1. 15 6月, 2013 2 次提交
  2. 08 6月, 2013 1 次提交
  3. 03 6月, 2013 7 次提交
  4. 01 6月, 2013 7 次提交
    • J
      reiserfs: fix deadlock with nfs racing on create/lookup · a1457c0c
      Jeff Mahoney 提交于
      Reiserfs is currently able to be deadlocked by having two NFS clients
      where one has removed and recreated a file and another is accessing the
      file with an open file handle.
      
      If one client deletes and recreates a file with timing such that the
      recreated file obtains the same [dirid, objectid] pair as the original
      file while another client accesses the file via file handle, the create
      and lookup can race and deadlock if the lookup manages to create the
      in-memory inode first.
      
      The create thread, in insert_inode_locked4, will hold the write lock
      while waiting on the other inode to be unlocked. The lookup thread,
      anywhere in the iget path, will release and reacquire the write lock while
      it schedules. If it needs to reacquire the lock while the create thread
      has it, it will never be able to make forward progress because it needs
      to reacquire the lock before ultimately unlocking the inode.
      
      This patch drops the write lock across the insert_inode_locked4 call so
      that the ordering of inode_wait -> write lock is retained. Since this
      would have been the case before the BKL push-down, this is safe.
      Signed-off-by: NJeff Mahoney <jeffm@suse.com>
      Signed-off-by: NJan Kara <jack@suse.cz>
      a1457c0c
    • J
      reiserfs: fix problems with chowning setuid file w/ xattrs · 4a857011
      Jeff Mahoney 提交于
      reiserfs_chown_xattrs() takes the iattr struct passed into ->setattr
      and uses it to iterate over all the attrs associated with a file to change
      ownership of xattrs (and transfer quota associated with the xattr files).
      
      When the setuid bit is cleared during chown, ATTR_MODE and iattr->ia_mode
      are passed to all the xattrs as well. This means that the xattr directory
      will have S_IFREG added to its mode bits.
      
      This has been prevented in practice by a missing IS_PRIVATE check
      in reiserfs_acl_chmod, which caused a double-lock to occur while holding
      the write lock. Since the file system was completely locked up, the
      writeout of the corrupted mode never happened.
      
      This patch temporarily clears everything but ATTR_UID|ATTR_GID for the
      calls to reiserfs_setattr and adds the missing IS_PRIVATE check.
      Signed-off-by: NJeff Mahoney <jeffm@suse.com>
      Signed-off-by: NJan Kara <jack@suse.cz>
      4a857011
    • J
      reiserfs: fix spurious multiple-fill in reiserfs_readdir_dentry · 0bdc7acb
      Jeff Mahoney 提交于
      After sleeping for filldir(), we check to see if the file system has
      changed and research. The next_pos pointer is updated but its value
      isn't pushed into the key used for the search itself. As a result,
      the search returns the same item that the last cycle of the loop did
      and filldir() is called multiple times with the same data.
      
      The end result is that the buffer can contain the same name multiple
      times. This can be returned to userspace or used internally in the
      xattr code where it can manifest with the following warning:
      
      jdm-20004 reiserfs_delete_xattrs: Couldn't delete all xattrs (-2)
      
      reiserfs_for_each_xattr uses reiserfs_readdir_dentry to iterate over
      the xattr names and ends up trying to unlink the same name twice. The
      second attempt fails with -ENOENT and the error is returned. At some
      point I'll need to add support into reiserfsck to remove the orphaned
      directories left behind when this occurs.
      
      The fix is to push the value into the key before researching.
      Signed-off-by: NJeff Mahoney <jeffm@suse.com>
      Signed-off-by: NJan Kara <jack@suse.cz>
      0bdc7acb
    • A
      448293aa
    • A
      hpfs: deadlock and race in directory lseek() · 31abdab9
      Al Viro 提交于
      For one thing, there's an ABBA deadlock on hpfs fs-wide lock and i_mutex
      in hpfs_dir_lseek() - there's a lot of methods that grab the former with
      the caller already holding the latter, so it must take i_mutex first.
      
      For another, locking the damn thing, carefully validating the offset,
      then dropping locks and assigning the offset is obviously racy.
      
