrwlxghf@git.kernel.orgSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Peter Zijlstra 提交于
Dan Carpenter reported: > kernel/sched/rt.c:1347 pick_next_task_rt() warn: variable dereferenced before check 'prev' (see line 1338) > kernel/sched/deadline.c:1011 pick_next_task_dl() warn: variable dereferenced before check 'prev' (see line 1005) Kirill also spotted that migrate_tasks() will have an instant NULL deref because pick_next_task() will immediately deref prev. Instead of fixing all the corner cases because migrate_tasks() can pass in a NULL prev task in the unlikely case of hot-un-plug, provide a fake task such that we can remove all the NULL checks from the far more common paths. A further problem; not previously spotted; is that because we pushed pre_schedule() and idle_balance() into pick_next_task() we now need to avoid those getting called and pulling more tasks on our dying CPU. We avoid pull_{dl,rt}_task() by setting fake_task.prio to MAX_PRIO+1. We also note that since we call pick_next_task() exactly the amount of times we have runnable tasks present, we should never land in idle_balance(). Fixes: 38033c37 ("sched: Push down pre_schedule() and idle_balance()") Cc: Juri Lelli <juri.lelli@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Reported-by: NKirill Tkhai <tkhai@yandex.ru> Reported-by: NDan Carpenter <dan.carpenter@oracle.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20140212094930.GB3545@laptop.programming.kicks-ass.netSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 11 2月, 2014 1 次提交
-
-
由 Peter Zijlstra 提交于
This patch both merged idle_balance() and pre_schedule() and pushes both of them into pick_next_task(). Conceptually pre_schedule() and idle_balance() are rather similar, both are used to pull more work onto the current CPU. We cannot however first move idle_balance() into pre_schedule_fair() since there is no guarantee the last runnable task is a fair task, and thus we would miss newidle balances. Similarly, the dl and rt pre_schedule calls must be ran before idle_balance() since their respective tasks have higher priority and it would not do to delay their execution searching for less important tasks first. However, by noticing that pick_next_tasks() already traverses the sched_class hierarchy in the right order, we can get the right behaviour and do away with both calls. We must however change the special case optimization to also require that prev is of sched_class_fair, otherwise we can miss doing a dl or rt pull where we needed one. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/n/tip-a8k6vvaebtn64nie345kx1je@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 10 2月, 2014 1 次提交
-
-
由 Peter Zijlstra 提交于
In order to avoid having to do put/set on a whole cgroup hierarchy when we context switch, push the put into pick_next_task() so that both operations are in the same function. Further changes then allow us to possibly optimize away redundant work. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1328936700.2476.17.camel@laptopSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 13 1月, 2014 1 次提交
-
-
由 Juri Lelli 提交于
Introduces data structures relevant for implementing dynamic migration of -deadline tasks and the logic for checking if runqueues are overloaded with -deadline tasks and for choosing where a task should migrate, when it is the case. Adds also dynamic migrations to SCHED_DEADLINE, so that tasks can be moved among CPUs when necessary. It is also possible to bind a task to a (set of) CPU(s), thus restricting its capability of migrating, or forbidding migrations at all. The very same approach used in sched_rt is utilised: - -deadline tasks are kept into CPU-specific runqueues, - -deadline tasks are migrated among runqueues to achieve the following: * on an M-CPU system the M earliest deadline ready tasks are always running; * affinity/cpusets settings of all the -deadline tasks is always respected. Therefore, this very special form of "load balancing" is done with an active method, i.e., the scheduler pushes or pulls tasks between runqueues when they are woken up and/or (de)scheduled. IOW, every time a preemption occurs, the descheduled task might be sent to some other CPU (depending on its deadline) to continue executing (push). On the other hand, every time a CPU becomes idle, it might pull the second earliest deadline ready task from some other CPU. To enforce this, a pull operation is always attempted before taking any scheduling decision (pre_schedule()), as well as a push one after each scheduling decision (post_schedule()). In addition, when a task