1. 06 6月, 2018 1 次提交
    • M
      x86: Wire up restartable sequence system call · 05c17ced
      Mathieu Desnoyers 提交于
      Wire up the rseq system call on x86 32/64.
      
      This provides an ABI improving the speed of a user-space getcpu
      operation on x86 by removing the need to perform a function call, "lsl"
      instruction, or system call on the fast path, as well as improving the
      speed of user-space operations on per-cpu data.
      Signed-off-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Joel Fernandes <joelaf@google.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Dave Watson <davejwatson@fb.com>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: "H . Peter Anvin" <hpa@zytor.com>
      Cc: Chris Lameter <cl@linux.com>
      Cc: Russell King <linux@arm.linux.org.uk>
      Cc: Andrew Hunter <ahh@google.com>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com>
      Cc: Paul Turner <pjt@google.com>
      Cc: Boqun Feng <boqun.feng@gmail.com>
      Cc: Josh Triplett <josh@joshtriplett.org>
      Cc: Steven Rostedt <rostedt@goodmis.org>
      Cc: Ben Maurer <bmaurer@fb.com>
      Cc: linux-api@vger.kernel.org
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Link: https://lkml.kernel.org/r/20180602124408.8430-8-mathieu.desnoyers@efficios.com
      05c17ced
  2. 03 5月, 2018 1 次提交
    • C
      aio: implement io_pgetevents · 7a074e96
      Christoph Hellwig 提交于
      This is the io_getevents equivalent of ppoll/pselect and allows to
      properly mix signals and aio completions (especially with IOCB_CMD_POLL)
      and atomically executes the following sequence:
      
      	sigset_t origmask;
      
      	pthread_sigmask(SIG_SETMASK, &sigmask, &origmask);
      	ret = io_getevents(ctx, min_nr, nr, events, timeout);
      	pthread_sigmask(SIG_SETMASK, &origmask, NULL);
      
      Note that unlike many other signal related calls we do not pass a sigmask
      size, as that would get us to 7 arguments, which aren't easily supported
      by the syscall infrastructure.  It seems a lot less painful to just add a
      new syscall variant in the unlikely case we're going to increase the
      sigset size.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Reviewed-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com>
      7a074e96
  3. 09 4月, 2018 3 次提交
    • D
      syscalls/core, syscalls/x86: Rename struct pt_regs-based sys_*() to __x64_sys_*() · d5a00528
      Dominik Brodowski 提交于
      This rename allows us to have a coherent syscall stub naming convention on
      64-bit x86 (0xffffffff prefix removed):
      
       810f0af0 t            kernel_waitid	# common (32/64) kernel helper
      
       <inline>            __do_sys_waitid	# inlined helper doing actual work
       810f0be0 t          __se_sys_waitid	# C func calling inlined helper
      
       <inline>     __do_compat_sys_waitid	# inlined helper doing actual work
       810f0d80 t   __se_compat_sys_waitid	# compat C func calling inlined helper
      
       810f2080 T         __x64_sys_waitid	# x64 64-bit-ptregs -> C stub
       810f20b0 T        __ia32_sys_waitid	# ia32 32-bit-ptregs -> C stub[*]
       810f2470 T __ia32_compat_sys_waitid	# ia32 32-bit-ptregs -> compat C stub
       810f2490 T  __x32_compat_sys_waitid	# x32 64-bit-ptregs -> compat C stub
      
          [*] This stub is unused, as the syscall table links
      	__ia32_compat_sys_waitid instead of __ia32_sys_waitid as we need
      	a compat variant here.
      Suggested-by: NIngo Molnar <mingo@kernel.org>
      Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
      Cc: Al Viro <viro@zeniv.linux.org.uk>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: Josh Poimboeuf <jpoimboe@redhat.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Link: http://lkml.kernel.org/r/20180409105145.5364-4-linux@dominikbrodowski.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
      d5a00528
    • D
      syscalls/core, syscalls/x86: Clean up compat syscall stub naming convention · 5ac9efa3
      Dominik Brodowski 提交于
      Tidy the naming convention for compat syscall subs. Hints which describe
      the purpose of the stub go in front and receive a double underscore to
      denote that they are generated on-the-fly by the COMPAT_SYSCALL_DEFINEx()
      macro.
      
      For the generic case, this means:
      
      t            kernel_waitid	# common C function (see kernel/exit.c)
      
          __do_compat_sys_waitid	# inlined helper doing the actual work
      				# (takes original parameters as declared)
      
      T   __se_compat_sys_waitid	# sign-extending C function calling inlined
      				# helper (takes parameters of type long,
      				# casts them to unsigned long and then to
      				# the declared type)
      
      T        compat_sys_waitid      # alias to __se_compat_sys_waitid()
      				# (taking parameters as declared), to
      				# be included in syscall table
      
      For x86, the naming is as follows:
      
      t            kernel_waitid	# common C function (see kernel/exit.c)
      
          __do_compat_sys_waitid	# inlined helper doing the actual work
      				# (takes original parameters as declared)
      
      t   __se_compat_sys_waitid      # sign-extending C function calling inlined
      				# helper (takes parameters of type long,
      				# casts them to unsigned long and then to
      				# the declared type)
      
      T __ia32_compat_sys_waitid	# IA32_EMULATION 32-bit-ptregs -> C stub,
      				# calls __se_compat_sys_waitid(); to be
      				# included in syscall table
      
      T  __x32_compat_sys_waitid	# x32 64-bit-ptregs -> C stub, calls
      				# __se_compat_sys_waitid(); to be included
      				# in syscall table
      
      If only one of IA32_EMULATION and x32 is enabled, __se_compat_sys_waitid()
      may be inlined into the stub __{ia32,x32}_compat_sys_waitid().
      Suggested-by: NIngo Molnar <mingo@kernel.org>
      Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
      Cc: Al Viro <viro@zeniv.linux.org.uk>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: Josh Poimboeuf <jpoimboe@redhat.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Link: http://lkml.kernel.org/r/20180409105145.5364-3-linux@dominikbrodowski.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
      5ac9efa3
    • D
      syscalls/core, syscalls/x86: Clean up syscall stub naming convention · e145242e
      Dominik Brodowski 提交于
      Tidy the naming convention for compat syscall subs. Hints which describe
      the purpose of the stub go in front and receive a double underscore to
      denote that they are generated on-the-fly by the SYSCALL_DEFINEx() macro.
      