      Moreover, we _must_ do hpfs_add_pos(), or the machinery in dnode.c
      won't modify the sucker on B-tree surgeries.
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      31abdab9
    • A
      qnx6: qnx6_readdir() has a braino in pos calculation · 1d7095c7
      Al Viro 提交于
      We want to mask lower 5 bits out, not leave only those and clear the
      rest...  As it is, we end up always starting to read from the beginning
      of directory, no matter what the current position had been.
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      1d7095c7
    • T
      vfs: Fix invalid ida_remove() call · 5d477b60
      Takashi Iwai 提交于
      When the group id of a shared mount is not allocated, the umount still
      tries to call mnt_release_group_id(), which eventually hits a kernel
      warning at ida_remove() spewing a message like:
        ida_remove called for id=0 which is not allocated.
      
      This patch fixes the bug simply checking the group id in the caller.
      Reported-by: NCristian Rodríguez <crrodriguez@opensuse.org>
      Signed-off-by: NTakashi Iwai <tiwai@suse.de>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      5d477b60
  5. 31 5月, 2013 15 次提交
    • D
      xfs: rework remote attr CRCs · 7bc0dc27
      Dave Chinner 提交于
      Note: this changes the on-disk remote attribute format. I assert
      that this is OK to do as CRCs are marked experimental and the first
      kernel it is included in has not yet reached release yet. Further,
      the userspace utilities are still evolving and so anyone using this
      stuff right now is a developer or tester using volatile filesystems
      for testing this feature. Hence changing the format right now to
      save longer term pain is the right thing to do.
      
      The fundamental change is to move from a header per extent in the
      attribute to a header per filesytem block in the attribute. This
      means there are more header blocks and the parsing of the attribute
      data is slightly more complex, but it has the advantage that we
      always know the size of the attribute on disk based on the length of
      the data it contains.
      
      This is where the header-per-extent method has problems. We don't
      know the size of the attribute on disk without first knowing how
      many extents are used to hold it. And we can't tell from a
      mapping lookup, either, because remote attributes can be allocated
      contiguously with other attribute blocks and so there is no obvious
      way of determining the actual size of the atribute on disk short of
      walking and mapping buffers.
      
      The problem with this approach is that if we map a buffer
      incorrectly (e.g. we make the last buffer for the attribute data too
      long), we then get buffer cache lookup failure when we map it
      correctly. i.e. we get a size mismatch on lookup. This is not
      necessarily fatal, but it's a cache coherency problem that can lead
      to returning the wrong data to userspace or writing the wrong data
      to disk. And debug kernels will assert fail if this occurs.
      
      I found lots of niggly little problems trying to fix this issue on a
      4k block size filesystem, finally getting it to pass with lots of
      fixes. The thing is, 1024 byte filesystems still failed, and it was
      getting really complex handling all the corner cases that were
      showing up. And there were clearly more that I hadn't found yet.
      
      It is complex, fragile code, and if we don't fix it now, it will be
      complex, fragile code forever more.
      
      Hence the simple fix is to add a header to each filesystem block.
      This gives us the same relationship between the attribute data
      length and the number of blocks on disk as we have without CRCs -
      it's a linear mapping and doesn't require us to guess anything. It
      is simple to implement, too - the remote block count calculated at
      lookup time can be used by the remote attribute set/get/remove code
      without modification for both CRC and non-CRC filesystems. The world
      becomes sane again.
      
      Because the copy-in and copy-out now need to iterate over each
      filesystem block, I moved them into helper functions so we separate
      the block mapping and buffer manupulations from the attribute data
      and CRC header manipulations. The code becomes much clearer as a
      result, and it is a lot easier to understand and debug. It also
      appears to be much more robust - once it worked on 4k block size
      filesystems, it has worked without failure on 1k block size
      filesystems, too.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      
      (cherry picked from commit ad1858d7)
      7bc0dc27
    • D
      xfs: fully initialise temp leaf in xfs_attr3_leaf_compact · 634fd532
      Dave Chinner 提交于
      xfs_attr3_leaf_compact() uses a temporary buffer for compacting the
      the entries in a leaf. It copies the the original buffer into the
      temporary buffer, then zeros the original buffer completely. It then
      copies the entries back into the original buffer.  However, the
      original buffer has not been correctly initialised, and so the
      movement of the entries goes horribly wrong.
      
      Make sure the zeroed destination buffer is fully initialised, and
      once we've set up the destination incore header appropriately, write
      is back to the buffer before starting to move entries around.
      
