- 15 6月, 2013 2 次提交
-
-
由 Al Viro 提交于
a couple of places got missed back when Linus has introduced that one... Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Oleg Nesterov 提交于
fput() assumes that it can't be called after exit_task_work() but this is not true, for example free_ipc_ns()->shm_destroy() can do this. In this case fput() silently leaks the file. Change it to fallback to delayed_fput_work if task_work_add() fails. The patch looks complicated but it is not, it changes the code from if (PF_KTHREAD) { schedule_work(...); return; } task_work_add(...) to if (!PF_KTHREAD) { if (!task_work_add(...)) return; /* fallback */ } schedule_work(...); As for shm_destroy() in particular, we could make another fix but I think this change makes sense anyway. There could be another similar user, it is not safe to assume that task_work_add() can't fail. Reported-by: NAndrey Vagin <avagin@openvz.org> Signed-off-by: NOleg Nesterov <oleg@redhat.com> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 08 6月, 2013 1 次提交
-
-
由 Dave Chiluk 提交于
1d2ef590 caused a regression in ncpfs such that directories could no longer be removed. This was because ncp_rmdir checked to see if a dentry could be unhashed before allowing it to be removed. Since 1d2ef590 introduced a change that incremented dentry->d_count causing it to always be greater than 1 unhash would always fail. Thus causing the error path in ncp_rmdir to always be taken. Removing this error path is safe as unhashing is still accomplished by calls to dput from vfs_rmdir. Signed-off-by: NDave Chiluk <chiluk@canonical.com> Signed-off-by: NPetr Vandrovec <petr@vandrovec.name> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 03 6月, 2013 7 次提交
-
-
由 Bob Peterson 提交于
This patch makes GFS2 immediately reclaim/delete all iopen glocks as soon as they're dequeued. This allows deleters to get an EXclusive lock on iopen so files are deleted properly instead of being set as unlinked. Signed-off-by: NBob Peterson <rpeterso@redhat.com> Signed-off-by: NSteven Whitehouse <swhiteho@redhat.com>
-
由 Bob Peterson 提交于
This version has one more correction: the vmalloc calls are replaced by __vmalloc calls to preserve the GFP_NOFS flag. When GFS2's directory management code allocates buffers for a directory hash table, if it can't get the memory it needs, it currently gives a bad return code. Rather than giving an error, this patch allows it to use virtual memory rather than kernel memory for the hash table. This should make it possible for directories to function properly, even when kernel memory becomes very fragmented. Signed-off-by: NBob Peterson <rpeterso@redhat.com> Signed-off-by: NSteven Whitehouse <swhiteho@redhat.com>
-
由 Bob Peterson 提交于
This patch calls get_write_access in a few functions. This merely increases inode->i_writecount for the duration of the function. That will ensure that any file closes won't delete the inode's multi-block reservation while the function is running. Signed-off-by: NBob Peterson <rpeterso@redhat.com> Signed-off-by: NSteven Whitehouse <swhiteho@redhat.com>
-
由 Bob Peterson 提交于
This patch sets the log descriptor type according to whether the journal commit is for (journaled) data or metadata. This was recently broken when the functions to process data and metadata log ops were combined. Signed-off-by: NBob Peterson <rpeterso@redhat.com> Signed-off-by: NSteven Whitehouse <swhiteho@redhat.com>
-
由 Maxim Patlasov 提交于
The bug was introduced with async_dio feature: trying to optimize short reads, we cut number-of-bytes-to-read to i_size boundary. Hence the following example: truncate --size=300 /mnt/file dd if=/mnt/file of=/dev/null iflag=direct led to FUSE_READ request of 300 bytes size. This turned out to be problem for userspace fuse implementations who rely on assumption that kernel fuse does not change alignment of request from client FS. The patch turns off the optimization if async_dio is disabled. And, if it's enabled, the patch fixes adjustment of number-of-bytes-to-read to preserve alignment. Note, that we cannot throw out short read optimization entirely because otherwise a direct read of a huge size issued on a tiny file would generate a huge amount of fuse requests and most of them would be ACKed by userspace with zero bytes read. Signed-off-by: NMaxim Patlasov <MPatlasov@parallels.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NMiklos Szeredi <mszeredi@suse.cz>
-
由 Brian Foster 提交于
If request submission fails for an async request (i.e., get_user_pages() returns -ERESTARTSYS), we currently skip the -EIOCBQUEUED return and drop into wait_for_sync_kiocb() forever. Avoid this by always returning -EIOCBQUEUED for async requests. If an error occurs, the error is passed into fuse_aio_complete(), returned via aio_complete() and thus propagated to userspace via io_getevents(). Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NMaxim Patlasov <MPatlasov@parallels.com> Signed-off-by: NMiklos Szeredi <mszeredi@suse.cz>