arrives or wakes up, the best CPU where to resume it is selected taking into account its affinity mask, the system topology, but also its deadline. E.g., from the scheduling point of view, the best CPU where to wake up (and also where to push) a task is the one which is running the task with the latest deadline among the M executing ones. In order to facilitate these decisions, per-runqueue "caching" of the deadlines of the currently running and of the first ready task is used. Queued but not running tasks are also parked in another rb-tree to speed-up pushes. Signed-off-by: NJuri Lelli <juri.lelli@gmail.com> Signed-off-by: NDario Faggioli <raistlin@linux.it> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1383831828-15501-5-git-send-email-juri.lelli@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 17 12月, 2013 1 次提交
-
-
由 Kirill Tkhai 提交于
This patch touches the RT group scheduling case. Functions inc_rt_prio_smp() and dec_rt_prio_smp() change (global) rq's priority, while rt_rq passed to them may be not the top-level rt_rq. This is wrong, because changing of priority on a child level does not guarantee that the priority is the highest all over the rq. So, this leak makes RT balancing unusable. The short example: the task having the highest priority among all rq's RT tasks (no one other task has the same priority) are waking on a throttle rt_rq. The rq's cpupri is set to the task's priority equivalent, but real rq->rt.highest_prio.curr is less. The patch below fixes the problem. Signed-off-by: NKirill Tkhai <tkhai@yandex.ru> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> CC: Steven Rostedt <rostedt@goodmis.org> CC: stable@vger.kernel.org Link: http://lkml.kernel.org/r/49231385567953@web4m.yandex.ruSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 26 10月, 2013 1 次提交
-
-
由 Li Bin 提交于
This issue was introduced by 454c7999 ("sched/rt: Fix SCHED_RR across cgroups") that missed the word 'not'. Fix it. Signed-off-by: NLi Bin <huawei.libin@huawei.com> Cc: <guohanjun@huawei.com> Cc: <xiexiuqi@huawei.com> Cc: <peterz@infradead.org> Link: http://lkml.kernel.org/r/1382357743-54136-1-git-send-email-huawei.libin@huawei.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 16 10月, 2013 1 次提交
-
-
由 Peter Zijlstra 提交于
While discussing the proposed SCHED_DEADLINE patches which in parts mimic the existing FIFO code it was noticed that the wmb in rt_set_overloaded() didn't have a matching barrier. The only site using rt_overloaded() to test the rto_count is pull_rt_task() and we should issue a matching rmb before then assuming there's an rto_mask bit set. Without that smp_rmb() in there we could actually miss seeing the rto_mask bit. Also, change to using smp_[wr]mb(), even though this is SMP only code; memory barriers without smp_ always make me think they're against hardware of some sort. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: vincent.guittot@linaro.org Cc: luca.abeni@unitn.it Cc: bruce.ashfield@windriver.com Cc: dhaval.giani@gmail.com Cc: rostedt@goodmis.org Cc: hgu1972@gmail.com Cc: oleg@redhat.com Cc: fweisbec@gmail.com Cc: darren@dvhart.com Cc: johan.eker@ericsson.com Cc: p.faure@akatech.ch Cc: paulmck@linux.vnet.ibm.com Cc: raistlin@linux.it Cc: claudio@evidence.eu.com Cc: insop.song@gmail.com Cc: michael@amarulasolutions.com Cc: liming.wang@windriver.com Cc: fchecconi@gmail.com Cc: jkacur@redhat.com Cc: tommaso.cucinotta@sssup.it Cc: Juri Lelli <juri.lelli@gmail.com> Cc: harald.gustafsson@ericsson.com Cc: nicola.manica@disi.unitn.it Cc: tglx@linutronix.de Link: http://lkml.kernel.org/r/20131015103507.GF10651@twins.programming.kicks-ass.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 09 10月, 2013 1 次提交
-
-
由 Peter Zijlstra 提交于
Use the new stop_two_cpus() to implement migrate_swap(), a function that flips two tasks between their respective cpus. I'm fairly sure there's a less crude way than employing the stop_two_cpus() method, but everything I tried either got horribly fragile and/or complex. So keep it simple for now. The notable detail is how we 'migrate' tasks that aren't runnable anymore. We'll make it appear like we migrated them before they went to sleep. The sole difference is the previous cpu in the wakeup path, so we override this. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NMel Gorman <mgorman@suse.de> Link: http://lkml.kernel.org/r/1381141781-10992-39-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 06 10月, 2013 1 次提交
-
-
由 Shawn Bohrer 提交于