      For the generic case, this means (0xffffffff prefix removed):
      
       810f08d0 t     kernel_waitid	# common C function (see kernel/exit.c)
      
       <inline>     __do_sys_waitid	# inlined helper doing the actual work
      				# (takes original parameters as declared)
      
       810f1aa0 T   __se_sys_waitid	# sign-extending C function calling inlined
      				# helper (takes parameters of type long;
      				# casts them to the declared type)
      
       810f1aa0 T        sys_waitid	# alias to __se_sys_waitid() (taking
      				# parameters as declared), to be included
      				# in syscall table
      
      For x86, the naming is as follows:
      
       810efc70 t     kernel_waitid	# common C function (see kernel/exit.c)
      
       <inline>     __do_sys_waitid	# inlined helper doing the actual work
      				# (takes original parameters as declared)
      
       810efd60 t   __se_sys_waitid	# sign-extending C function calling inlined
      				# helper (takes parameters of type long;
      				# casts them to the declared type)
      
       810f1140 T __ia32_sys_waitid	# IA32_EMULATION 32-bit-ptregs -> C stub,
      				# calls __se_sys_waitid(); to be included
      				# in syscall table
      
       810f1110 T        sys_waitid	# x86 64-bit-ptregs -> C stub, calls
      				# __se_sys_waitid(); to be included in
      				# syscall table
      
      For x86, sys_waitid() will be re-named to __x64_sys_waitid in a follow-up
      patch.
      Suggested-by: NIngo Molnar <mingo@kernel.org>
      Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
      Cc: Al Viro <viro@zeniv.linux.org.uk>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: Josh Poimboeuf <jpoimboe@redhat.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Link: http://lkml.kernel.org/r/20180409105145.5364-2-linux@dominikbrodowski.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
      e145242e
  4. 05 4月, 2018 1 次提交
    • D
      syscalls/x86: Use 'struct pt_regs' based syscall calling for IA32_EMULATION and x32 · ebeb8c82
      Dominik Brodowski 提交于
      Extend ARCH_HAS_SYSCALL_WRAPPER for i386 emulation and for x32 on 64-bit
      x86.
      
      For x32, all we need to do is to create an additional stub for each
      compat syscall which decodes the parameters in x86-64 ordering, e.g.:
      
      	asmlinkage long __compat_sys_x32_xyzzy(struct pt_regs *regs)
      	{
      		return c_SyS_xyzzy(regs->di, regs->si, regs->dx);
      	}
      
      For i386 emulation, we need to teach compat_sys_*() to take struct
      pt_regs as its only argument, e.g.:
      
      	asmlinkage long __compat_sys_ia32_xyzzy(struct pt_regs *regs)
      	{
      		return c_SyS_xyzzy(regs->bx, regs->cx, regs->dx);
      	}
      
      In addition, we need to create additional stubs for common syscalls
      (that is, for syscalls which have the same parameters on 32-bit and
      64-bit), e.g.:
      
      	asmlinkage long __sys_ia32_xyzzy(struct pt_regs *regs)
      	{
      		return c_sys_xyzzy(regs->bx, regs->cx, regs->dx);
      	}
      
      This approach avoids leaking random user-provided register content down
      the call chain.
      
      This patch is based on an original proof-of-concept
      
       | From: Linus Torvalds <torvalds@linux-foundation.org>
       | Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
      
      and was split up and heavily modified by me, in particular to base it on
      ARCH_HAS_SYSCALL_WRAPPER.
      Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
      Acked-by: NLinus Torvalds <torvalds@linux-foundation.org>
      Cc: Al Viro <viro@zeniv.linux.org.uk>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Josh Poimboeuf <jpoimboe@redhat.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Link: http://lkml.kernel.org/r/20180405095307.3730-6-linux@dominikbrodowski.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
      ebeb8c82
  5. 03 4月, 2018 2 次提交
  6. 07 3月, 2018 3 次提交
  7. 18 4月, 2017 1 次提交
    • A
      Remove compat_sys_getdents64() · 2611dc19
      Al Viro 提交于
      Unlike normal compat syscall variants, it is needed only for
      biarch architectures that have different alignement requirements for
      u64 in 32bit and 64bit ABI *and* have __put_user() that won't handle
      a store of 64bit value at 32bit-aligned address.  We used to have one
      such (ia64), but its biarch support has been gone since 2010 (after
      being broken in 2008, which went unnoticed since nobody had been using
      it).
      
      It had escaped removal at the same time only because back in 2004
      a patch that switched several syscalls on amd64 from private wrappers to
      generic compat ones had switched to use of compat_sys_getdents64(), which
      hadn't needed (or used) a compat wrapper on amd64.
      
      Let's bury it - it's at least 7 years overdue.
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      2611dc19
  8. 20 3月, 2017 1 次提交
    • K
      x86/syscalls/32: Wire up arch_prctl on x86-32 · 79170fda
      Kyle Huey 提交于
      Hook up arch_prctl to call do_arch_prctl() on x86-32, and in 32 bit compat
      mode on x86-64. This allows to have arch_prctls that are not specific to 64
      bits.
      