-
由 Miklos Szeredi 提交于
Fix bug introduced by commit 4582a4ab "FUSE: Adapt readdirplus to application usage patterns". We need to check for a positive dentry; negative dentries are not added by readdirplus. Secondly we need to advise the use of readdirplus on the *parent*, otherwise the whole thing is useless. Thirdly all this is only relevant if "readdirplus_auto" mode is selected by the filesystem. We advise the use of readdirplus only if the dentry was still valid. If we had to redo the lookup then there was no use in doing the -plus version. Reported-by: NBernd Schubert <bernd.schubert@itwm.fraunhofer.de> Signed-off-by: NMiklos Szeredi <mszeredi@suse.cz> CC: Feng Shuo <steve.shuo.feng@gmail.com> CC: stable@vger.kernel.org
-
- 01 6月, 2013 7 次提交
-
-
由 Jeff Mahoney 提交于
Reiserfs is currently able to be deadlocked by having two NFS clients where one has removed and recreated a file and another is accessing the file with an open file handle. If one client deletes and recreates a file with timing such that the recreated file obtains the same [dirid, objectid] pair as the original file while another client accesses the file via file handle, the create and lookup can race and deadlock if the lookup manages to create the in-memory inode first. The create thread, in insert_inode_locked4, will hold the write lock while waiting on the other inode to be unlocked. The lookup thread, anywhere in the iget path, will release and reacquire the write lock while it schedules. If it needs to reacquire the lock while the create thread has it, it will never be able to make forward progress because it needs to reacquire the lock before ultimately unlocking the inode. This patch drops the write lock across the insert_inode_locked4 call so that the ordering of inode_wait -> write lock is retained. Since this would have been the case before the BKL push-down, this is safe. Signed-off-by: NJeff Mahoney <jeffm@suse.com> Signed-off-by: NJan Kara <jack@suse.cz>
-
由 Jeff Mahoney 提交于
reiserfs_chown_xattrs() takes the iattr struct passed into ->setattr and uses it to iterate over all the attrs associated with a file to change ownership of xattrs (and transfer quota associated with the xattr files). When the setuid bit is cleared during chown, ATTR_MODE and iattr->ia_mode are passed to all the xattrs as well. This means that the xattr directory will have S_IFREG added to its mode bits. This has been prevented in practice by a missing IS_PRIVATE check in reiserfs_acl_chmod, which caused a double-lock to occur while holding the write lock. Since the file system was completely locked up, the writeout of the corrupted mode never happened. This patch temporarily clears everything but ATTR_UID|ATTR_GID for the calls to reiserfs_setattr and adds the missing IS_PRIVATE check. Signed-off-by: NJeff Mahoney <jeffm@suse.com> Signed-off-by: NJan Kara <jack@suse.cz>
-
由 Jeff Mahoney 提交于
After sleeping for filldir(), we check to see if the file system has changed and research. The next_pos pointer is updated but its value isn't pushed into the key used for the search itself. As a result, the search returns the same item that the last cycle of the loop did and filldir() is called multiple times with the same data. The end result is that the buffer can contain the same name multiple times. This can be returned to userspace or used internally in the xattr code where it can manifest with the following warning: jdm-20004 reiserfs_delete_xattrs: Couldn't delete all xattrs (-2) reiserfs_for_each_xattr uses reiserfs_readdir_dentry to iterate over the xattr names and ends up trying to unlink the same name twice. The second attempt fails with -ENOENT and the error is returned. At some point I'll need to add support into reiserfsck to remove the orphaned directories left behind when this occurs. The fix is to push the value into the key before researching. Signed-off-by: NJeff Mahoney <jeffm@suse.com> Signed-off-by: NJan Kara <jack@suse.cz>
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
For one thing, there's an ABBA deadlock on hpfs fs-wide lock and i_mutex in hpfs_dir_lseek() - there's a lot of methods that grab the former with the caller already holding the latter, so it must take i_mutex first. For another, locking the damn thing, carefully validating the offset, then dropping locks and assigning the offset is obviously racy. Moreover, we _must_ do hpfs_add_pos(), or the machinery in dnode.c won't modify the sucker on B-tree surgeries. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
