- 20 3月, 2006 12 次提交
-
-
由 David S. Miller 提交于
Yes, you heard it right, they changed the PTE layout for SUN4V. Ho hum... This is the simple and inefficient way to support this. It'll get optimized, don't worry. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Second instruction offset is '4' not '3'. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
We look for "SUNW,sun4v" in the 'compatible' property of the root OBP device tree node. Protect every %ver register access, to make sure it is not touched on sun4v, as %ver is hyperprivileged there. Lock kernel TLB entries using hypervisor calls instead of calls into OBP. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
sun4v uses ASI_MMU instead of ASI_DMMU Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
V9 requires a write memory barrier before the instruction flush. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
If we're just switching between different alternate global sets, nop it out on sun4v. Also, get rid of all of the alternate global save/restore in the OBP CIF trampoline code. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Instead of setting/clearing PSTATE_AG we have to change the %gl register value on sun4v. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
On uniprocessor, it's always zero for optimize that. On SMP, the jmpl to the stub kills the return address stack in the cpu branch prediction logic, so expand the code sequence inline and use a code patching section to fix things up. This also always better and explicit register selection, which will be taken advantage of in a future changeset. The hard_smp_processor_id() function is big, so do not inline it. Fix up tests for Jalapeno to also test for Serrano chips too. These tests want "jbus Ultra-IIIi" cases to match, so that is what we should test for. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
UltraSPARC has special sets of global registers which are switched to for certain trap types. There is one set for MMU related traps, one set of Interrupt Vector processing, and another set (called the Alternate globals) for all other trap types. For what seems like forever we've hard coded the values in some of these trap registers. Some examples include: 1) Interrupt Vector global %g6 holds current processors interrupt work struct where received interrupts are managed for IRQ handler dispatch. 2) MMU global %g7 holds the base of the page tables of the currently active address space. 3) Alternate global %g6 held the current_thread_info() value. Such hardcoding has resulted in some serious issues in many areas. There are some code sequences where having another register available would help clean up the implementation. Taking traps such as cross-calls from the OBP firmware requires some trick code sequences wherein we have to save away and restore all of the special sets of global registers when we enter/exit OBP. We were also using the IMMU TSB register on SMP to hold the per-cpu area base address, which doesn't work any longer now that we actually use the TSB facility of the cpu. The implementation is pretty straight forward. One tricky bit is getting the current processor ID as that is different on different cpu variants. We use a stub with a fancy calling convention which we patch at boot time. The calling convention is that the stub is branched to and the (PC - 4) to return to is in register %g1. The cpu number is left in %g6. This stub can be invoked by using the __GET_CPUID macro. We use an array of per-cpu trap state to store the current thread and physical address of the current address space's page tables. The TRAP_LOAD_THREAD_REG loads %g6 with the current thread from this table, it uses __GET_CPUID and also clobbers %g1. TRAP_LOAD_IRQ_WORK is used by the interrupt vector processing to load the current processor's IRQ software state into %g6. It also uses __GET_CPUID and clobbers %g1. Finally, TRAP_LOAD_PGD_PHYS loads the physical address base of the current address space's page tables into %g7, it clobbers %g1 and uses __GET_CPUID. Many refinements are possible, as well as some tuning, with this stuff in place. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 27 2月, 2006 1 次提交
-
-
由 David S. Miller 提交于
The change to kernel/sched.c's init code to use for_each_cpu() requires that the cpu_possible_map be setup much earlier. Set it up via setup_arch(), constrained to NR_CPUS, and later constrain it to max_cpus in smp_prepare_cpus(). This fixes SMP booting on sparc64. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 19 1月, 2006 1 次提交
-
-
由 Eddie C. Dost 提交于
