1. 30 10月, 2013 1 次提交
  2. 25 10月, 2013 15 次提交
  3. 15 7月, 2013 1 次提交
    • P
      kernel: delete __cpuinit usage from all core kernel files · 0db0628d
      Paul Gortmaker 提交于
      The __cpuinit type of throwaway sections might have made sense
      some time ago when RAM was more constrained, but now the savings
      do not offset the cost and complications.  For example, the fix in
      commit 5e427ec2 ("x86: Fix bit corruption at CPU resume time")
      is a good example of the nasty type of bugs that can be created
      with improper use of the various __init prefixes.
      
      After a discussion on LKML[1] it was decided that cpuinit should go
      the way of devinit and be phased out.  Once all the users are gone,
      we can then finally remove the macros themselves from linux/init.h.
      
      This removes all the uses of the __cpuinit macros from C files in
      the core kernel directories (kernel, init, lib, mm, and include)
      that don't really have a specific maintainer.
      
      [1] https://lkml.org/lkml/2013/5/20/589Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
      0db0628d
  4. 08 7月, 2013 1 次提交
  5. 07 7月, 2013 3 次提交
  6. 08 6月, 2013 1 次提交
  7. 01 5月, 2013 1 次提交
  8. 29 4月, 2013 1 次提交
  9. 07 2月, 2013 1 次提交
  10. 01 2月, 2013 8 次提交
  11. 21 1月, 2013 1 次提交
  12. 19 12月, 2012 6 次提交
    • G
      memcg: add comments clarifying aspects of cache attribute propagation · ebe945c2
      Glauber Costa 提交于
      This patch clarifies two aspects of cache attribute propagation.
      
      First, the expected context for the for_each_memcg_cache macro in
      memcontrol.h.  The usages already in the codebase are safe.  In mm/slub.c,
      it is trivially safe because the lock is acquired right before the loop.
      In mm/slab.c, it is less so: the lock is acquired by an outer function a
      few steps back in the stack, so a VM_BUG_ON() is added to make sure it is
      indeed safe.
      
      A comment is also added to detail why we are returning the value of the
      parent cache and ignoring the children's when we propagate the attributes.
      Signed-off-by: NGlauber Costa <glommer@parallels.com>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Acked-by: NDavid Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ebe945c2
    • G
      slab: propagate tunable values · 943a451a
      Glauber Costa 提交于
      SLAB allows us to tune a particular cache behavior with tunables.  When
      creating a new memcg cache copy, we'd like to preserve any tunables the
      parent cache already had.
      
      This could be done by an explicit call to do_tune_cpucache() after the
      cache is created.  But this is not very convenient now that the caches are
      created from common code, since this function is SLAB-specific.
      
      Another method of doing that is taking advantage of the fact that
      do_tune_cpucache() is always called from enable_cpucache(), which is
      called at cache initialization.  We can just preset the values, and then
      things work as expected.
      
      It can also happen that a root cache has its tunables updated during
      normal system operation.  In this case, we will propagate the change to
      all caches that are already active.
      
      This change will require us to move the assignment of root_cache in
      memcg_params a bit earlier.  We need this to be already set - which
      memcg_kmem_register_cache will do - when we reach __kmem_cache_create()
      Signed-off-by: NGlauber Costa <glommer@parallels.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Frederic Weisbecker <fweisbec@redhat.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: JoonSoo Kim <js1304@gmail.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Pekka Enberg <penberg@cs.helsinki.fi>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Suleiman Souhlal <suleiman@google.com>
      Cc: Tejun Heo <tj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      943a451a
    • G
      memcg: destroy memcg caches · 1f458cbf
      Glauber Costa 提交于
      Implement destruction of memcg caches.  Right now, only caches where our
      reference counter is the last remaining are deleted.  If there are any
      other reference counters around, we just leave the caches lying around
      until they go away.
      
      When that happens, a destruction function is called from the cache code.
      Caches are only destroyed in process context, so we queue them up for
      later processing in the general case.
      Signed-off-by: NGlauber Costa <glommer@parallels.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Frederic Weisbecker <fweisbec@redhat.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: JoonSoo Kim <js1304@gmail.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Pekka Enberg <penberg@cs.helsinki.fi>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Suleiman Souhlal <suleiman@google.com>
      Cc: Tejun Heo <tj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      1f458cbf
    • G
      sl[au]b: allocate objects from memcg cache · d79923fa
      Glauber Costa 提交于
      We are able to match a cache allocation to a particular memcg.  If the
      task doesn't change groups during the allocation itself - a rare event,
      this will give us a good picture about who is the first group to touch a
      cache page.
      
      This patch uses the now available infrastructure by calling
      memcg_kmem_get_cache() before all the cache allocations.
      Signed-off-by: NGlauber Costa <glommer@parallels.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Frederic Weisbecker <fweisbec@redhat.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: JoonSoo Kim <js1304@gmail.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Pekka Enberg <penberg@cs.helsinki.fi>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Suleiman Souhlal <suleiman@google.com>
      Cc: Tejun Heo <tj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d79923fa
    • G
      sl[au]b: always get the cache from its page in kmem_cache_free() · b9ce5ef4
      Glauber Costa 提交于
      struct page already has this information.  If we start chaining caches,
      this information will always be more trustworthy than whatever is passed
      into the function.
      Signed-off-by: NGlauber Costa <glommer@parallels.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Frederic Weisbecker <fweisbec@redhat.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: JoonSoo Kim <js1304@gmail.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Pekka Enberg <penberg@cs.helsinki.fi>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Suleiman Souhlal <suleiman@google.com>
      Cc: Tejun Heo <tj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b9ce5ef4
    • G
      slab: annotate on-slab caches nodelist locks · 6ccfb5bc
      Glauber Costa 提交于
      We currently provide lockdep annotation for kmalloc caches, and also
      caches that have SLAB_DEBUG_OBJECTS enabled.  The reason for this is that
      we can quite frequently nest in the l3->list_lock lock, which is not
      something trivial to avoid.
      
      My proposal with this patch, is to extend this to caches whose slab
      management object lives within the slab as well ("on_slab").  The need for
      this arose in the context of testing kmemcg-slab patches.  With such
      patchset, we can have per-memcg kmalloc caches.  So the same path that led
      to nesting between kmalloc caches will could then lead to in-memcg
      nesting.  Because they are not annotated, lockdep will trigger.
      Signed-off-by: NGlauber Costa <glommer@parallels.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Frederic Weisbecker <fweisbec@redhat.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: JoonSoo Kim <js1304@gmail.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Pekka Enberg <penberg@cs.helsinki.fi>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Suleiman Souhlal <suleiman@google.com>
      Cc: Tejun Heo <tj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6ccfb5bc