We want to mask lower 5 bits out, not leave only those and clear the rest... As it is, we end up always starting to read from the beginning of directory, no matter what the current position had been. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Takashi Iwai 提交于
When the group id of a shared mount is not allocated, the umount still tries to call mnt_release_group_id(), which eventually hits a kernel warning at ida_remove() spewing a message like: ida_remove called for id=0 which is not allocated. This patch fixes the bug simply checking the group id in the caller. Reported-by: NCristian Rodríguez <crrodriguez@opensuse.org> Signed-off-by: NTakashi Iwai <tiwai@suse.de> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 31 5月, 2013 15 次提交
-
-
由 Dave Chinner 提交于
Note: this changes the on-disk remote attribute format. I assert that this is OK to do as CRCs are marked experimental and the first kernel it is included in has not yet reached release yet. Further, the userspace utilities are still evolving and so anyone using this stuff right now is a developer or tester using volatile filesystems for testing this feature. Hence changing the format right now to save longer term pain is the right thing to do. The fundamental change is to move from a header per extent in the attribute to a header per filesytem block in the attribute. This means there are more header blocks and the parsing of the attribute data is slightly more complex, but it has the advantage that we always know the size of the attribute on disk based on the length of the data it contains. This is where the header-per-extent method has problems. We don't know the size of the attribute on disk without first knowing how many extents are used to hold it. And we can't tell from a mapping lookup, either, because remote attributes can be allocated contiguously with other attribute blocks and so there is no obvious way of determining the actual size of the atribute on disk short of walking and mapping buffers. The problem with this approach is that if we map a buffer incorrectly (e.g. we make the last buffer for the attribute data too long), we then get buffer cache lookup failure when we map it correctly. i.e. we get a size mismatch on lookup. This is not necessarily fatal, but it's a cache coherency problem that can lead to returning the wrong data to userspace or writing the wrong data to disk. And debug kernels will assert fail if this occurs. I found lots of niggly little problems trying to fix this issue on a 4k block size filesystem, finally getting it to pass with lots of fixes. The thing is, 1024 byte filesystems still failed, and it was getting really complex handling all the corner cases that were showing up. And there were clearly more that I hadn't found yet. It is complex, fragile code, and if we don't fix it now, it will be complex, fragile code forever more. Hence the simple fix is to add a header to each filesystem block. This gives us the same relationship between the attribute data length and the number of blocks on disk as we have without CRCs - it's a linear mapping and doesn't require us to guess anything. It is simple to implement, too - the remote block count calculated at lookup time can be used by the remote attribute set/get/remove code without modification for both CRC and non-CRC filesystems. The world becomes sane again. Because the copy-in and copy-out now need to iterate over each filesystem block, I moved them into helper functions so we separate the block mapping and buffer manupulations from the attribute data and CRC header manipulations. The code becomes much clearer as a result, and it is a lot easier to understand and debug. It also appears to be much more robust - once it worked on 4k block size filesystems, it has worked without failure on 1k block size filesystems, too. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com> (cherry picked from commit ad1858d7)
-
由 Dave Chinner 提交于
xfs_attr3_leaf_compact() uses a temporary buffer for compacting the the entries in a leaf. It copies the the original buffer into the temporary buffer, then zeros the original buffer completely. It then copies the entries back into the original buffer. However, the original buffer has not been correctly initialised, and so the movement of the entries goes horribly wrong. Make sure the zeroed destination buffer is fully initialised, and once we've set up the destination incore header appropriately, write is back to the buffer before starting to move entries around. While debugging this, the _d/_s prefixes weren't sufficient to remind me what buffer was what, so rename then all _src/_dst. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com> (cherry picked from commit d4c712bc)
-
由 Dave Chinner 提交于