      While debugging this, the _d/_s prefixes weren't sufficient to
      remind me what buffer was what, so rename then all _src/_dst.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      
      (cherry picked from commit d4c712bc)
      634fd532
    • D
      xfs: fully initialise temp leaf in xfs_attr3_leaf_unbalance · 9e80c762
      Dave Chinner 提交于
      xfs_attr3_leaf_unbalance() uses a temporary buffer for recombining
      the entries in two leaves when the destination leaf requires
      compaction. The temporary buffer ends up being copied back over the
      original destination buffer, so the header in the temporary buffer
      needs to contain all the information that is in the destination
      buffer.
      
      To make sure the temporary buffer is fully initialised, once we've
      set up the temporary incore header appropriately, write is back to
      the temporary buffer before starting to move entries around.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      
      (cherry picked from commit 8517de2a)
      9e80c762
    • D
      xfs: correctly map remote attr buffers during removal · 58a72281
      Dave Chinner 提交于
      If we don't map the buffers correctly (same as for get/set
      operations) then the incore buffer lookup will fail. If a block
      number matches but a length is wrong, then debug kernels will ASSERT
      fail in _xfs_buf_find() due to the length mismatch. Ensure that we
      map the buffers correctly by basing the length of the buffer on the
      attribute data length rather than the remote block count.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      
      (cherry picked from commit 6863ef84)
      58a72281
    • D
      xfs: remote attribute tail zeroing does too much · 26f71445
      Dave Chinner 提交于
      When an attribute data does not fill then entire remote block, we
      zero the remaining part of the buffer. This, however, needs to take
      into account that the buffer has a header, and so the offset where
      zeroing starts and the length of zeroing need to take this into
      account. Otherwise we end up with zeros over the end of the
      attribute value when CRCs are enabled.
      
      While there, make sure we only ask to map an extent that covers the
      remaining range of the attribute, rather than asking every time for
      the full length of remote data. If the remote attribute blocks are
      contiguous with other parts of the attribute tree, it will map those
      blocks as well and we can potentially zero them incorrectly. We can
      also get buffer size mistmatches when trying to read or remove the
      remote attribute, and this can lead to not finding the correct
      buffer when looking it up in cache.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      
      (cherry picked from commit 4af3644c)
      26f71445
    • D
      xfs: remote attribute read too short · 551b382f
      Dave Chinner 提交于
      Reading a maximally size remote attribute fails when CRCs are
      enabled with this verification error:
      
      XFS (vdb): remote attribute header does not match required off/len/owner)
      
      There are two reasons for this, the first being that the
      length of the buffer being read is determined from the
      args->rmtblkcnt which doesn't take into account CRC headers. Hence
      the mapped length ends up being too short and so we need to
      calculate it directly from the value length.
      
      The second is that the byte count of valid data within a buffer is
      capped by the length of the data and so doesn't take into account
      that the buffer might be longer due to headers. Hence we need to
      calculate the data space in the buffer first before calculating the
      actual byte count of data.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      
      (cherry picked from commit 913e96bc)
      551b382f
    • D
      xfs: remote attribute allocation may be contiguous · 9531e2de
      Dave Chinner 提交于
      When CRCs are enabled, there may be multiple allocations made if the
      headers cause a length overflow. This, however, does not mean that
      the number of headers required increases, as the second and
      subsequent extents may be contiguous with the previous extent. Hence
      when we map the extents to write the attribute data, we may end up
      with less extents than allocations made. Hence the assertion that we
      consume the number of headers we calculated in the allocation loop
      is incorrect and needs to be removed.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      
      (cherry picked from commit 90253cf1)
      9531e2de
    • D
      xfs: fix dir3 freespace block corruption · e400d27d
      Dave Chinner 提交于
      When the directory freespace index grows to a second block (2017
      4k data blocks in the directory), the initialisation of the second
      new block header goes wrong. The write verifier fires a corruption
      error indicating that the block number in the header is zero. This
      was being tripped by xfs/110.
      
      The problem is that the initialisation of the new block is done just
      fine in xfs_dir3_free_get_buf(), but the caller then users a dirv2
      structure to zero on-disk header fields that xfs_dir3_free_get_buf()
      has already zeroed. These lined up with the block number in the dir
      v3 header format.
      