      On UML, simply stub out this syscall.
      Signed-off-by: NKyle Huey <khuey@kylehuey.com>
      Cc: Grzegorz Andrejczuk <grzegorz.andrejczuk@intel.com>
      Cc: kvm@vger.kernel.org
      Cc: Radim Krčmář <rkrcmar@redhat.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Dave Hansen <dave.hansen@linux.intel.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: linux-kselftest@vger.kernel.org
      Cc: Nadav Amit <nadav.amit@gmail.com>
      Cc: Robert O'Callahan <robert@ocallahan.org>
      Cc: Richard Weinberger <richard@nod.at>
      Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
      Cc: Borislav Petkov <bp@suse.de>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Len Brown <len.brown@intel.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Cc: user-mode-linux-devel@lists.sourceforge.net
      Cc: Jeff Dike <jdike@addtoit.com>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      Cc: user-mode-linux-user@lists.sourceforge.net
      Cc: David Matlack <dmatlack@google.com>
      Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
      Cc: Dmitry Safonov <dsafonov@virtuozzo.com>
      Cc: linux-fsdevel@vger.kernel.org
      Cc: Paolo Bonzini <pbonzini@redhat.com>
      Link: http://lkml.kernel.org/r/20170320081628.18952-7-khuey@kylehuey.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      79170fda
  9. 03 3月, 2017 1 次提交
    • D
      statx: Add a system call to make enhanced file info available · a528d35e
      David Howells 提交于
      Add a system call to make extended file information available, including
      file creation and some attribute flags where available through the
      underlying filesystem.
      
      The getattr inode operation is altered to take two additional arguments: a
      u32 request_mask and an unsigned int flags that indicate the
      synchronisation mode.  This change is propagated to the vfs_getattr*()
      function.
      
      Functions like vfs_stat() are now inline wrappers around new functions
      vfs_statx() and vfs_statx_fd() to reduce stack usage.
      
      ========
      OVERVIEW
      ========
      
      The idea was initially proposed as a set of xattrs that could be retrieved
      with getxattr(), but the general preference proved to be for a new syscall
      with an extended stat structure.
      
      A number of requests were gathered for features to be included.  The
      following have been included:
      
       (1) Make the fields a consistent size on all arches and make them large.
      
       (2) Spare space, request flags and information flags are provided for
           future expansion.
      
       (3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an
           __s64).
      
       (4) Creation time: The SMB protocol carries the creation time, which could
           be exported by Samba, which will in turn help CIFS make use of
           FS-Cache as that can be used for coherency data (stx_btime).
      
           This is also specified in NFSv4 as a recommended attribute and could
           be exported by NFSD [Steve French].
      
       (5) Lightweight stat: Ask for just those details of interest, and allow a
           netfs (such as NFS) to approximate anything not of interest, possibly
           without going to the server [Trond Myklebust, Ulrich Drepper, Andreas
           Dilger] (AT_STATX_DONT_SYNC).
      
       (6) Heavyweight stat: Force a netfs to go to the server, even if it thinks
           its cached attributes are up to date [Trond Myklebust]
           (AT_STATX_FORCE_SYNC).
      
      And the following have been left out for future extension:
      
       (7) Data version number: Could be used by userspace NFS servers [Aneesh
           Kumar].
      
           Can also be used to modify fill_post_wcc() in NFSD which retrieves
           i_version directly, but has just called vfs_getattr().  It could get
           it from the kstat struct if it used vfs_xgetattr() instead.
      
           (There's disagreement on the exact semantics of a single field, since
           not all filesystems do this the same way).
      
       (8) BSD stat compatibility: Including more fields from the BSD stat such
           as creation time (st_btime) and inode generation number (st_gen)
           [Jeremy Allison, Bernd Schubert].
      
       (9) Inode generation number: Useful for FUSE and userspace NFS servers
           [Bernd Schubert].
      
           (This was asked for but later deemed unnecessary with the
           open-by-handle capability available and caused disagreement as to
           whether it's a security hole or not).
      
      (10) Extra coherency data may be useful in making backups [Andreas Dilger].
      
           (No particular data were offered, but things like last backup
           timestamp, the data version number and the DOS archive bit would come
           into this category).
      
      (11) Allow the filesystem to indicate what it can/cannot provide: A
           filesystem can now say it doesn't support a standard stat feature if
           that isn't available, so if, for instance, inode numbers or UIDs don't
           exist or are fabricated locally...
      
           (This requires a separate system call - I have an fsinfo() call idea
           for this).
      
      (12) Store a 16-byte volume ID in the superblock that can be returned in
           struct xstat [Steve French].
      
           (Deferred to fsinfo).
      
      (13) Include granularity fields in the time data to indicate the
           granularity of each of the times (NFSv4 time_delta) [Steve French].
      
           (Deferred to fsinfo).
      
      (14) FS_IOC_GETFLAGS value.  These could be translated to BSD's st_flags.
           Note that the Linux IOC flags are a mess and filesystems such as Ext4
           define flags that aren't in linux/fs.h, so translation in the kernel
           may be a necessity (or, possibly, we provide the filesystem type too).
      
           (Some attributes are made available in stx_attributes, but the general
           feeling was that the IOC flags were to ext[234]-specific and shouldn't
           be exposed through statx this way).
      
      (15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer,
           Michael Kerrisk].
      
           (Deferred, probably to fsinfo.  Finding out if there's an ACL or
           seclabal might require extra filesystem operations).
      
      (16) Femtosecond-resolution timestamps [Dave Chinner].
      
           (A __reserved field has been left in the statx_timestamp struct for
           this - if there proves to be a need).
      
      (17) A set multiple attributes syscall to go with this.
      
      ===============
      NEW SYSTEM CALL
      ===============
      
      The new system call is:
      
      	int ret = statx(int dfd,
      			const char *filename,
      			unsigned int flags,
      			unsigned int mask,
      			struct statx *buffer);
      
      The dfd, filename and flags parameters indicate the file to query, in a
      similar way to fstatat().  There is no equivalent of lstat() as that can be
      emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags.  There is
      also no equivalent of fstat() as that can be emulated by passing a NULL
      filename to statx() with the fd of interest in dfd.
      
      Whether or not statx() synchronises the attributes with the backing store
      can be controlled by OR'ing a value into the flags argument (this typically
      only affects network filesystems):
      
       (1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this
           respect.
      