xfs_attr3_leaf_unbalance() uses a temporary buffer for recombining the entries in two leaves when the destination leaf requires compaction. The temporary buffer ends up being copied back over the original destination buffer, so the header in the temporary buffer needs to contain all the information that is in the destination buffer. To make sure the temporary buffer is fully initialised, once we've set up the temporary incore header appropriately, write is back to the temporary buffer before starting to move entries around. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com> (cherry picked from commit 8517de2a)
-
由 Dave Chinner 提交于
If we don't map the buffers correctly (same as for get/set operations) then the incore buffer lookup will fail. If a block number matches but a length is wrong, then debug kernels will ASSERT fail in _xfs_buf_find() due to the length mismatch. Ensure that we map the buffers correctly by basing the length of the buffer on the attribute data length rather than the remote block count. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com> (cherry picked from commit 6863ef84)
-
由 Dave Chinner 提交于
When an attribute data does not fill then entire remote block, we zero the remaining part of the buffer. This, however, needs to take into account that the buffer has a header, and so the offset where zeroing starts and the length of zeroing need to take this into account. Otherwise we end up with zeros over the end of the attribute value when CRCs are enabled. While there, make sure we only ask to map an extent that covers the remaining range of the attribute, rather than asking every time for the full length of remote data. If the remote attribute blocks are contiguous with other parts of the attribute tree, it will map those blocks as well and we can potentially zero them incorrectly. We can also get buffer size mistmatches when trying to read or remove the remote attribute, and this can lead to not finding the correct buffer when looking it up in cache. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com> (cherry picked from commit 4af3644c)
-
由 Dave Chinner 提交于
Reading a maximally size remote attribute fails when CRCs are enabled with this verification error: XFS (vdb): remote attribute header does not match required off/len/owner) There are two reasons for this, the first being that the length of the buffer being read is determined from the args->rmtblkcnt which doesn't take into account CRC headers. Hence the mapped length ends up being too short and so we need to calculate it directly from the value length. The second is that the byte count of valid data within a buffer is capped by the length of the data and so doesn't take into account that the buffer might be longer due to headers. Hence we need to calculate the data space in the buffer first before calculating the actual byte count of data. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com> (cherry picked from commit 913e96bc)
-
由 Dave Chinner 提交于
When CRCs are enabled, there may be multiple allocations made if the headers cause a length overflow. This, however, does not mean that the number of headers required increases, as the second and subsequent extents may be contiguous with the previous extent. Hence when we map the extents to write the attribute data, we may end up with less extents than allocations made. Hence the assertion that we consume the number of headers we calculated in the allocation loop is incorrect and needs to be removed. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com> (cherry picked from commit 90253cf1)
-
由 Dave Chinner 提交于
When the directory freespace index grows to a second block (2017 4k data blocks in the directory), the initialisation of the second new block header goes wrong. The write verifier fires a corruption error indicating that the block number in the header is zero. This was being tripped by xfs/110. The problem is that the initialisation of the new block is done just fine in xfs_dir3_free_get_buf(), but the caller then users a dirv2 structure to zero on-disk header fields that xfs_dir3_free_get_buf() has already zeroed. These lined up with the block number in the dir v3 header format. While looking at this, I noticed that the struct xfs_dir3_free_hdr() had 4 bytes of padding in it that wasn't defined as padding or being zeroed by the initialisation. Add a pad field declaration and fully zero the on disk and in-core headers in xfs_dir3_free_get_buf() so that this is never an issue in the future. Note that this doesn't change the on-disk layout, just makes the 32 bits of padding in the layout explicit. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com> (cherry picked from commit 5ae6e6a4)
-
由 Dave Chinner 提交于