      While looking at this, I noticed that the struct xfs_dir3_free_hdr()
      had 4 bytes of padding in it that wasn't defined as padding or being
      zeroed by the initialisation. Add a pad field declaration and fully
      zero the on disk and in-core headers in xfs_dir3_free_get_buf() so
      that this is never an issue in the future. Note that this doesn't
      change the on-disk layout, just makes the 32 bits of padding in the
      layout explicit.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      
      (cherry picked from commit 5ae6e6a4)
      e400d27d
    • D
      xfs: disable swap extents ioctl on CRC enabled filesystems · 7c9950fd
      Dave Chinner 提交于
      Currently, swapping extents from one inode to another is a simple
      act of switching data and attribute forks from one inode to another.
      This, unfortunately in no longer so simple with CRC enabled
      filesystems as there is owner information embedded into the BMBT
      blocks that are swapped between inodes. Hence swapping the forks
      between inodes results in the inodes having mapping blocks that
      point to the wrong owner and hence are considered corrupt.
      
      To fix this we need an extent tree block or record based swap
      algorithm so that the BMBT block owner information can be updated
      atomically in the swap transaction. This is a significant piece of
      new work, so for the moment simply don't allow swap extent
      operations to succeed on CRC enabled filesystems.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Reviewed-by: NBrian Foster <bfoster@redhat.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      
      (cherry picked from commit 02f75405)
      7c9950fd
    • D
      xfs: add fsgeom flag for v5 superblock support. · e7927e87
      Dave Chinner 提交于
      Currently userspace has no way of determining that a filesystem is
      CRC enabled. Add a flag to the XFS_IOC_FSGEOMETRY ioctl output to
      indicate that the filesystem has v5 superblock support enabled.
      This will allow xfs_info to correctly report the state of the
      filesystem.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NEric Sandeen <sandeen@redhat.com>
      Reviewed-by: NBrian Foster <bfoster@redhat.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      
      (cherry picked from commit 74137fff)
      e7927e87
    • D
      xfs: fix incorrect remote symlink block count · 1de09d1a
      Dave Chinner 提交于
      When CRCs are enabled, the number of blocks needed to hold a remote
      symlink on a 1k block size filesystem may be 2 instead of 1. The
      transaction reservation for the allocated blocks was not taking this
      into account and only allocating one block. Hence when trying to
      read or invalidate such symlinks, we are mapping a hole where there
      should be a block and things go bad at that point.
      
      Fix the reservation to use the correct block count, clean up the
      block count calculation similar to the remote attribute calculation,
      and add a debug guard to detect when we don't write the entire
      symlink to disk.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Reviewed-by: NBrian Foster <bfoster@redhat.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      
      (cherry picked from commit 321a9583)
      1de09d1a
    • D
      xfs: fix split buffer vector log recovery support · 7d2ffe80
      Dave Chinner 提交于
      A long time ago in a galaxy far away....
      
      .. the was a commit made to fix some ilinux specific "fragmented
      buffer" log recovery problem:
      
      http://oss.sgi.com/cgi-bin/gitweb.cgi?p=archive/xfs-import.git;a=commitdiff;h=b29c0bece51da72fb3ff3b61391a391ea54e1603
      
      That problem occurred when a contiguous dirty region of a buffer was
      split across across two pages of an unmapped buffer. It's been a
      long time since that has been done in XFS, and the changes to log
      the entire inode buffers for CRC enabled filesystems has
      re-introduced that corner case.
      
      And, of course, it turns out that the above commit didn't actually
      fix anything - it just ensured that log recovery is guaranteed to
      fail when this situation occurs. And now for the gory details.
      
      xfstest xfs/085 is failing with this assert:
      
      XFS (vdb): bad number of regions (0) in inode log format
      XFS: Assertion failed: 0, file: fs/xfs/xfs_log_recover.c, line: 1583
      
      Largely undocumented factoid #1: Log recovery depends on all log
      buffer format items starting with this format:
      
      struct foo_log_format {
      	__uint16_t	type;
      	__uint16_t	size;
      	....
      
      As recoery uses the size field and assumptions about 32 bit
      alignment in decoding format items.  So don't pay much attention to
      the fact log recovery thinks that it decoding an inode log format
      item - it just uses them to determine what the size of the item is.
      