       (2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise
           its attributes with the server - which might require data writeback to
           occur to get the timestamps correct.
      
       (3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a
           network filesystem.  The resulting values should be considered
           approximate.
      
      mask is a bitmask indicating the fields in struct statx that are of
      interest to the caller.  The user should set this to STATX_BASIC_STATS to
      get the basic set returned by stat().  It should be noted that asking for
      more information may entail extra I/O operations.
      
      buffer points to the destination for the data.  This must be 256 bytes in
      size.
      
      ======================
      MAIN ATTRIBUTES RECORD
      ======================
      
      The following structures are defined in which to return the main attribute
      set:
      
      	struct statx_timestamp {
      		__s64	tv_sec;
      		__s32	tv_nsec;
      		__s32	__reserved;
      	};
      
      	struct statx {
      		__u32	stx_mask;
      		__u32	stx_blksize;
      		__u64	stx_attributes;
      		__u32	stx_nlink;
      		__u32	stx_uid;
      		__u32	stx_gid;
      		__u16	stx_mode;
      		__u16	__spare0[1];
      		__u64	stx_ino;
      		__u64	stx_size;
      		__u64	stx_blocks;
      		__u64	__spare1[1];
      		struct statx_timestamp	stx_atime;
      		struct statx_timestamp	stx_btime;
      		struct statx_timestamp	stx_ctime;
      		struct statx_timestamp	stx_mtime;
      		__u32	stx_rdev_major;
      		__u32	stx_rdev_minor;
      		__u32	stx_dev_major;
      		__u32	stx_dev_minor;
      		__u64	__spare2[14];
      	};
      
      The defined bits in request_mask and stx_mask are:
      
      	STATX_TYPE		Want/got stx_mode & S_IFMT
      	STATX_MODE		Want/got stx_mode & ~S_IFMT
      	STATX_NLINK		Want/got stx_nlink
      	STATX_UID		Want/got stx_uid
      	STATX_GID		Want/got stx_gid
      	STATX_ATIME		Want/got stx_atime{,_ns}
      	STATX_MTIME		Want/got stx_mtime{,_ns}
      	STATX_CTIME		Want/got stx_ctime{,_ns}
      	STATX_INO		Want/got stx_ino
      	STATX_SIZE		Want/got stx_size
      	STATX_BLOCKS		Want/got stx_blocks
      	STATX_BASIC_STATS	[The stuff in the normal stat struct]
      	STATX_BTIME		Want/got stx_btime{,_ns}
      	STATX_ALL		[All currently available stuff]
      
      stx_btime is the file creation time, stx_mask is a bitmask indicating the
      data provided and __spares*[] are where as-yet undefined fields can be
      placed.
      
      Time fields are structures with separate seconds and nanoseconds fields
      plus a reserved field in case we want to add even finer resolution.  Note
      that times will be negative if before 1970; in such a case, the nanosecond
      fields will also be negative if not zero.
      
      The bits defined in the stx_attributes field convey information about a
      file, how it is accessed, where it is and what it does.  The following
      attributes map to FS_*_FL flags and are the same numerical value:
      
      	STATX_ATTR_COMPRESSED		File is compressed by the fs
      	STATX_ATTR_IMMUTABLE		File is marked immutable
      	STATX_ATTR_APPEND		File is append-only
      	STATX_ATTR_NODUMP		File is not to be dumped
      	STATX_ATTR_ENCRYPTED		File requires key to decrypt in fs
      
      Within the kernel, the supported flags are listed by:
      
      	KSTAT_ATTR_FS_IOC_FLAGS
      
      [Are any other IOC flags of sufficient general interest to be exposed
      through this interface?]
      
      New flags include:
      
      	STATX_ATTR_AUTOMOUNT		Object is an automount trigger
      
      These are for the use of GUI tools that might want to mark files specially,
      depending on what they are.
      
      Fields in struct statx come in a number of classes:
      
       (0) stx_dev_*, stx_blksize.
      
           These are local system information and are always available.
      
       (1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino,
           stx_size, stx_blocks.
      
           These will be returned whether the caller asks for them or not.  The
           corresponding bits in stx_mask will be set to indicate whether they
           actually have valid values.
      
           If the caller didn't ask for them, then they may be approximated.  For
           example, NFS won't waste any time updating them from the server,
           unless as a byproduct of updating something requested.
      
           If the values don't actually exist for the underlying object (such as
           UID or GID on a DOS file), then the bit won't be set in the stx_mask,
           even if the caller asked for the value.  In such a case, the returned
           value will be a fabrication.
      
           Note that there are instances where the type might not be valid, for
           instance Windows reparse points.
      
       (2) stx_rdev_*.
      
           This will be set only if stx_mode indicates we're looking at a
           blockdev or a chardev, otherwise will be 0.
      
       (3) stx_btime.
      
           Similar to (1), except this will be set to 0 if it doesn't exist.
      
      =======
      TESTING
      =======
      
      The following test program can be used to test the statx system call:
      
      	samples/statx/test-statx.c
      
      Just compile and run, passing it paths to the files you want to examine.
      The file is built automatically if CONFIG_SAMPLES is enabled.
      
      Here's some example output.  Firstly, an NFS directory that crosses to
      another FSID.  Note that the AUTOMOUNT attribute is set because transiting
      this directory will cause d_automount to be invoked by the VFS.
      
      	[root@andromeda ~]# /tmp/test-statx -A /warthog/data
      	statx(/warthog/data) = 0
      	results=7ff
      	  Size: 4096            Blocks: 8          IO Block: 1048576  directory
      	Device: 00:26           Inode: 1703937     Links: 125
      	Access: (3777/drwxrwxrwx)  Uid:     0   Gid:  4041
      	Access: 2016-11-24 09:02:12.219699527+0000
      	Modify: 2016-11-17 10:44:36.225653653+0000
      	Change: 2016-11-17 10:44:36.225653653+0000
      	Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------)
      
      Secondly, the result of automounting on that directory.
      