Currently, swapping extents from one inode to another is a simple act of switching data and attribute forks from one inode to another. This, unfortunately in no longer so simple with CRC enabled filesystems as there is owner information embedded into the BMBT blocks that are swapped between inodes. Hence swapping the forks between inodes results in the inodes having mapping blocks that point to the wrong owner and hence are considered corrupt. To fix this we need an extent tree block or record based swap algorithm so that the BMBT block owner information can be updated atomically in the swap transaction. This is a significant piece of new work, so for the moment simply don't allow swap extent operations to succeed on CRC enabled filesystems. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NBen Myers <bpm@sgi.com> (cherry picked from commit 02f75405)
-
由 Dave Chinner 提交于
Currently userspace has no way of determining that a filesystem is CRC enabled. Add a flag to the XFS_IOC_FSGEOMETRY ioctl output to indicate that the filesystem has v5 superblock support enabled. This will allow xfs_info to correctly report the state of the filesystem. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NBen Myers <bpm@sgi.com> (cherry picked from commit 74137fff)
-
由 Dave Chinner 提交于
When CRCs are enabled, the number of blocks needed to hold a remote symlink on a 1k block size filesystem may be 2 instead of 1. The transaction reservation for the allocated blocks was not taking this into account and only allocating one block. Hence when trying to read or invalidate such symlinks, we are mapping a hole where there should be a block and things go bad at that point. Fix the reservation to use the correct block count, clean up the block count calculation similar to the remote attribute calculation, and add a debug guard to detect when we don't write the entire symlink to disk. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NBen Myers <bpm@sgi.com> (cherry picked from commit 321a9583)
-
由 Dave Chinner 提交于
A long time ago in a galaxy far away.... .. the was a commit made to fix some ilinux specific "fragmented buffer" log recovery problem: http://oss.sgi.com/cgi-bin/gitweb.cgi?p=archive/xfs-import.git;a=commitdiff;h=b29c0bece51da72fb3ff3b61391a391ea54e1603 That problem occurred when a contiguous dirty region of a buffer was split across across two pages of an unmapped buffer. It's been a long time since that has been done in XFS, and the changes to log the entire inode buffers for CRC enabled filesystems has re-introduced that corner case. And, of course, it turns out that the above commit didn't actually fix anything - it just ensured that log recovery is guaranteed to fail when this situation occurs. And now for the gory details. xfstest xfs/085 is failing with this assert: XFS (vdb): bad number of regions (0) in inode log format XFS: Assertion failed: 0, file: fs/xfs/xfs_log_recover.c, line: 1583 Largely undocumented factoid #1: Log recovery depends on all log buffer format items starting with this format: struct foo_log_format { __uint16_t type; __uint16_t size; .... As recoery uses the size field and assumptions about 32 bit alignment in decoding format items. So don't pay much attention to the fact log recovery thinks that it decoding an inode log format item - it just uses them to determine what the size of the item is. But why would it see a log format item with a zero size? Well, luckily enough xfs_logprint uses the same code and gives the same error, so with a bit of gdb magic, it turns out that it isn't a log format that is being decoded. What logprint tells us is this: Oper (130): tid: a0375e1a len: 28 clientid: TRANS flags: none BUF: #regs: 2 start blkno: 144 (0x90) len: 16 bmap size: 2 flags: 0x4000 Oper (131): tid: a0375e1a len: 4096 clientid: TRANS flags: none BUF DATA ---------------------------------------------------------------------------- Oper (132): tid: a0375e1a len: 4096 clientid: TRANS flags: none xfs_logprint: unknown log operation type (4e49) ********************************************************************** * ERROR: data block=2 * ********************************************************************** That we've got a buffer format item (oper 130) that has two regions; the format item itself and one dirty region. The subsequent region after the buffer format item and it's data is them what we are tripping over, and the first bytes of it at an inode magic number. Not a log opheader like there is supposed to be. That means there's a problem with the buffer format item. It's dirty data region is 4096 bytes, and it contains - you guessed it - initialised inodes. But inode buffers are 8k, not 4k, and we log them in their entirety. So something is wrong here. The buffer format item