From: Eddie C. Dost <ecd@brainaid.de> I have the following patch for serial console over the RSC (remote system controller) on my E250 machine. It basically adds support for input-device=rsc and output-device=rsc from OBP, and allows 115200,8,n,1,- serial mode setting. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 13 1月, 2006 1 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 12 11月, 2005 1 次提交
-
-
由 David S. Miller 提交于
Noticed by Tom 'spot' Callaway. Even on uniprocessor we always reported the number of physical cpus in the system via /proc/cpuinfo. But when this got changed to use num_possible_cpus() it always reads as "1" on uniprocessor. This change was unintentional. So scan the firmware device tree and count the number of cpu nodes, and report that, as we always did. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 08 11月, 2005 1 次提交
-
-
由 Hugh Dickins 提交于
sparc64 prom_callback and new_setup_frame32 each operates on a user page table without holding lock, and no doubt they've good reason. But I'd feel more confident if they were to do a "pte = *ptep" and then operate on pte, rather than re-evaluating *ptep. Signed-off-by: NHugh Dickins <hugh@veritas.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 05 10月, 2005 1 次提交
-
-
由 David S. Miller 提交于
Instead of code patching to handle the page size fields in the context registers, just use variables from which we get the proper values. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 29 9月, 2005 2 次提交
-
-
由 David S. Miller 提交于
Also, move prom_probe_memory() into arch/sparc64/mm/init.c Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 26 9月, 2005 1 次提交
-
-
由 David S. Miller 提交于
At boot time, determine the D-cache, I-cache and E-cache size and line-size. Use them in cache flushes when appropriate. This change was motivated by discovering that the D-cache on UltraSparc-IIIi and later are 64K not 32K, and the flushes done by the Cheetah error handlers were assuming a 32K size. There are still some pieces of code that are hard coding things and will need to be fixed up at some point. While we're here, fix the D-cache and I-cache parity error handlers to run with interrupts disabled, and when the trap occurs at trap level > 1 log the event via a counter displayed in /proc/cpuinfo. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 24 9月, 2005 1 次提交
-
-
由 David S. Miller 提交于
'highest_paddr' is set, but never actually used. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 23 9月, 2005 1 次提交
-
-
由 David S. Miller 提交于
Instead of all of this cpu-specific code to remap the kernel to the correct location, use portable firmware calls to do this instead. What we do now is the following in position independant assembler: chosen_node = prom_finddevice("/chosen"); prom_mmu_ihandle_cache = prom_getint(chosen_node, "mmu"); vaddr = 4MB_ALIGN(current_text_addr()); prom_translate(vaddr, &paddr_high, &paddr_low, &mode); prom_boot_mapping_mode = mode; prom_boot_mapping_phys_high = paddr_high; prom_boot_mapping_phys_low = paddr_low; prom_map(-1, 8 * 1024 * 1024, KERNBASE, paddr_low); and that replaces the massive amount of by-hand TLB probing and programming we used to do here. The new code should also handle properly the case where the kernel is mapped at the correct address already (think: future kexec support). Consequently, the bulk of remap_kernel() dies as does the entirety of arch/sparc64/prom/map.S We try to share some strings in the PROM library with the ones used at bootup, and while we're here mark input strings to oplib.h routines with "const" when appropriate. There are many more simplifications now possible. For one thing, we can consolidate the two copies we now have of a lot of cpu setup code sitting in head.S and trampoline.S. This is a significant step towards CONFIG_DEBUG_PAGEALLOC support. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 30 8月, 2005 2 次提交
-
-
由 David S. Miller 提交于
We can put the __softirq_pending mask in the cpudata, no need for the silly NR_CPUS array in kernel/softirq.c Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Kumar Gala 提交于
Removed sparc64 architecture specific users of asm/segment.h and asm-sparc64/segment.h itself Signed-off-by: NKumar Gala <kumar.gala@freescale.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 24 5月, 2005 1 次提交
-
-
由 David S. Miller 提交于
Older UltraSPARC-III chips have a P-Cache bug that makes us disable it by default at boot time. However, this does hurt performance substantially, particularly with memcpy(), and the bug is _incredibly_ obscure. I have never seen it triggered in practice, ever. So provide a "-P" boot option that forces the P-Cache on. It taints the kernel, so if it does trigger and cause some data corruption or OOPS, we will find out in the logs that this option was on when it happened. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 17 4月, 2005 1 次提交
-
-
由 Linus Torvalds 提交于
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
-