      	[root@andromeda ~]# /tmp/test-statx /warthog/data
      	statx(/warthog/data) = 0
      	results=7ff
      	  Size: 4096            Blocks: 8          IO Block: 1048576  directory
      	Device: 00:27           Inode: 2           Links: 125
      	Access: (3777/drwxrwxrwx)  Uid:     0   Gid:  4041
      	Access: 2016-11-24 09:02:12.219699527+0000
      	Modify: 2016-11-17 10:44:36.225653653+0000
      	Change: 2016-11-17 10:44:36.225653653+0000
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      a528d35e
  10. 18 10月, 2016 1 次提交
    • D
      x86, pkeys: remove cruft from never-merged syscalls · eac0ca77
      Dave Hansen 提交于
      pkey_set() and pkey_get() were syscalls present in older versions
      of the protection keys patches.  The syscall number definitions
      were inadvertently left in place.  This patch removes them.
      
      I did a git grep and verified that these are the last places in
      the tree that these appear, save for the protection_keys.c tests
      and Documentation.  Those spots talk about functions called
      pkey_get/set() which are wrappers for the direct PKRU
      instructions, not the syscalls.
      Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: linux-arch@vger.kernel.org
      Cc: mgorman@techsingularity.net
      Cc: arnd@arndb.de
      Cc: linux-api@vger.kernel.org
      Cc: linux-mm@kvack.org
      Cc: luto@kernel.org
      Cc: akpm@linux-foundation.org
      Fixes: f9afc619 ("x86: Wire up protection keys system calls")
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      eac0ca77
  11. 09 9月, 2016 1 次提交
  12. 01 8月, 2016 1 次提交
  13. 12 5月, 2016 1 次提交
  14. 13 4月, 2016 1 次提交
  15. 05 3月, 2016 1 次提交
  16. 02 12月, 2015 1 次提交
  17. 06 11月, 2015 1 次提交
  18. 09 10月, 2015 1 次提交
  19. 12 9月, 2015 1 次提交
    • M
      sys_membarrier(): system-wide memory barrier (generic, x86) · 5b25b13a
      Mathieu Desnoyers 提交于
      Here is an implementation of a new system call, sys_membarrier(), which
      executes a memory barrier on all threads running on the system.  It is
      implemented by calling synchronize_sched().  It can be used to
      distribute the cost of user-space memory barriers asymmetrically by
      transforming pairs of memory barriers into pairs consisting of
      sys_membarrier() and a compiler barrier.  For synchronization primitives
      that distinguish between read-side and write-side (e.g.  userspace RCU
      [1], rwlocks), the read-side can be accelerated significantly by moving
      the bulk of the memory barrier overhead to the write-side.
      
      The existing applications of which I am aware that would be improved by
      this system call are as follows:
      
      * Through Userspace RCU library (http://urcu.so)
        - DNS server (Knot DNS) https://www.knot-dns.cz/
        - Network sniffer (http://netsniff-ng.org/)
        - Distributed object storage (https://sheepdog.github.io/sheepdog/)
        - User-space tracing (http://lttng.org)
        - Network storage system (https://www.gluster.org/)
        - Virtual routers (https://events.linuxfoundation.org/sites/events/files/slides/DPDK_RCU_0MQ.pdf)
        - Financial software (https://lkml.org/lkml/2015/3/23/189)
      
      Those projects use RCU in userspace to increase read-side speed and
      scalability compared to locking.  Especially in the case of RCU used by
      libraries, sys_membarrier can speed up the read-side by moving the bulk of
      the memory barrier cost to synchronize_rcu().
      
      * Direct users of sys_membarrier
        - core dotnet garbage collector (https://github.com/dotnet/coreclr/issues/198)
      
      Microsoft core dotnet GC developers are planning to use the mprotect()
      side-effect of issuing memory barriers through IPIs as a way to implement
      Windows FlushProcessWriteBuffers() on Linux.  They are referring to
      sys_membarrier in their github thread, specifically stating that
      sys_membarrier() is what they are looking for.
      
      To explain the benefit of this scheme, let's introduce two example threads:
      
      Thread A (non-frequent, e.g. executing liburcu synchronize_rcu())
      Thread B (frequent, e.g. executing liburcu
      rcu_read_lock()/rcu_read_unlock())
      
      In a scheme where all smp_mb() in thread A are ordering memory accesses
      with respect to smp_mb() present in Thread B, we can change each
      smp_mb() within Thread A into calls to sys_membarrier() and each
      smp_mb() within Thread B into compiler barriers "barrier()".
      
      Before the change, we had, for each smp_mb() pairs:
      
      Thread A                    Thread B
      previous mem accesses       previous mem accesses
      smp_mb()                    smp_mb()
      following mem accesses      following mem accesses
      
      After the change, these pairs become:
      
      Thread A                    Thread B
      prev mem accesses           prev mem accesses
      sys_membarrier()            barrier()
      follow mem accesses         follow mem accesses
      
      As we can see, there are two possible scenarios: either Thread B memory
      accesses do not happen concurrently with Thread A accesses (1), or they
      do (2).
      
      1) Non-concurrent Thread A vs Thread B accesses:
      
      Thread A                    Thread B
      prev mem accesses
      sys_membarrier()
      follow mem accesses
                                  prev mem accesses
                                  barrier()
                                  follow mem accesses
      
      In this case, thread B accesses will be weakly ordered. This is OK,
      because at that point, thread A is not particularly interested in
      ordering them with respect to its own accesses.
      
      2) Concurrent Thread A vs Thread B accesses
      
      Thread A                    Thread B
      prev mem accesses           prev mem accesses
      sys_membarrier()            barrier()
      follow mem accesses         follow mem accesses
      
      In this case, thread B accesses, which are ensured to be in program
      order thanks to the compiler barrier, will be "upgraded" to full
      smp_mb() by synchronize_sched().
      
