提交 f4d5b8ad 编写于 作者: I Ingo Molnar

Merge tag 'efi-urgent' of...

Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into efi/urgent

Pull EFI/arm64 fix from Matt Fleming:

" * Fix a boot crash on arm64 caused by a recent commit to mark the EFI
    memory map as 'MEMBLOCK_NOMAP' which causes the regions to be
    omitted from the kernel direct mapping - Ard Biesheuvel "
Signed-off-by: NIngo Molnar <mingo@kernel.org>
Memory Protection Keys for Userspace (PKU aka PKEYs) is a CPU feature
which will be found on future Intel CPUs.
Memory Protection Keys provides a mechanism for enforcing page-based
protections, but without requiring modification of the page tables
when an application changes protection domains. It works by
dedicating 4 previously ignored bits in each page table entry to a
"protection key", giving 16 possible keys.
There is also a new user-accessible register (PKRU) with two separate
bits (Access Disable and Write Disable) for each key. Being a CPU
register, PKRU is inherently thread-local, potentially giving each
thread a different set of protections from every other thread.
There are two new instructions (RDPKRU/WRPKRU) for reading and writing
to the new register. The feature is only available in 64-bit mode,
even though there is theoretically space in the PAE PTEs. These
permissions are enforced on data access only and have no effect on
instruction fetches.
=========================== Config Option ===========================
This config option adds approximately 1.5kb of text. and 50 bytes of
data to the executable. A workload which does large O_DIRECT reads
of holes in XFS files was run to exercise get_user_pages_fast(). No
performance delta was observed with the config option
enabled or disabled.
x86 Topology
============
This documents and clarifies the main aspects of x86 topology modelling and
representation in the kernel. Update/change when doing changes to the
respective code.
The architecture-agnostic topology definitions are in
Documentation/cputopology.txt. This file holds x86-specific
differences/specialities which must not necessarily apply to the generic
definitions. Thus, the way to read up on Linux topology on x86 is to start
with the generic one and look at this one in parallel for the x86 specifics.
Needless to say, code should use the generic functions - this file is *only*
here to *document* the inner workings of x86 topology.
Started by Thomas Gleixner <tglx@linutronix.de> and Borislav Petkov <bp@alien8.de>.
The main aim of the topology facilities is to present adequate interfaces to
code which needs to know/query/use the structure of the running system wrt
threads, cores, packages, etc.
The kernel does not care about the concept of physical sockets because a
socket has no relevance to software. It's an electromechanical component. In
the past a socket always contained a single package (see below), but with the
advent of Multi Chip Modules (MCM) a socket can hold more than one package. So
there might be still references to sockets in the code, but they are of
historical nature and should be cleaned up.
The topology of a system is described in the units of:
- packages
- cores
- threads
* Package:
Packages contain a number of cores plus shared resources, e.g. DRAM
controller, shared caches etc.
AMD nomenclature for package is 'Node'.
Package-related topology information in the kernel:
- cpuinfo_x86.x86_max_cores:
The number of cores in a package. This information is retrieved via CPUID.
- cpuinfo_x86.phys_proc_id:
The physical ID of the package. This information is retrieved via CPUID
and deduced from the APIC IDs of the cores in the package.
- cpuinfo_x86.logical_id:
The logical ID of the package. As we do not trust BIOSes to enumerate the
packages in a consistent way, we introduced the concept of logical package
ID so we can sanely calculate the number of maximum possible packages in
the system and have the packages enumerated linearly.
- topology_max_packages():
The maximum possible number of packages in the system. Helpful for per
package facilities to preallocate per package information.
* Cores:
A core consists of 1 or more threads. It does not matter whether the threads
are SMT- or CMT-type threads.
AMDs nomenclature for a CMT core is "Compute Unit". The kernel always uses
"core".
Core-related topology information in the kernel:
- smp_num_siblings:
The number of threads in a core. The number of threads in a package can be
calculated by:
threads_per_package = cpuinfo_x86.x86_max_cores * smp_num_siblings
* Threads:
A thread is a single scheduling unit. It's the equivalent to a logical Linux
CPU.
AMDs nomenclature for CMT threads is "Compute Unit Core". The kernel always
uses "thread".
Thread-related topology information in the kernel:
- topology_core_cpumask():
The cpumask contains all online threads in the package to which a thread
belongs.
The number of online threads is also printed in /proc/cpuinfo "siblings."
- topology_sibling_mask():
The cpumask contains all online threads in the core to which a thread
belongs.