In 76854c7e ("sched: Use rt.nr_cpus_allowed to recover select_task_rq() cycles") an optimization was added to select_task_rq_rt() that immediately returns when p->nr_cpus_allowed == 1 at the beginning of the function. This makes the latter p->nr_cpus_allowed > 1 check redundant, which can now be removed. Signed-off-by: NShawn Bohrer <sbohrer@rgmadvisors.com> Reviewed-by: NSteven Rostedt <rostedt@goodmis.org> Cc: Mike Galbraith <mgalbraith@suse.de> Cc: tomk@rgmadvisors.com Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1380914693-24634-1-git-send-email-shawn.bohrer@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 19 6月, 2013 1 次提交
-
-
由 Kirill Tkhai 提交于
[ Peter, this is based off of some of my work, I ran it though a few tests and it passed. I also reviewed it, and added my SOB as I am somewhat a co-author to it. ] Based on the patch by Steven Rostedt from previous year: https://lkml.org/lkml/2012/4/18/517 1)Simplify pull_rt_task() logic: search in pushable tasks of dest runqueue. The only pullable tasks are the tasks which are pushable in their local rq, and no others. 2)Remove .leaf_rt_rq_list member of struct rt_rq and functions connected with it: nobody uses it since now. Signed-off-by: NKirill Tkhai <tkhai@yandex.ru> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/287571370557898@web7d.yandex.ruSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 28 5月, 2013 2 次提交
-
-
由 Frederic Weisbecker 提交于
Read the runqueue clock through an accessor. This prepares for adding a debugging infrastructure to detect missing or redundant calls to update_rq_clock() between a scheduler's entry and exit point. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Turner <pjt@google.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1365724262-20142-6-git-send-email-fweisbec@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Neil Zhang 提交于
migration_call() will do all the things that update_runtime() does. So let's remove it. Furthermore, there is potential risk that the current code will catch BUG_ON at line 689 of rt.c when do cpu hotplug while there are realtime threads running because of enabling runtime twice while the rt_runtime may already changed. Signed-off-by: NNeil Zhang <zhangwm@marvell.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1365685499-26515-1-git-send-email-zhangwm@marvell.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 10 5月, 2013 1 次提交
-
-
由 Nathan Zimmer 提交于
It is a few instructions more efficent to and slightly more readable to use this_rq()-> instead of cpu_rq(smp_processor_id())-> . Size comparison of kernel/sched/fair.o: text data bss dec hex filename 27972 122 26 28120 6dd8 fair.o.before 27956 122 26 28104 6dc8 fair.o.after Signed-off-by: NNathan Zimmer <nzimmer@sgi.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1368116643-87971-1-git-send-email-nzimmer@sgi.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 08 2月, 2013 1 次提交
-
-
由 Clark Williams 提交于
Add a /proc/sys/kernel scheduler knob named sched_rr_timeslice_ms that allows global changing of the SCHED_RR timeslice value. User visable value is in milliseconds but is stored as jiffies. Setting to 0 (zero) resets to the default (currently 100ms). Signed-off-by: NClark Williams <williams@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20130207094704.13751796@riff.lanSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 04 2月, 2013 1 次提交
-
-
由 Kirill Tkhai 提交于
Function next_prio() has been removed and pull_rt_task() is the only user of pick_next_highest_task_rt() at the moment. pull_rt_task is not interested in p->nr_cpus_allowed, its only interest is the fact that cpu is allowed to execute p. If nr_cpus_allowed == 1, cpu != task_cpu(p) and cpu is allowed then it means that task p is in the middle of the migration techniques; the task waits until it is moved by migration thread. So, lets pull it earlier. Signed-off-by: NKirill V Tkhai <tkhai@yandex.ru> Acked-by: NSteven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> CC: linux-rt-users <linux-rt-users@vger.kernel.org> Link: http://lkml.kernel.org/r/70871359644177@web16d.yandex.ruSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 31 1月, 2013 1 次提交
-
-
由 Kirill Tkhai 提交于
There are several places of consecutive calls of dequeue_task_rt() and put_prev_task_rt() in the scheduler. For example, function rt_mutex_setprio() does it. The both calls lead to update_curr_rt(), the second of it receives zeroed delta_exec. The only effective action in this case is call of sched_rt_avg_update(), which can change rq->age_stamp and rq->rt_avg. But it is possible in case of ""floating"" rq->clock. This fact is not reasonable to be accounted. Another actions do nothing. Signed-off-by: NKirill V Tkhai <tkhai@yandex.ru> Acked-by: NSteven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> CC: linux-rt-users <linux-rt-users@vger.kernel.org> Link: http://lkml.kernel.org/r/931541359550236@web1g.yandex.ruSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 25 1月, 2013 3 次提交