contains: (gdb) p /x *(struct xfs_buf_log_format *)in_f $22 = {blf_type = 0x123c, blf_size = 0x2, blf_flags = 0x4000, blf_len = 0x10, blf_blkno = 0x90, blf_map_size = 0x2, blf_data_map = {0xffffffff, 0xffffffff, .... }} Two regions, and a signle dirty contiguous region of 64 bits. 64 * 128 = 8k, so this should be followed by a single 8k region of data. And the blf_flags tell us that the type of buffer is a XFS_BLFT_DINO_BUF. It contains inodes. And because it doesn't have the XFS_BLF_INODE_BUF flag set, that means it's an inode allocation buffer. So, it should be followed by 8k of inode data. But we know that the next region has a header of: (gdb) p /x *ohead $25 = {oh_tid = 0x1a5e37a0, oh_len = 0x100000, oh_clientid = 0x69, oh_flags = 0x0, oh_res2 = 0x0} and so be32_to_cpu(oh_len) = 0x1000 = 4096 bytes. It's simply not long enough to hold all the logged data. There must be another region. There is - there's a following opheader for another 4k of data that contains the other half of the inode cluster data - the one we assert fail on because it's not a log format header. So why is the second part of the data not being accounted to the correct buffer log format structure? It took a little more work with gdb to work out that the buffer log format structure was both expecting it to be there but hadn't accounted for it. It was at that point I went to the kernel code, as clearly this wasn't a bug in xfs_logprint and the kernel was writing bad stuff to the log. First port of call was the buffer item formatting code, and the discontiguous memory/contiguous dirty region handling code immediately stood out. I've wondered for a long time why the code had this comment in it: vecp->i_addr = xfs_buf_offset(bp, buffer_offset); vecp->i_len = nbits * XFS_BLF_CHUNK; vecp->i_type = XLOG_REG_TYPE_BCHUNK; /* * You would think we need to bump the nvecs here too, but we do not * this number is used by recovery, and it gets confused by the boundary * split here * nvecs++; */ vecp++; And it didn't account for the extra vector pointer. The case being handled here is that a contiguous dirty region lies across a boundary that cannot be memcpy()d across, and so has to be split into two separate operations for xlog_write() to perform. What this code assumes is that what is written to the log is two consecutive blocks of data that are accounted in the buf log format item as the same contiguous dirty region and so will get decoded as such by the log recovery code. The thing is, xlog_write() knows nothing about this, and so just does it's normal thing of adding an opheader for each vector. That means the 8k region gets written to the log as two separate regions of 4k each, but because nvecs has not been incremented, the buf log format item accounts for only one of them. Hence when we come to log recovery, we process the first 4k region and then expect to come across a new item that starts with a log format structure of some kind that tells us whenteh next data is going to be. Instead, we hit raw buffer data and things go bad real quick. So, the commit from 2002 that commented out nvecs++ is just plain wrong. It breaks log recovery completely, and it would seem the only reason this hasn't been since then is that we don't log large contigous regions of multi-page unmapped buffers very often. Never would be a closer estimate, at least until the CRC code came along.... So, lets fix that by restoring the nvecs accounting for the extra region when we hit this case..... .... and there's the problemin log recovery it is apparently working around: XFS: Assertion failed: i == item->ri_total, file: fs/xfs/xfs_log_recover.c, line: 2135 Yup, xlog_recover_do_reg_buffer() doesn't handle contigous dirty regions being broken up into multiple regions by the log formatting code. That's an easy fix, though - if the number of contiguous dirty bits exceeds the length of the region being copied out of the log, only account for the number of dirty bits that region covers, and then loop again and copy more from the next region. It's a 2 line fix. Now xfstests xfs/085 passes, we have one less piece of mystery code, and one more important piece of knowledge about how to structure new log format items.. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com> (cherry picked from commit 709da6a6)
-
由 Dave Chinner 提交于
XFS has failed to kill suid/sgid bits correctly when truncating files of non-zero size since commit c4ed4243 ("xfs: split xfs_setattr") introduced in the 3.1 kernel. Fix it. Fix it. cc: stable kernel <stable@vger.kernel.org> Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NBen Myers <bpm@sgi.com> (cherry picked from commit 56c19e89)
-
由 Dave Chinner 提交于