- topology_logical_package_id():
The logical package ID to which a thread belongs.
- topology_physical_package_id():
The physical package ID to which a thread belongs.
- topology_core_id();
The ID of the core to which a thread belongs. It is also printed in /proc/cpuinfo
"core_id."
System topology examples
Note:
The alternative Linux CPU enumeration depends on how the BIOS enumerates the
threads. Many BIOSes enumerate all threads 0 first and then all threads 1.
That has the "advantage" that the logical Linux CPU numbers of threads 0 stay
the same whether threads are enabled or not. That's merely an implementation
detail and has no practical impact.
1) Single Package, Single Core
[package 0] -> [core 0] -> [thread 0] -> Linux CPU 0
2) Single Package, Dual Core
a) One thread per core
[package 0] -> [core 0] -> [thread 0] -> Linux CPU 0
-> [core 1] -> [thread 0] -> Linux CPU 1
b) Two threads per core
[package 0] -> [core 0] -> [thread 0] -> Linux CPU 0
-> [thread 1] -> Linux CPU 1
-> [core 1] -> [thread 0] -> Linux CPU 2
-> [thread 1] -> Linux CPU 3
Alternative enumeration:
[package 0] -> [core 0] -> [thread 0] -> Linux CPU 0
-> [thread 1] -> Linux CPU 2
-> [core 1] -> [thread 0] -> Linux CPU 1
-> [thread 1] -> Linux CPU 3
AMD nomenclature for CMT systems:
[node 0] -> [Compute Unit 0] -> [Compute Unit Core 0] -> Linux CPU 0
-> [Compute Unit Core 1] -> Linux CPU 1
-> [Compute Unit 1] -> [Compute Unit Core 0] -> Linux CPU 2
-> [Compute Unit Core 1] -> Linux CPU 3
4) Dual Package, Dual Core
a) One thread per core
[package 0] -> [core 0] -> [thread 0] -> Linux CPU 0
-> [core 1] -> [thread 0] -> Linux CPU 1
[package 1] -> [core 0] -> [thread 0] -> Linux CPU 2
-> [core 1] -> [thread 0] -> Linux CPU 3
b) Two threads per core
[package 0] -> [core 0] -> [thread 0] -> Linux CPU 0
-> [thread 1] -> Linux CPU 1
-> [core 1] -> [thread 0] -> Linux CPU 2
-> [thread 1] -> Linux CPU 3
[package 1] -> [core 0] -> [thread 0] -> Linux CPU 4
-> [thread 1] -> Linux CPU 5
-> [core 1] -> [thread 0] -> Linux CPU 6
-> [thread 1] -> Linux CPU 7
Alternative enumeration:
[package 0] -> [core 0] -> [thread 0] -> Linux CPU 0
-> [thread 1] -> Linux CPU 4
-> [core 1] -> [thread 0] -> Linux CPU 1
-> [thread 1] -> Linux CPU 5
[package 1] -> [core 0] -> [thread 0] -> Linux CPU 2
-> [thread 1] -> Linux CPU 6
-> [core 1] -> [thread 0] -> Linux CPU 3
-> [thread 1] -> Linux CPU 7
AMD nomenclature for CMT systems:
[node 0] -> [Compute Unit 0] -> [Compute Unit Core 0] -> Linux CPU 0
-> [Compute Unit Core 1] -> Linux CPU 1
-> [Compute Unit 1] -> [Compute Unit Core 0] -> Linux CPU 2
-> [Compute Unit Core 1] -> Linux CPU 3
[node 1] -> [Compute Unit 0] -> [Compute Unit Core 0] -> Linux CPU 4
-> [Compute Unit Core 1] -> Linux CPU 5
-> [Compute Unit 1] -> [Compute Unit Core 0] -> Linux CPU 6
-> [Compute Unit Core 1] -> Linux CPU 7
......@@ -369,7 +369,7 @@ static int amd_pmu_cpu_prepare(int cpu)
WARN_ON_ONCE(cpuc->amd_nb);
if (boot_cpu_data.x86_max_cores < 2)
if (!x86_pmu.amd_nb_constraints)
return NOTIFY_OK;
cpuc->amd_nb = amd_alloc_nb(cpu);
......@@ -388,7 +388,7 @@ static void amd_pmu_cpu_starting(int cpu)
cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
if (boot_cpu_data.x86_max_cores < 2)
if (!x86_pmu.amd_nb_constraints)
return;
nb_id = amd_get_nb_id(cpu);
......@@ -414,7 +414,7 @@ static void amd_pmu_cpu_dead(int cpu)
{
struct cpu_hw_events *cpuhw;
if (boot_cpu_data.x86_max_cores < 2)
if (!x86_pmu.amd_nb_constraints)
return;
cpuhw = &per_cpu(cpu_hw_events, cpu);
......@@ -648,6 +648,8 @@ static __initconst const struct x86_pmu amd_pmu = {
.cpu_prepare = amd_pmu_cpu_prepare,
.cpu_starting = amd_pmu_cpu_starting,
.cpu_dead = amd_pmu_cpu_dead,
.amd_nb_constraints = 1,
};
static int __init amd_core_pmu_init(void)
......@@ -674,6 +676,11 @@ static int __init amd_core_pmu_init(void)
x86_pmu.eventsel = MSR_F15H_PERF_CTL;
x86_pmu.perfctr = MSR_F15H_PERF_CTR;
x86_pmu.num_counters = AMD64_NUM_COUNTERS_CORE;
/*
* AMD Core perfctr has separate MSRs for the NB events, see
* the amd/uncore.c driver.