      * Benchmarks
      
      On Intel Xeon E5405 (8 cores)
      (one thread is calling sys_membarrier, the other 7 threads are busy
      looping)
      
      1000 non-expedited sys_membarrier calls in 33s =3D 33 milliseconds/call.
      
      * User-space user of this system call: Userspace RCU library
      
      Both the signal-based and the sys_membarrier userspace RCU schemes
      permit us to remove the memory barrier from the userspace RCU
      rcu_read_lock() and rcu_read_unlock() primitives, thus significantly
      accelerating them. These memory barriers are replaced by compiler
      barriers on the read-side, and all matching memory barriers on the
      write-side are turned into an invocation of a memory barrier on all
      active threads in the process. By letting the kernel perform this
      synchronization rather than dumbly sending a signal to every process
      threads (as we currently do), we diminish the number of unnecessary wake
      ups and only issue the memory barriers on active threads. Non-running
      threads do not need to execute such barrier anyway, because these are
      implied by the scheduler context switches.
      
      Results in liburcu:
      
      Operations in 10s, 6 readers, 2 writers:
      
      memory barriers in reader:    1701557485 reads, 2202847 writes
      signal-based scheme:          9830061167 reads,    6700 writes
      sys_membarrier:               9952759104 reads,     425 writes
      sys_membarrier (dyn. check):  7970328887 reads,     425 writes
      
      The dynamic sys_membarrier availability check adds some overhead to
      the read-side compared to the signal-based scheme, but besides that,
      sys_membarrier slightly outperforms the signal-based scheme. However,
      this non-expedited sys_membarrier implementation has a much slower grace
      period than signal and memory barrier schemes.
      
      Besides diminishing the number of wake-ups, one major advantage of the
      membarrier system call over the signal-based scheme is that it does not
      need to reserve a signal. This plays much more nicely with libraries,
      and with processes injected into for tracing purposes, for which we
      cannot expect that signals will be unused by the application.
      
      An expedited version of this system call can be added later on to speed
      up the grace period. Its implementation will likely depend on reading
      the cpu_curr()->mm without holding each CPU's rq lock.
      
      This patch adds the system call to x86 and to asm-generic.
      
      [1] http://urcu.so
      
      membarrier(2) man page:
      
      MEMBARRIER(2)              Linux Programmer's Manual             MEMBARRIER(2)
      
      NAME
             membarrier - issue memory barriers on a set of threads
      
      SYNOPSIS
             #include <linux/membarrier.h>
      
             int membarrier(int cmd, int flags);
      
      DESCRIPTION
             The cmd argument is one of the following:
      
             MEMBARRIER_CMD_QUERY
                    Query  the  set  of  supported commands. It returns a bitmask of
                    supported commands.
      
             MEMBARRIER_CMD_SHARED
                    Execute a memory barrier on all threads running on  the  system.
                    Upon  return from system call, the caller thread is ensured that
                    all running threads have passed through a state where all memory
                    accesses  to  user-space  addresses  match program order between
                    entry to and return from the system  call  (non-running  threads
                    are de facto in such a state). This covers threads from all pro=E2=80=90
                    cesses running on the system.  This command returns 0.
      
             The flags argument needs to be 0. For future extensions.
      
             All memory accesses performed  in  program  order  from  each  targeted
             thread is guaranteed to be ordered with respect to sys_membarrier(). If
             we use the semantic "barrier()" to represent a compiler barrier forcing
             memory  accesses  to  be performed in program order across the barrier,
             and smp_mb() to represent explicit memory barriers forcing full  memory
             ordering  across  the barrier, we have the following ordering table for
             each pair of barrier(), sys_membarrier() and smp_mb():
      
             The pair ordering is detailed as (O: ordered, X: not ordered):
      
                                    barrier()   smp_mb() sys_membarrier()
                    barrier()          X           X            O
                    smp_mb()           X           O            O
                    sys_membarrier()   O           O            O
      
      RETURN VALUE
             On success, these system calls return zero.  On error, -1 is  returned,
             and errno is set appropriately. For a given command, with flags
             argument set to 0, this system call is guaranteed to always return the
             same value until reboot.
      
      ERRORS
             ENOSYS System call is not implemented.
      
             EINVAL Invalid arguments.
      
      Linux                             2015-04-15                     MEMBARRIER(2)
      Signed-off-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com>
      Reviewed-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
      Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Cc: Steven Rostedt <rostedt@goodmis.org>
      Cc: Nicholas Miell <nmiell@comcast.net>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
      Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
      Cc: Stephen Hemminger <stephen@networkplumber.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: David Howells <dhowells@redhat.com>
      Cc: Pranith Kumar <bobby.prani@gmail.com>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: Shuah Khan <shuahkh@osg.samsung.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      5b25b13a
  20. 05 9月, 2015 1 次提交
  21. 21 7月, 2015 1 次提交
    • A
      x86/entry/syscalls: Wire up 32-bit direct socket calls · 9dea5dc9
      Andy Lutomirski 提交于
      On x86_64, there's no socketcall syscall; instead all of the
      socket calls are real syscalls.  For 32-bit programs, we're
      stuck offering the socketcall syscall, but it would be nice to
      expose the direct calls as well.  This will enable seccomp to
      filter socket calls (for new userspace only, but that's fine for
      some applications) and it will provide a tiny performance boost.
      Signed-off-by: NAndy Lutomirski <luto@kernel.org>
      Cc: Alexander Larsson <alexl@redhat.com>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Cosimo Cecchi <cosimo@endlessm.com>
      Cc: Dan Nicholson <nicholson@endlessm.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Rajalakshmi Srinivasaraghavan <raji@linux.vnet.ibm.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Tulio Magno Quites Machado Filho <tuliom@linux.vnet.ibm.com>
      Cc: libc-alpha <libc-alpha@sourceware.org>
      Link: http://lkml.kernel.org/r/cb5138299d37d5800e2d135b01a7667fa6115854.1436912629.git.luto@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
      9dea5dc9
  22. 04 6月, 2015 1 次提交
    • I
      x86/asm/entry: Move the arch/x86/syscalls/ definitions to arch/x86/entry/syscalls/ · 1f57d5d8
      Ingo Molnar 提交于
      The build time generated syscall definitions are entry code related, move
      them into the arch/x86/entry/ directory.
      