Lockdep reports: ============================================= [ INFO: possible recursive locking detected ] 3.9.0+ #3 Not tainted --------------------------------------------- setquota/28368 is trying to acquire lock: (sb_internal){++++.?}, at: [<c11e8846>] xfs_trans_alloc+0x26/0x50 but task is already holding lock: (sb_internal){++++.?}, at: [<c11e8846>] xfs_trans_alloc+0x26/0x50 from xfs_qm_scall_setqlim()->xfs_dqread() when a dquot needs to be allocated. xfs_qm_scall_setqlim() is starting a transaction and then not passing it into xfs_qm_dqet() and so it starts it's own transaction when allocating the dquot. Splat! Fix this by not allocating the dquot in xfs_qm_scall_setqlim() inside the setqlim transaction. This requires getting the dquot first (and allocating it if necessary) then dropping and relocking the dquot before joining it to the setqlim transaction. Reported-by: NMichael L. Semon <mlsemon35@gmail.com> Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com> (cherry picked from commit f648167f)
-
由 Chuck Lever 提交于
Darrick J. Wong <darrick.wong@oracle.com> reports: > I have a kvm-based testing setup that netboots VMs over NFS, the > client end of which seems to have broken somehow in 3.10-rc1. The > server's exports file looks like this: > > /storage/mtr/x64 192.168.122.0/24(ro,sync,no_root_squash,no_subtree_check) > > On the client end (inside the VM), the initrd runs the following > command to try to mount the rootfs over NFS: > > # mount -o nolock -o ro -o retrans=10 192.168.122.1:/storage/mtr/x64/ /root > > (Note: This is the busybox mount command.) > > The mount fails with -EINVAL. Commit 4580a92d "NFS: Use server-recommended security flavor by default (NFSv3)" introduced a behavior regression for NFS mounts done via a legacy binary mount(2) call. Ensure that a default security flavor is specified for legacy binary mount requests, since they do not invoke nfs_select_flavor() in the kernel. Busybox uses klibc's nfsmount command, which performs NFS mounts using the legacy binary mount data format. /sbin/mount.nfs is not affected by this regression. Reported-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NDarrick J. Wong <darrick.wong@oracle.com> Acked-by: NWeston Andros Adamson <dros@netapp.com> Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
- 30 5月, 2013 1 次提交
-
-
由 Trond Myklebust 提交于
We need to pass the full open mode flags to nfs_may_open() when doing a delegated open. Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com> Cc: stable@vger.kernel.org
-
- 25 5月, 2013 7 次提交
-
-
由 Benjamin LaHaise 提交于
The recent changes overhauling fs/aio.c introduced a bug that results in the kioctx not being freed when outstanding kiocbs are cancelled at exit_aio() time. Specifically, a kiocb that is cancelled has its completion events discarded by batch_complete_aio(), which then fails to wake up the process stuck in free_ioctx(). Fix this by modifying the wait_event() condition in free_ioctx() appropriately. This patch was tested with the cancel operation in the thread based code posted yesterday. [akpm@linux-foundation.org: fix build] Signed-off-by: NBenjamin LaHaise <bcrl@kvack.org> Signed-off-by: NKent Overstreet <koverstreet@google.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Josh Boyer <jwboyer@redhat.com> Cc: Zach Brown <zab@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joseph Qi 提交于
Last time we found there is lock/unlock bug in ocfs2_file_aio_write, and then we did a thorough search for all lock resources in ocfs2_inode_info, including rw, inode and open lockres and found this bug. My kernel version is 3.0.13, and it is also in the lastest version 3.9. In ocfs2_fiemap, once ocfs2_get_clusters_nocache failed, it should goto out_unlock instead of out, because we need release buffer head, up read alloc sem and unlock inode. Signed-off-by: NJoseph Qi <joseph.qi@huawei.com> Reviewed-by: NJie Liu <jeff.liu@oracle.com> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Acked-by: NSunil Mushran <sunil.mushran@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ryusuke Konishi 提交于
nilfs2: fix issue of nilfs_set_page_dirty for page at EOF boundary DESCRIPTION: There are use-cases when NILFS2 file system (formatted with block size lesser than 4 KB) can be remounted in RO mode because of encountering of "broken bmap" issue. The issue was reported by Anthony Doggett <Anthony2486@interfaces.org.uk>: "The machine I've been trialling nilfs on is running Debian Testing, Linux version 3.2.0-4-686-pae (debian-kernel@lists.debian.org) (gcc version 4.6.3 (Debian 4.6.3-14) ) #1 SMP Debian 3.2.35-2), but I've also reproduced it (identically) with Debian Unstable amd64 and Debian Experimental (using the 3.8-trunk kernel). The problematic partitions were formatted with "mkfs.nilfs2 -b 1024 -B 8192"." SYMPTOMS: (1) System