*/
x86_pmu.amd_nb_constraints = 0;
pr_cont("core perfctr, ");
return 0;
......@@ -693,6 +700,14 @@ __init int amd_pmu_init(void)
if (ret)
return ret;
if (num_possible_cpus() == 1) {
/*
* No point in allocating data structures to serialize
* against other CPUs, when there is only the one CPU.
*/
x86_pmu.amd_nb_constraints = 0;
}
/* Events are common for all AMDs */
memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
......
......@@ -607,6 +607,11 @@ struct x86_pmu {
*/
atomic_t lbr_exclusive[x86_lbr_exclusive_max];
/*
* AMD bits
*/
unsigned int amd_nb_constraints : 1;
/*
* Extra registers for events
*/
......
......@@ -190,6 +190,7 @@
#define MSR_PP1_ENERGY_STATUS 0x00000641
#define MSR_PP1_POLICY 0x00000642
/* Config TDP MSRs */
#define MSR_CONFIG_TDP_NOMINAL 0x00000648
#define MSR_CONFIG_TDP_LEVEL_1 0x00000649
#define MSR_CONFIG_TDP_LEVEL_2 0x0000064A
......@@ -210,13 +211,6 @@
#define MSR_GFX_PERF_LIMIT_REASONS 0x000006B0
#define MSR_RING_PERF_LIMIT_REASONS 0x000006B1
/* Config TDP MSRs */
#define MSR_CONFIG_TDP_NOMINAL 0x00000648
#define MSR_CONFIG_TDP_LEVEL1 0x00000649
#define MSR_CONFIG_TDP_LEVEL2 0x0000064A
#define MSR_CONFIG_TDP_CONTROL 0x0000064B
#define MSR_TURBO_ACTIVATION_RATIO 0x0000064C
/* Hardware P state interface */
#define MSR_PPERF 0x0000064e
#define MSR_PERF_LIMIT_REASONS 0x0000064f
......
......@@ -132,8 +132,6 @@ struct cpuinfo_x86 {
u16 logical_proc_id;
/* Core id: */
u16 cpu_core_id;
/* Compute unit id */
u8 compute_unit_id;
/* Index into per_cpu list: */
u16 cpu_index;
u32 microcode;
......
......@@ -155,6 +155,7 @@ static inline int wbinvd_on_all_cpus(void)
wbinvd();
return 0;
}
#define smp_num_siblings 1
#endif /* CONFIG_SMP */
extern unsigned disabled_cpus;
......
......@@ -276,11 +276,9 @@ static inline bool is_ia32_task(void)
*/
#define force_iret() set_thread_flag(TIF_NOTIFY_RESUME)
#endif /* !__ASSEMBLY__ */
#ifndef __ASSEMBLY__
extern void arch_task_cache_init(void);
extern int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src);
extern void arch_release_task_struct(struct task_struct *tsk);
#endif
#endif /* !__ASSEMBLY__ */
#endif /* _ASM_X86_THREAD_INFO_H */
......@@ -170,15 +170,13 @@ int amd_get_subcaches(int cpu)
{
struct pci_dev *link = node_to_amd_nb(amd_get_nb_id(cpu))->link;
unsigned int mask;
int cuid;
if (!amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
return 0;
pci_read_config_dword(link, 0x1d4, &mask);
cuid = cpu_data(cpu).compute_unit_id;
return (mask >> (4 * cuid)) & 0xf;
return (mask >> (4 * cpu_data(cpu).cpu_core_id)) & 0xf;
}
int amd_set_subcaches(int cpu, unsigned long mask)
......@@ -204,7 +202,7 @@ int amd_set_subcaches(int cpu, unsigned long mask)
pci_write_config_dword(nb->misc, 0x1b8, reg & ~0x180000);
}
cuid = cpu_data(cpu).compute_unit_id;
cuid = cpu_data(cpu).cpu_core_id;
mask <<= 4 * cuid;
mask |= (0xf ^ (1 << cuid)) << 26;
......