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: linux-kernel@vger.kernel.org
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      1f57d5d8
  23. 04 3月, 2015 1 次提交
  24. 14 12月, 2014 1 次提交
    • D
      x86: hook up execveat system call · 27d6ec7a
      David Drysdale 提交于
      Hook up x86-64, i386 and x32 ABIs.
      Signed-off-by: NDavid Drysdale <drysdale@google.com>
      Cc: Meredydd Luff <meredydd@senatehouse.org>
      Cc: Shuah Khan <shuah.kh@samsung.com>
      Cc: "Eric W. Biederman" <ebiederm@xmission.com>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Kees Cook <keescook@chromium.org>
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: Rich Felker <dalias@aerifal.cx>
      Cc: Christoph Hellwig <hch@infradead.org>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      27d6ec7a
  25. 27 9月, 2014 1 次提交
  26. 09 8月, 2014 1 次提交
    • D
      shm: add memfd_create() syscall · 9183df25
      David Herrmann 提交于
      memfd_create() is similar to mmap(MAP_ANON), but returns a file-descriptor
      that you can pass to mmap().  It can support sealing and avoids any
      connection to user-visible mount-points.  Thus, it's not subject to quotas
      on mounted file-systems, but can be used like malloc()'ed memory, but with
      a file-descriptor to it.
      
      memfd_create() returns the raw shmem file, so calls like ftruncate() can
      be used to modify the underlying inode.  Also calls like fstat() will
      return proper information and mark the file as regular file.  If you want
      sealing, you can specify MFD_ALLOW_SEALING.  Otherwise, sealing is not
      supported (like on all other regular files).
      
      Compared to O_TMPFILE, it does not require a tmpfs mount-point and is not
      subject to a filesystem size limit.  It is still properly accounted to
      memcg limits, though, and to the same overcommit or no-overcommit
      accounting as all user memory.
      Signed-off-by: NDavid Herrmann <dh.herrmann@gmail.com>
      Acked-by: NHugh Dickins <hughd@google.com>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: Ryan Lortie <desrt@desrt.ca>
      Cc: Lennart Poettering <lennart@poettering.net>
      Cc: Daniel Mack <zonque@gmail.com>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      9183df25
  27. 06 8月, 2014 1 次提交
    • T
      random: introduce getrandom(2) system call · c6e9d6f3
      Theodore Ts'o 提交于
      The getrandom(2) system call was requested by the LibreSSL Portable
      developers.  It is analoguous to the getentropy(2) system call in
      OpenBSD.
      
      The rationale of this system call is to provide resiliance against
      file descriptor exhaustion attacks, where the attacker consumes all
      available file descriptors, forcing the use of the fallback code where
      /dev/[u]random is not available.  Since the fallback code is often not
      well-tested, it is better to eliminate this potential failure mode
      entirely.
      
      The other feature provided by this new system call is the ability to
      request randomness from the /dev/urandom entropy pool, but to block
      until at least 128 bits of entropy has been accumulated in the
      /dev/urandom entropy pool.  Historically, the emphasis in the
      /dev/urandom development has been to ensure that urandom pool is
      initialized as quickly as possible after system boot, and preferably
      before the init scripts start execution.
      
      This is because changing /dev/urandom reads to block represents an
      interface change that could potentially break userspace which is not
      acceptable.  In practice, on most x86 desktop and server systems, in
      general the entropy pool can be initialized before it is needed (and
      in modern kernels, we will printk a warning message if not).  However,
      on an embedded system, this may not be the case.  And so with this new
      interface, we can provide the functionality of blocking until the
      urandom pool has been initialized.  Any userspace program which uses
      this new functionality must take care to assure that if it is used
      during the boot process, that it will not cause the init scripts or
      other portions of the system startup to hang indefinitely.
      
      SYNOPSIS
      	#include <linux/random.h>
      
      	int getrandom(void *buf, size_t buflen, unsigned int flags);
      
      DESCRIPTION
      	The system call getrandom() fills the buffer pointed to by buf
      	with up to buflen random bytes which can be used to seed user
      	space random number generators (i.e., DRBG's) or for other
      	cryptographic uses.  It should not be used for Monte Carlo
      	simulations or other programs/algorithms which are doing
      	probabilistic sampling.
      
      	If the GRND_RANDOM flags bit is set, then draw from the
      	/dev/random pool instead of the /dev/urandom pool.  The
      	/dev/random pool is limited based on the entropy that can be
      	obtained from environmental noise, so if there is insufficient
      	entropy, the requested number of bytes may not be returned.
      	If there is no entropy available at all, getrandom(2) will
      	either block, or return an error with errno set to EAGAIN if
      	the GRND_NONBLOCK bit is set in flags.
      
      	If the GRND_RANDOM bit is not set, then the /dev/urandom pool
      	will be used.  Unlike using read(2) to fetch data from
      	/dev/urandom, if the urandom pool has not been sufficiently
      	initialized, getrandom(2) will block (or return -1 with the
      	errno set to EAGAIN if the GRND_NONBLOCK bit is set in flags).
      
      	The getentropy(2) system call in OpenBSD can be emulated using
      	the following function:
      
                  int getentropy(void *buf, size_t buflen)
                  {
                          int     ret;
      
                          if (buflen > 256)
                                  goto failure;
                          ret = getrandom(buf, buflen, 0);
                          if (ret < 0)
                                  return ret;
                          if (ret == buflen)
                                  return 0;
                  failure:
                          errno = EIO;
                          return -1;
                  }
      
      RETURN VALUE
             On success, the number of bytes that was filled in the buf is
             returned.  This may not be all the bytes requested by the
             caller via buflen if insufficient entropy was present in the
             /dev/random pool, or if the system call was interrupted by a
             signal.
      