      But why would it see a log format item with a zero size? Well,
      luckily enough xfs_logprint uses the same code and gives the same
      error, so with a bit of gdb magic, it turns out that it isn't a log
      format that is being decoded. What logprint tells us is this:
      
      Oper (130): tid: a0375e1a  len: 28  clientid: TRANS  flags: none
      BUF:  #regs: 2   start blkno: 144 (0x90)  len: 16  bmap size: 2  flags: 0x4000
      Oper (131): tid: a0375e1a  len: 4096  clientid: TRANS  flags: none
      BUF DATA
      ----------------------------------------------------------------------------
      Oper (132): tid: a0375e1a  len: 4096  clientid: TRANS  flags: none
      xfs_logprint: unknown log operation type (4e49)
      **********************************************************************
      * ERROR: data block=2                                                 *
      **********************************************************************
      
      That we've got a buffer format item (oper 130) that has two regions;
      the format item itself and one dirty region. The subsequent region
      after the buffer format item and it's data is them what we are
      tripping over, and the first bytes of it at an inode magic number.
      Not a log opheader like there is supposed to be.
      
      That means there's a problem with the buffer format item. It's dirty
      data region is 4096 bytes, and it contains - you guessed it -
      initialised inodes. But inode buffers are 8k, not 4k, and we log
      them in their entirety. So something is wrong here. The buffer
      format item contains:
      
      (gdb) p /x *(struct xfs_buf_log_format *)in_f
      $22 = {blf_type = 0x123c, blf_size = 0x2, blf_flags = 0x4000,
             blf_len = 0x10, blf_blkno = 0x90, blf_map_size = 0x2,
             blf_data_map = {0xffffffff, 0xffffffff, .... }}
      
      Two regions, and a signle dirty contiguous region of 64 bits.  64 *
      128 = 8k, so this should be followed by a single 8k region of data.
      And the blf_flags tell us that the type of buffer is a
      XFS_BLFT_DINO_BUF. It contains inodes. And because it doesn't have
      the XFS_BLF_INODE_BUF flag set, that means it's an inode allocation
      buffer. So, it should be followed by 8k of inode data.
      
      But we know that the next region has a header of:
      
      (gdb) p /x *ohead
      $25 = {oh_tid = 0x1a5e37a0, oh_len = 0x100000, oh_clientid = 0x69,
             oh_flags = 0x0, oh_res2 = 0x0}
      
      and so be32_to_cpu(oh_len) = 0x1000 = 4096 bytes. It's simply not
      long enough to hold all the logged data. There must be another
      region. There is - there's a following opheader for another 4k of
      data that contains the other half of the inode cluster data - the
      one we assert fail on because it's not a log format header.
      
      So why is the second part of the data not being accounted to the
      correct buffer log format structure? It took a little more work with
      gdb to work out that the buffer log format structure was both
      expecting it to be there but hadn't accounted for it. It was at that
      point I went to the kernel code, as clearly this wasn't a bug in
      xfs_logprint and the kernel was writing bad stuff to the log.
      
      First port of call was the buffer item formatting code, and the
      discontiguous memory/contiguous dirty region handling code
      immediately stood out. I've wondered for a long time why the code
      had this comment in it:
      
                              vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
                              vecp->i_len = nbits * XFS_BLF_CHUNK;
                              vecp->i_type = XLOG_REG_TYPE_BCHUNK;
      /*
       * You would think we need to bump the nvecs here too, but we do not
       * this number is used by recovery, and it gets confused by the boundary
       * split here
       *                      nvecs++;
       */
                              vecp++;
      
      And it didn't account for the extra vector pointer. The case being
      handled here is that a contiguous dirty region lies across a
      boundary that cannot be memcpy()d across, and so has to be split
      into two separate operations for xlog_write() to perform.
      
      What this code assumes is that what is written to the log is two
      consecutive blocks of data that are accounted in the buf log format
      item as the same contiguous dirty region and so will get decoded as
      such by the log recovery code.
      
      The thing is, xlog_write() knows nothing about this, and so just
      does it's normal thing of adding an opheader for each vector. That
      means the 8k region gets written to the log as two separate regions
      of 4k each, but because nvecs has not been incremented, the buf log
      format item accounts for only one of them.
      
      Hence when we come to log recovery, we process the first 4k region
      and then expect to come across a new item that starts with a log
      format structure of some kind that tells us whenteh next data is
      going to be. Instead, we hit raw buffer data and things go bad real
      quick.
      
      So, the commit from 2002 that commented out nvecs++ is just plain
      wrong. It breaks log recovery completely, and it would seem the only
      reason this hasn't been since then is that we don't log large
      contigous regions of multi-page unmapped buffers very often. Never
      would be a closer estimate, at least until the CRC code came along....
      
      So, lets fix that by restoring the nvecs accounting for the extra
      region when we hit this case.....
      