log contains error messages likewise: [63102.496756] nilfs_direct_assign: invalid pointer: 0 [63102.496786] NILFS error (device dm-17): nilfs_bmap_assign: broken bmap (inode number=28) [63102.496798] [63102.524403] Remounting filesystem read-only (2) The NILFS2 file system is remounted in RO mode. REPRODUSING PATH: (1) Create volume group with name "unencrypted" by means of vgcreate utility. (2) Run script (prepared by Anthony Doggett <Anthony2486@interfaces.org.uk>): ----------------[BEGIN SCRIPT]-------------------- VG=unencrypted lvcreate --size 2G --name ntest $VG mkfs.nilfs2 -b 1024 -B 8192 /dev/mapper/$VG-ntest mkdir /var/tmp/n mkdir /var/tmp/n/ntest mount /dev/mapper/$VG-ntest /var/tmp/n/ntest mkdir /var/tmp/n/ntest/thedir cd /var/tmp/n/ntest/thedir sleep 2 date darcs init sleep 2 dmesg|tail -n 5 date darcs whatsnew || true date sleep 2 dmesg|tail -n 5 ----------------[END SCRIPT]-------------------- REPRODUCIBILITY: 100% INVESTIGATION: As it was discovered, the issue takes place during segment construction after executing such sequence of user-space operations: open("_darcs/index", O_RDWR|O_CREAT|O_NOCTTY, 0666) = 7 fstat(7, {st_mode=S_IFREG|0644, st_size=0, ...}) = 0 ftruncate(7, 60) The error message "NILFS error (device dm-17): nilfs_bmap_assign: broken bmap (inode number=28)" takes place because of trying to get block number for third block of the file with logical offset #3072 bytes. As it is possible to see from above output, the file has 60 bytes of the whole size. So, it is enough one block (1 KB in size) allocation for the whole file. Trying to operate with several blocks instead of one takes place because of discovering several dirty buffers for this file in nilfs_segctor_scan_file() method. The root cause of this issue is in nilfs_set_page_dirty function which is called just before writing to an mmapped page. When nilfs_page_mkwrite function handles a page at EOF boundary, it fills hole blocks only inside EOF through __block_page_mkwrite(). The __block_page_mkwrite() function calls set_page_dirty() after filling hole blocks, thus nilfs_set_page_dirty function (= a_ops->set_page_dirty) is called. However, the current implementation of nilfs_set_page_dirty() wrongly marks all buffers dirty even for page at EOF boundary. As a result, buffers outside EOF are inconsistently marked dirty and queued for write even though they are not mapped with nilfs_get_block function. FIX: This modifies nilfs_set_page_dirty() not to mark hole blocks dirty. Thanks to Vyacheslav Dubeyko for his effort on analysis and proposals for this issue. Signed-off-by: NRyusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Reported-by: NAnthony Doggett <Anthony2486@interfaces.org.uk> Reported-by: NVyacheslav Dubeyko <slava@dubeyko.com> Cc: Vyacheslav Dubeyko <slava@dubeyko.com> Tested-by: NRyusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jeff Moyer 提交于
In reviewing man pages, I noticed that io_getevents is documented to update the timeout that gets passed into the library call. This doesn't happen in kernel space or in the library (even though it's documented to do so in both places). Unless there is objection, I'd like to fix the comments/docs to match the code (I will also update the man page upon consensus). Signed-off-by: NJeff Moyer <jmoyer@redhat.com> Signed-off-by: NBenjamin LaHaise <bcrl@kvack.org> Acked-by: NCyril Hrubis <chrubis@suse.cz> Acked-by: NMichael Kerrisk <mtk.manpages@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jeff Mahoney 提交于
Commit 634725a9 ("hfs: cleanup HFS+ prints") removed the BUG_ON in hfs_bnode_create in hfsplus. This patch removes it from the hfs version and avoids an fsfuzzer crash. Signed-off-by: NJeff Mahoney <jeffm@suse.com> Acked-by: NJeff Mahoney <jeffm@suse.com> Signed-off-by: NJiri Slaby <jslaby@suse.cz> Cc: Vyacheslav Dubeyko <slava@dubeyko.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joseph Qi 提交于
In ocfs2_file_aio_write(), it does ocfs2_rw_lock() first and then ocfs2_inode_lock(). But if ocfs2_inode_lock() failed, it goes to out_sems without unlocking rw lock. This will cause a bug in ocfs2_lock_res_free() when testing res->l_ex_holders, which is increased in __ocfs2_cluster_lock() and decreased in __ocfs2_cluster_unlock(). Signed-off-by: NJoseph Qi <joseph.qi@huawei.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Li Zefan <lizefan@huawei.com> Cc: "Duyongfeng (B)" <du.duyongfeng@huawei.com> Acked-by: NSunil Mushran <sunil.mushran@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 OGAWA Hirofumi 提交于
Intermediate value of fat_clusters can be overflowed on 32bits arch. Reported-by: NKrzysztof Strasburger <strasbur@chkw386.ch.pwr.wroc.pl> Signed-off-by: NOGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-