             On error, -1 is returned, and errno is set appropriately.
      
      ERRORS
      	EINVAL		An invalid flag was passed to getrandom(2)
      
      	EFAULT		buf is outside the accessible address space.
      
      	EAGAIN		The requested entropy was not available, and
      			getentropy(2) would have blocked if the
      			GRND_NONBLOCK flag was not set.
      
      	EINTR		While blocked waiting for entropy, the call was
      			interrupted by a signal handler; see the description
      			of how interrupted read(2) calls on "slow" devices
      			are handled with and without the SA_RESTART flag
      			in the signal(7) man page.
      
      NOTES
      	For small requests (buflen <= 256) getrandom(2) will not
      	return EINTR when reading from the urandom pool once the
      	entropy pool has been initialized, and it will return all of
      	the bytes that have been requested.  This is the recommended
      	way to use getrandom(2), and is designed for compatibility
      	with OpenBSD's getentropy() system call.
      
      	However, if you are using GRND_RANDOM, then getrandom(2) may
      	block until the entropy accounting determines that sufficient
      	environmental noise has been gathered such that getrandom(2)
      	will be operating as a NRBG instead of a DRBG for those people
      	who are working in the NIST SP 800-90 regime.  Since it may
      	block for a long time, these guarantees do *not* apply.  The
      	user may want to interrupt a hanging process using a signal,
      	so blocking until all of the requested bytes are returned
      	would be unfriendly.
      
      	For this reason, the user of getrandom(2) MUST always check
      	the return value, in case it returns some error, or if fewer
      	bytes than requested was returned.  In the case of
      	!GRND_RANDOM and small request, the latter should never
      	happen, but the careful userspace code (and all crypto code
      	should be careful) should check for this anyway!
      
      	Finally, unless you are doing long-term key generation (and
      	perhaps not even then), you probably shouldn't be using
      	GRND_RANDOM.  The cryptographic algorithms used for
      	/dev/urandom are quite conservative, and so should be
      	sufficient for all purposes.  The disadvantage of GRND_RANDOM
      	is that it can block, and the increased complexity required to
      	deal with partially fulfilled getrandom(2) requests.
      Signed-off-by: NTheodore Ts'o <tytso@mit.edu>
      Reviewed-by: NZach Brown <zab@zabbo.net>
      c6e9d6f3
  28. 19 7月, 2014 1 次提交
    • K
      seccomp: add "seccomp" syscall · 48dc92b9
      Kees Cook 提交于
      This adds the new "seccomp" syscall with both an "operation" and "flags"
      parameter for future expansion. The third argument is a pointer value,
      used with the SECCOMP_SET_MODE_FILTER operation. Currently, flags must
      be 0. This is functionally equivalent to prctl(PR_SET_SECCOMP, ...).
      
      In addition to the TSYNC flag later in this patch series, there is a
      non-zero chance that this syscall could be used for configuring a fixed
      argument area for seccomp-tracer-aware processes to pass syscall arguments
      in the future. Hence, the use of "seccomp" not simply "seccomp_add_filter"
      for this syscall. Additionally, this syscall uses operation, flags,
      and user pointer for arguments because strictly passing arguments via
      a user pointer would mean seccomp itself would be unable to trivially
      filter the seccomp syscall itself.
      Signed-off-by: NKees Cook <keescook@chromium.org>
      Reviewed-by: NOleg Nesterov <oleg@redhat.com>
      Reviewed-by: NAndy Lutomirski <luto@amacapital.net>
      48dc92b9
  29. 12 4月, 2014 1 次提交
  30. 13 1月, 2014 1 次提交
    • D
      sched: Add new scheduler syscalls to support an extended scheduling parameters ABI · d50dde5a
      Dario Faggioli 提交于
      Add the syscalls needed for supporting scheduling algorithms
      with extended scheduling parameters (e.g., SCHED_DEADLINE).
      
      In general, it makes possible to specify a periodic/sporadic task,
      that executes for a given amount of runtime at each instance, and is
      scheduled according to the urgency of their own timing constraints,
      i.e.:
      
       - a (maximum/typical) instance execution time,
       - a minimum interval between consecutive instances,
       - a time constraint by which each instance must be completed.
      
      Thus, both the data structure that holds the scheduling parameters of
      the tasks and the system calls dealing with it must be extended.
      Unfortunately, modifying the existing struct sched_param would break
      the ABI and result in potentially serious compatibility issues with
      legacy binaries.
      
      For these reasons, this patch:
      
       - defines the new struct sched_attr, containing all the fields
         that are necessary for specifying a task in the computational
         model described above;
      
       - defines and implements the new scheduling related syscalls that
         manipulate it, i.e., sched_setattr() and sched_getattr().
      
      Syscalls are introduced for x86 (32 and 64 bits) and ARM only, as a
      proof of concept and for developing and testing purposes. Making them
      available on other architectures is straightforward.
      
      Since no "user" for these new parameters is introduced in this patch,
      the implementation of the new system calls is just identical to their
      already existing counterpart. Future patches that implement scheduling
      policies able to exploit the new data structure must also take care of
      modifying the sched_*attr() calls accordingly with their own purposes.
      Signed-off-by: NDario Faggioli <raistlin@linux.it>
      [ Rewrote to use sched_attr. ]
      Signed-off-by: NJuri Lelli <juri.lelli@gmail.com>
      [ Removed sched_setscheduler2() for now. ]
      Signed-off-by: NPeter Zijlstra <peterz@infradead.org>
      Link: http://lkml.kernel.org/r/1383831828-15501-3-git-send-email-juri.lelli@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      d50dde5a
  31. 10 5月, 2013 1 次提交
  32. 04 3月, 2013 4 次提交