      .... and there's the problemin log recovery it is apparently working
      around:
      
      XFS: Assertion failed: i == item->ri_total, file: fs/xfs/xfs_log_recover.c, line: 2135
      
      Yup, xlog_recover_do_reg_buffer() doesn't handle contigous dirty
      regions being broken up into multiple regions by the log formatting
      code. That's an easy fix, though - if the number of contiguous dirty
      bits exceeds the length of the region being copied out of the log,
      only account for the number of dirty bits that region covers, and
      then loop again and copy more from the next region. It's a 2 line
      fix.
      
      Now xfstests xfs/085 passes, we have one less piece of mystery
      code, and one more important piece of knowledge about how to
      structure new log format items..
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NMark Tinguely <tinguely@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      
      (cherry picked from commit 709da6a6)
      7d2ffe80
    • D
      xfs: kill suid/sgid through the truncate path. · 2962f5a5
      Dave Chinner 提交于
      XFS has failed to kill suid/sgid bits correctly when truncating
      files of non-zero size since commit c4ed4243 ("xfs: split
      xfs_setattr") introduced in the 3.1 kernel. Fix it.
      
      Fix it.
      
      cc: stable kernel <stable@vger.kernel.org>
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBrian Foster <bfoster@redhat.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      
      (cherry picked from commit 56c19e89)
      2962f5a5
    • D
      xfs: avoid nesting transactions in xfs_qm_scall_setqlim() · 08fb3905
      Dave Chinner 提交于
      Lockdep reports:
      
      =============================================
      [ INFO: possible recursive locking detected ]
      3.9.0+ #3 Not tainted
      ---------------------------------------------
      setquota/28368 is trying to acquire lock:
       (sb_internal){++++.?}, at: [<c11e8846>] xfs_trans_alloc+0x26/0x50
      
      but task is already holding lock:
       (sb_internal){++++.?}, at: [<c11e8846>] xfs_trans_alloc+0x26/0x50
      
      from xfs_qm_scall_setqlim()->xfs_dqread() when a dquot needs to be
      allocated.
      
      xfs_qm_scall_setqlim() is starting a transaction and then not
      passing it into xfs_qm_dqet() and so it starts it's own transaction
      when allocating the dquot.  Splat!
      
      Fix this by not allocating the dquot in xfs_qm_scall_setqlim()
      inside the setqlim transaction. This requires getting the dquot
      first (and allocating it if necessary) then dropping and relocking
      the dquot before joining it to the setqlim transaction.
      Reported-by: NMichael L. Semon <mlsemon35@gmail.com>
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBen Myers <bpm@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      (cherry picked from commit f648167f)
      08fb3905
    • C
      NFS: Fix security flavor negotiation with legacy binary mounts · eb54d437
      Chuck Lever 提交于
      Darrick J. Wong <darrick.wong@oracle.com> reports:
      > I have a kvm-based testing setup that netboots VMs over NFS, the
      > client end of which seems to have broken somehow in 3.10-rc1.  The
      > server's exports file looks like this:
      >
      > /storage/mtr/x64	192.168.122.0/24(ro,sync,no_root_squash,no_subtree_check)
      >
      > On the client end (inside the VM), the initrd runs the following
      > command to try to mount the rootfs over NFS:
      >
      > # mount -o nolock -o ro -o retrans=10 192.168.122.1:/storage/mtr/x64/ /root
      >
      > (Note: This is the busybox mount command.)
      >
      > The mount fails with -EINVAL.
      
      Commit 4580a92d "NFS: Use server-recommended security flavor by
      default (NFSv3)" introduced a behavior regression for NFS mounts
      done via a legacy binary mount(2) call.
      
      Ensure that a default security flavor is specified for legacy binary
      mount requests, since they do not invoke nfs_select_flavor() in the
      kernel.
      
      Busybox uses klibc's nfsmount command, which performs NFS mounts
      using the legacy binary mount data format.  /sbin/mount.nfs is not
      affected by this regression.
      Reported-by: NDarrick J. Wong <darrick.wong@oracle.com>
      Signed-off-by: NChuck Lever <chuck.lever@oracle.com>
      Tested-by: NDarrick J. Wong <darrick.wong@oracle.com>
      Acked-by: NWeston Andros Adamson <dros@netapp.com>
      Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
      eb54d437
  6. 30 5月, 2013 1 次提交
  7. 25 5月, 2013 7 次提交