-
-
由 Ying Xue 提交于
The issue below was found in 2.6.34-rt rather than mainline rt kernel, but the issue still exists upstream as well. So please let me describe how it was noticed on 2.6.34-rt: On this version, each softirq has its own thread, it means there is at least one RT FIFO task per cpu. The priority of these tasks is set to 49 by default. If user launches an RT FIFO task with priority lower than 49 of softirq RT tasks, it's possible there are two RT FIFO tasks enqueued one cpu runqueue at one moment. By current strategy of balancing RT tasks, when it comes to RT tasks, we really need to put them off to a CPU that they can run on as soon as possible. Even if it means a bit of cache line flushing, we want RT tasks to be run with the least latency. When the user RT FIFO task which just launched before is running, the sched timer tick of the current cpu happens. In this tick period, the timeout value of the user RT task will be updated once. Subsequently, we try to wake up one softirq RT task on its local cpu. As the priority of current user RT task is lower than the softirq RT task, the current task will be preempted by the higher priority softirq RT task. Before preemption, we check to see if current can readily move to a different cpu. If so, we will reschedule to allow the RT push logic to try to move current somewhere else. Whenever the woken softirq RT task runs, it first tries to migrate the user FIFO RT task over to a cpu that is running a task of lesser priority. If migration is done, it will send a reschedule request to the found cpu by IPI interrupt. Once the target cpu responds the IPI interrupt, it will pick the migrated user RT task to preempt its current task. When the user RT task is running on the new cpu, the sched timer tick of the cpu fires. So it will tick the user RT task again. This also means the RT task timeout value will be updated again. As the migration may be done in one tick period, it means the user RT task timeout value will be updated twice within one tick. If we set a limit on the amount of cpu time for the user RT task by setrlimit(RLIMIT_RTTIME), the SIGXCPU signal should be posted upon reaching the soft limit. But exactly when the SIGXCPU signal should be sent depends on the RT task timeout value. In fact the timeout mechanism of sending the SIGXCPU signal assumes the RT task timeout is increased once every tick. However, currently the timeout value may be added twice per tick. So it results in the SIGXCPU signal being sent earlier than expected. To solve this issue, we prevent the timeout value from increasing twice within one tick time by remembering the jiffies value of last updating the timeout. As long as the RT task's jiffies is different with the global jiffies value, we allow its timeout to be updated. Signed-off-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NFan Du <fan.du@windriver.com> Reviewed-by: NYong Zhang <yong.zhang0@gmail.com> Acked-by: NSteven Rostedt <rostedt@goodmis.org> Cc: <peterz@infradead.org> Link: http://lkml.kernel.org/r/1342508623-2887-1-git-send-email-ying.xue@windriver.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Shawn Bohrer 提交于
When the system has multiple domains do_sched_rt_period_timer() can run on any CPU and may iterate over all rt_rq in cpu_online_mask. This means when balance_runtime() is run for a given rt_rq that rt_rq may be in a different rd than the current processor. Thus if we use smp_processor_id() to get rd in do_balance_runtime() we may borrow runtime from a rt_rq that is not part of our rd. This changes do_balance_runtime to get the rd from the passed in rt_rq ensuring that we borrow runtime only from the correct rd for the given rt_rq. This fixes a BUG at kernel/sched/rt.c:687! in __disable_runtime when we try reclaim runtime lent to other rt_rq but runtime has been lent to a rt_rq in another rd. Signed-off-by: NShawn Bohrer <sbohrer@rgmadvisors.com> Acked-by: NSteven Rostedt <rostedt@goodmis.org> Acked-by: NMike Galbraith <bitbucket@online.de> Cc: peterz@infradead.org Cc: <stable@kernel.org> Link: http://lkml.kernel.org/r/1358186131-29494-1-git-send-email-sbohrer@rgmadvisors.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Kirill Tkhai 提交于