......@@ -300,7 +300,6 @@ static int nearby_node(int apicid)
#ifdef CONFIG_SMP
static void amd_get_topology(struct cpuinfo_x86 *c)
{
u32 cores_per_cu = 1;
u8 node_id;
int cpu = smp_processor_id();
......@@ -313,8 +312,8 @@ static void amd_get_topology(struct cpuinfo_x86 *c)
/* get compute unit information */
smp_num_siblings = ((ebx >> 8) & 3) + 1;
c->compute_unit_id = ebx & 0xff;
cores_per_cu += ((ebx >> 8) & 3);
c->x86_max_cores /= smp_num_siblings;
c->cpu_core_id = ebx & 0xff;
} else if (cpu_has(c, X86_FEATURE_NODEID_MSR)) {
u64 value;
......@@ -325,19 +324,16 @@ static void amd_get_topology(struct cpuinfo_x86 *c)
/* fixup multi-node processor information */
if (nodes_per_socket > 1) {
u32 cores_per_node;
u32 cus_per_node;
set_cpu_cap(c, X86_FEATURE_AMD_DCM);
cores_per_node = c->x86_max_cores / nodes_per_socket;
cus_per_node = cores_per_node / cores_per_cu;
cus_per_node = c->x86_max_cores / nodes_per_socket;
/* store NodeID, use llc_shared_map to store sibling info */
per_cpu(cpu_llc_id, cpu) = node_id;
/* core id has to be in the [0 .. cores_per_node - 1] range */
c->cpu_core_id %= cores_per_node;
c->compute_unit_id %= cus_per_node;
c->cpu_core_id %= cus_per_node;
}
}
#endif
......
......@@ -18,4 +18,6 @@ const char *const x86_power_flags[32] = {
"", /* tsc invariant mapped to constant_tsc */
"cpb", /* core performance boost */
"eff_freq_ro", /* Readonly aperf/mperf */
"proc_feedback", /* processor feedback interface */
"acc_power", /* accumulated power mechanism */
};
......@@ -422,7 +422,7 @@ static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
if (c->phys_proc_id == o->phys_proc_id &&
per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) &&
c->compute_unit_id == o->compute_unit_id)
c->cpu_core_id == o->cpu_core_id)
return topology_sane(c, o, "smt");
} else if (c->phys_proc_id == o->phys_proc_id &&
......
......@@ -20,6 +20,7 @@
#include <linux/pci.h>
#include <asm/mce.h>
#include <asm/smp.h>
#include <asm/amd_nb.h>
#include <asm/irq_vectors.h>
......@@ -206,7 +207,7 @@ static u32 get_nbc_for_node(int node_id)
struct cpuinfo_x86 *c = &boot_cpu_data;
u32 cores_per_node;
cores_per_node = c->x86_max_cores / amd_get_nodes_per_socket();
cores_per_node = (c->x86_max_cores * smp_num_siblings) / amd_get_nodes_per_socket();
return cores_per_node * node_id;
}
......
......@@ -203,7 +203,19 @@ void __init efi_init(void)
reserve_regions();
early_memunmap(memmap.map, params.mmap_size);
memblock_mark_nomap(params.mmap & PAGE_MASK,
PAGE_ALIGN(params.mmap_size +
(params.mmap & ~PAGE_MASK)));
if (IS_ENABLED(CONFIG_ARM)) {
/*
* ARM currently does not allow ioremap_cache() to be called on
* memory regions that are covered by struct page. So remove the
* UEFI memory map from the linear mapping.
*/
memblock_mark_nomap(params.mmap & PAGE_MASK,
PAGE_ALIGN(params.mmap_size +
(params.mmap & ~PAGE_MASK)));
} else {
memblock_reserve(params.mmap & PAGE_MASK,
PAGE_ALIGN(params.mmap_size +
(params.mmap & ~PAGE_MASK)));
}
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册