Reschedule rq->curr if the first RT task has just been pulled to the rq. Signed-off-by: NKirill V Tkhai <tkhai@yandex.ru> Acked-by: NSteven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tkhai Kirill <tkhai@yandex.ru> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/118761353614535@web28f.yandex.ruSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 13 9月, 2012 1 次提交
-
-
由 Peter Zijlstra 提交于
Now that the last architecture to use this has stopped doing so (ARM, thanks Catalin!) we can remove this complexity from the scheduler core. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Link: http://lkml.kernel.org/n/tip-g9p2a1w81xxbrze25v9zpzbf@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 04 9月, 2012 1 次提交
-
-
由 Peter Boonstoppel 提交于
migrate_tasks() uses _pick_next_task_rt() to get tasks from the real-time runqueues to be migrated. When rt_rq is throttled _pick_next_task_rt() won't return anything, in which case migrate_tasks() can't move all threads over and gets stuck in an infinite loop. Instead unthrottle rt runqueues before migrating tasks. Additionally: move unthrottle_offline_cfs_rqs() to rq_offline_fair() Signed-off-by: NPeter Boonstoppel <pboonstoppel@nvidia.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Turner <pjt@google.com> Link: http://lkml.kernel.org/r/5FBF8E85CA34454794F0F7ECBA79798F379D3648B7@HQMAIL04.nvidia.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 14 8月, 2012 1 次提交
-
-
由 Mike Galbraith 提交于
Root task group bandwidth replenishment must service all CPUs, regardless of where the timer was last started, and regardless of the isolation mechanism, lest 'Quoth the Raven, "Nevermore"' become rt scheduling policy. Signed-off-by: NMike Galbraith <efault@gmx.de> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1344326558.6968.25.camel@marge.simpson.netSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 06 6月, 2012 1 次提交
-
-
由 Peter Zijlstra 提交于
Roland Dreier reported spurious, hard to trigger lockdep warnings within the scheduler - without any real lockup. This bit gives us the right clue: > [89945.640512] [<ffffffff8103fa1a>] double_lock_balance+0x5a/0x90 > [89945.640568] [<ffffffff8104c546>] push_rt_task+0xc6/0x290 if you look at that code you'll find the double_lock_balance() in question is the one in find_lock_lowest_rq() [yay for inlining]. Now find_lock_lowest_rq() has a bug.. it fails to use double_unlock_balance() in one exit path, if this results in a retry in push_rt_task() we'll call double_lock_balance() again, at which point we'll run into said lockdep confusion. Reported-by: NRoland Dreier <roland@kernel.org> Acked-by: NSteven Rostedt <rostedt@goodmis.org> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1337282386.4281.77.camel@twinsSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 30 5月, 2012 2 次提交
-
-
由 Colin Cross 提交于
task_tick_rt() has an optimization to only reschedule SCHED_RR tasks if they were the only element on their rq. However, with cgroups a SCHED_RR task could be the only element on its per-cgroup rq but still be competing with other SCHED_RR tasks in its parent's cgroup. In this case, the SCHED_RR task in the child cgroup would never yield at the end of its timeslice. If the child cgroup rt_runtime_us was the same as the parent cgroup rt_runtime_us, the task in the parent cgroup would starve completely. Modify task_tick_rt() to check that the task is the only task on its rq, and that the each of the scheduling entities of its ancestors is also the only entity on its rq. Signed-off-by: NColin Cross <ccross@android.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1337229266-15798-1-git-send-email-ccross@android.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Since nr_cpus_allowed is used outside of sched/rt.c and wants to be used outside of there more, move it to a more natural site. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/n/tip-kr61f02y9brwzkh6x53pdptm@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 13 4月, 2012 1 次提交
-
-
由 Kirill Tkhai 提交于
Migration status depends on a difference of weight from 0 and 1. If weight > 1 (<= 1) and old weight <= 1 (> 1) then task becomes pushable (or not pushable). We are not insterested in its exact values, is it 3 or 4, for example. Now if we are changing affinity from a set of 3 cpus to a set of 4, the- task will be dequeued and enqueued sequentially without important difference in comparison with initial state. The only difference is in internal representation of plist queue of pushable tasks and the fact that the task may won't be the first in a sequence of the same priority tasks. But it seems to me it gives nothing. Link: http://lkml.kernel.org/r/273741334120764@web83.yandex.ru Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: NTkhai Kirill <tkhai@yandex.ru> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 27 3月, 2012 1 次提交
-
-
由 Michael J Wang 提交于
Avoid extra work by continuing on to the next rt_rq if the highest prio task in current rt_rq is the same priority as our candidate task. More detailed explanation: if next is not NULL, then we have found a candidate task, and its priority is next->prio. Now we are looking for an even higher priority task in the other rt_rq's. idx is the highest priority in the current candidate rt_rq. In the current 3.3 code, if idx is equal to next->prio, we would start scanning the tasks in that rt_rq and replace the current candidate task with a task from that rt_rq. But the new task would only have a priority that is equal to our previous candidate task, so we have not advanced our goal of finding a higher prio task. So we should avoid the extra work by continuing on to the next rt_rq if idx is equal to next->prio. Signed-off-by: NMichael J Wang <mjwang@broadcom.com> Acked-by: NSteven Rostedt <rostedt@goodmis.org> Reviewed-by: NYong Zhang <yong.zhang0@gmail.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/2EF88150C0EF2C43A218742ED384C1BC0FC83D6B@IRVEXCHMB08.corp.ad.broadcom.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 13 3月, 2012 1 次提交
-
-
由 Peter Zijlstra 提交于
There's a few awkward printk()s inside of scheduler guts that people prefer to keep but really are rather deadlock prone. Fudge around it by storing the text in a per-cpu buffer and poll it using the existing printk_tick() handler. This will drop output when its more frequent than once a tick, however only the affinity thing could possible go that fast and for that just one should suffice to notify the admin he's done something silly.. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/n/tip-wua3lmkt3dg8nfts66o6brne@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 01 3月, 2012 2 次提交
-
-
由 Peter Zijlstra 提交于
When a runqueue has rt_runtime_us = 0 then the only way it can accumulate rt_time is via PI boosting. That causes the runqueue to be throttled and replenishing does not change anything due to rt_runtime_us = 0. So avoid that situation by clearing rt_time and skip the throttling alltogether. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> [ Changelog ] Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/n/tip-7x70cypsotjb4jvcor3edctk@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
When a runqueue is throttled we cannot disable the period timer because that timer is the only way to undo the throttling. We got stale throttling entries when a rq was throttled and then the global sysctl was disabled, which stopped the timer. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> [ Added changelog ] Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/n/tip-nuj34q52p6ro7szapuz84i0v@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 22 2月, 2012 1 次提交
-
-
由 Hiroshi Shimamoto 提交于
Current the initial SCHED_RR timeslice of init_task is HZ, which means 1s, and is not same as the default SCHED_RR timeslice DEF_TIMESLICE. Change that initial timeslice to the DEF_TIMESLICE. Signed-off-by: NHiroshi Shimamoto <h-shimamoto@ct.jp.nec.com> [ s/DEF_TIMESLICE/RR_TIMESLICE/g ] Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/4F3C9995.3010800@ct.jp.nec.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 27 1月, 2012 1 次提交
-
-
由 Chanho Min 提交于
This issue happens under the following conditions: 1. preemption is off 2. __ARCH_WANT_INTERRUPTS_ON_CTXSW is defined 3. RT scheduling class 4. SMP system Sequence is as follows: 1.suppose current task is A. start schedule() 2.task A is enqueued pushable task at the entry of schedule() __schedule prev = rq->curr; ... put_prev_task put_prev_task_rt enqueue_pushable_task 4.pick the task B as next task. next = pick_next_task(rq); 3.rq->curr set to task B and context_switch is started. rq->curr = next; 4.At the entry of context_swtich, release this cpu's rq->lock. context_switch prepare_task_switch prepare_lock_switch raw_spin_unlock_irq(&rq->lock); 5.Shortly after rq->lock is released, interrupt is occurred and start IRQ context 6.try_to_wake_up() which called by ISR acquires rq->lock try_to_wake_up ttwu_remote rq = __task_rq_lock(p) ttwu_do_wakeup(rq, p, wake_flags); task_woken_rt 7.push_rt_task picks the task A which is enqueued before. task_woken_rt push_rt_tasks(rq) next_task = pick_next_pushable_task(rq) 8.At find_lock_lowest_rq(), If double_lock_balance() returns 0, lowest_rq can be the remote rq. (But,If preemption is on, double_lock_balance always return 1 and it does't happen.) push_rt_task find_lock_lowest_rq if (double_lock_balance(rq, lowest_rq)).. 9.find_lock_lowest_rq return the available rq. task A is migrated to the remote cpu/rq. push_rt_task ... deactivate_task(rq, next_task, 0); set_task_cpu(next_task, lowest_rq->cpu); activate_task(lowest_rq, next_task, 0); 10. But, task A is on irq context at this cpu. So, task A is scheduled by two cpus at the same time until restore from IRQ. Task A's stack is corrupted. To fix it, don't migrate an RT task if it's still running. Signed-off-by: NChanho Min <chanho.min@lge.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: NSteven Rostedt <rostedt@goodmis.org> Cc: <stable@kernel.org> Link: http://lkml.kernel.org/r/CAOAMb1BHA=5fm7KTewYyke6u-8DP0iUuJMpgQw54vNeXFsGpoQ@mail.gmail.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 06 12月, 2011 2 次提交
-
-
由 Shan Hai 提交于
The second call to sched_rt_period() is redundant, because the value of the rt_runtime was already read and it was protected by the ->rt_runtime_lock. Signed-off-by: NShan Hai <haishan.bai@gmail.com> Reviewed-by: NKamalesh Babulal <kamalesh@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1322535836-13590-2-git-send-email-haishan.bai@gmail.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Mike Galbraith 提交于
rt.nr_cpus_allowed is always available, use it to bail from select_task_rq() when only one cpu can be used, and saves some cycles for pinned tasks. See the line marked with '*' below: # taskset -c 3 pipe-test PerfTop: 997 irqs/sec kernel:89.5% exact: 0.0% [1000Hz cycles], (all, CPU: 3) ------------------------------------------------------------------------------------------------ Virgin Patched samples pcnt function samples pcnt function _______ _____ ___________________________ _______ _____ ___________________________ 2880.00 10.2% __schedule 3136.00 11.3% __schedule 1634.00 5.8% pipe_read 1615.00 5.8% pipe_read 1458.00 5.2% system_call 1534.00 5.5% system_call 1382.00 4.9% _raw_spin_lock_irqsave 1412.00 5.1% _raw_spin_lock_irqsave 1202.00 4.3% pipe_write 1255.00 4.5% copy_user_generic_string 1164.00 4.1% copy_user_generic_string 1241.00 4.5% __switch_to 1097.00 3.9% __switch_to 929.00 3.3% mutex_lock 872.00 3.1% mutex_lock 846.00 3.0% mutex_unlock 687.00 2.4% mutex_unlock 804.00 2.9% pipe_write 682.00 2.4% native_sched_clock 713.00 2.6% native_sched_clock 643.00 2.3% system_call_after_swapgs 653.00 2.3% _raw_spin_unlock_irqrestore 617.00 2.2% sched_clock_local 633.00 2.3% fsnotify 612.00 2.2% fsnotify 605.00 2.2% sched_clock_local 596.00 2.1% _raw_spin_unlock_irqrestore 593.00 2.1% system_call_after_swapgs 542.00 1.9% sysret_check 559.00 2.0% sysret_check 467.00 1.7% fget_light 472.00 1.7% fget_light 462.00 1.6% finish_task_switch 461.00 1.7% finish_task_switch 437.00 1.5% vfs_write 442.00 1.6% vfs_write 431.00 1.5% do_sync_write 428.00 1.5% do_sync_write * 413.00 1.5% select_task_rq_fair 404.00 1.5% _raw_spin_lock_irq 386.00 1.4% update_curr 402.00 1.4% update_curr 385.00 1.4% rw_verify_area 389.00 1.4% do_sync_read 377.00 1.3% _raw_spin_lock_irq 378.00 1.4% vfs_read 369.00 1.3% do_sync_read 340.00 1.2% pipe_iov_copy_from_user 360.00 1.3% vfs_read 316.00 1.1% __wake_up_sync_key 342.00 1.2% hrtick_start_fair 313.00 1.1% __wake_up_common Signed-off-by: NMike Galbraith <efault@gmx.de> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1321971504.6855.15.camel@marge.simson.netSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 17 11月, 2011 2 次提交
-
-
由 Peter Zijlstra 提交于
There's too many sched*.[ch] files in kernel/, give them their own directory. (No code changed, other than Makefile glue added.) Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Since once needs to do something at conferences and fixing compile warnings doesn't actually require much if any attention I decided to break up the sched.c #include "*.c" fest. This further modularizes the scheduler code. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/n/tip-x0fcd3mnp8f9c99grcpewmhi@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 16 11月, 2011 1 次提交
-
-
由 Richard Weinberger 提交于
Signed-off-by: NRichard Weinberger <richard@nod.at> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1321117677-3282-1-git-send-email-richard@nod.atSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 14 11月, 2011 1 次提交
-
-
由 Peter Zijlstra 提交于
Normally the RT bandwidth scheme will share bandwidth across the entire root_domain. However sometimes its convenient to disable this sharing for debug purposes. Provide a simple feature switch to this end. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-