提交 d68caa95 编写于 作者: J Jeff Mahoney 提交者: Linus Torvalds

reiserfs: rename p_._ variables

This patch is a simple s/p_._//g to the reiserfs code.  This is the
fifth in a series of patches to rip out some of the awful variable
naming in reiserfs.
Signed-off-by: NJeff Mahoney <jeffm@suse.com>
Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
上级 a063ae17
......@@ -134,10 +134,10 @@ static void reiserfs_vfs_truncate_file(struct inode *inode)
* be removed...
*/
static int reiserfs_sync_file(struct file *p_s_filp,
struct dentry *p_s_dentry, int datasync)
static int reiserfs_sync_file(struct file *filp,
struct dentry *dentry, int datasync)
{
struct inode *inode = p_s_dentry->d_inode;
struct inode *inode = dentry->d_inode;
int n_err;
int barrier_done;
......
......@@ -780,9 +780,9 @@ static void free_buffers_in_tb(struct tree_balance *tb)
/* The function is NOT SCHEDULE-SAFE! */
static int get_empty_nodes(struct tree_balance *tb, int n_h)
{
struct buffer_head *p_s_new_bh,
*p_s_Sh = PATH_H_PBUFFER(tb->tb_path, n_h);
b_blocknr_t *p_n_blocknr, a_n_blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
struct buffer_head *new_bh,
*Sh = PATH_H_PBUFFER(tb->tb_path, n_h);
b_blocknr_t *blocknr, a_n_blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
int n_counter, n_number_of_freeblk, n_amount_needed, /* number of needed empty blocks */
n_retval = CARRY_ON;
struct super_block *sb = tb->tb_sb;
......@@ -810,8 +810,8 @@ static int get_empty_nodes(struct tree_balance *tb, int n_h)
1) : 0;
/* Allocate missing empty blocks. */
/* if p_s_Sh == 0 then we are getting a new root */
n_amount_needed = (p_s_Sh) ? (tb->blknum[n_h] - 1) : 1;
/* if Sh == 0 then we are getting a new root */
n_amount_needed = (Sh) ? (tb->blknum[n_h] - 1) : 1;
/* Amount_needed = the amount that we need more than the amount that we have. */
if (n_amount_needed > n_number_of_freeblk)
n_amount_needed -= n_number_of_freeblk;
......@@ -824,25 +824,25 @@ static int get_empty_nodes(struct tree_balance *tb, int n_h)
return NO_DISK_SPACE;
/* for each blocknumber we just got, get a buffer and stick it on FEB */
for (p_n_blocknr = a_n_blocknrs, n_counter = 0;
n_counter < n_amount_needed; p_n_blocknr++, n_counter++) {
for (blocknr = a_n_blocknrs, n_counter = 0;
n_counter < n_amount_needed; blocknr++, n_counter++) {
RFALSE(!*p_n_blocknr,
RFALSE(!*blocknr,
"PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
p_s_new_bh = sb_getblk(sb, *p_n_blocknr);
RFALSE(buffer_dirty(p_s_new_bh) ||
buffer_journaled(p_s_new_bh) ||
buffer_journal_dirty(p_s_new_bh),
new_bh = sb_getblk(sb, *blocknr);
RFALSE(buffer_dirty(new_bh) ||
buffer_journaled(new_bh) ||
buffer_journal_dirty(new_bh),
"PAP-8140: journlaled or dirty buffer %b for the new block",
p_s_new_bh);
new_bh);
/* Put empty buffers into the array. */
RFALSE(tb->FEB[tb->cur_blknum],
"PAP-8141: busy slot for new buffer");
set_buffer_journal_new(p_s_new_bh);
tb->FEB[tb->cur_blknum++] = p_s_new_bh;
set_buffer_journal_new(new_bh);
tb->FEB[tb->cur_blknum++] = new_bh;
}
if (n_retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb))
......@@ -898,7 +898,7 @@ static int get_rfree(struct tree_balance *tb, int h)
/* Check whether left neighbor is in memory. */
static int is_left_neighbor_in_cache(struct tree_balance *tb, int n_h)
{
struct buffer_head *p_s_father, *left;
struct buffer_head *father, *left;
struct super_block *sb = tb->tb_sb;
b_blocknr_t n_left_neighbor_blocknr;
int n_left_neighbor_position;
......@@ -908,18 +908,18 @@ static int is_left_neighbor_in_cache(struct tree_balance *tb, int n_h)
return 0;
/* Calculate father of the node to be balanced. */
p_s_father = PATH_H_PBUFFER(tb->tb_path, n_h + 1);
father = PATH_H_PBUFFER(tb->tb_path, n_h + 1);
RFALSE(!p_s_father ||
!B_IS_IN_TREE(p_s_father) ||
RFALSE(!father ||
!B_IS_IN_TREE(father) ||
!B_IS_IN_TREE(tb->FL[n_h]) ||
!buffer_uptodate(p_s_father) ||
!buffer_uptodate(father) ||
!buffer_uptodate(tb->FL[n_h]),
"vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
p_s_father, tb->FL[n_h]);
father, tb->FL[n_h]);
/* Get position of the pointer to the left neighbor into the left father. */
n_left_neighbor_position = (p_s_father == tb->FL[n_h]) ?
n_left_neighbor_position = (father == tb->FL[n_h]) ?
tb->lkey[n_h] : B_NR_ITEMS(tb->FL[n_h]);
/* Get left neighbor block number. */
n_left_neighbor_blocknr =
......@@ -940,10 +940,10 @@ static int is_left_neighbor_in_cache(struct tree_balance *tb, int n_h)
#define LEFT_PARENTS 'l'
#define RIGHT_PARENTS 'r'
static void decrement_key(struct cpu_key *p_s_key)
static void decrement_key(struct cpu_key *key)
{
// call item specific function for this key
item_ops[cpu_key_k_type(p_s_key)]->decrement_key(p_s_key);
item_ops[cpu_key_k_type(key)]->decrement_key(key);
}
/* Calculate far left/right parent of the left/right neighbor of the current node, that
......@@ -956,17 +956,17 @@ static void decrement_key(struct cpu_key *p_s_key)
*/
static int get_far_parent(struct tree_balance *tb,
int n_h,
struct buffer_head **pp_s_father,
struct buffer_head **pp_s_com_father, char c_lr_par)
struct buffer_head **pfather,
struct buffer_head **pcom_father, char c_lr_par)
{
struct buffer_head *p_s_parent;
struct buffer_head *parent;
INITIALIZE_PATH(s_path_to_neighbor_father);
struct treepath *p_s_path = tb->tb_path;
struct treepath *path = tb->tb_path;
struct cpu_key s_lr_father_key;
int n_counter,
n_position = INT_MAX,
n_first_last_position = 0,
n_path_offset = PATH_H_PATH_OFFSET(p_s_path, n_h);
n_path_offset = PATH_H_PATH_OFFSET(path, n_h);
/* Starting from F[n_h] go upwards in the tree, and look for the common
ancestor of F[n_h], and its neighbor l/r, that should be obtained. */
......@@ -979,25 +979,25 @@ static int get_far_parent(struct tree_balance *tb,
for (; n_counter > FIRST_PATH_ELEMENT_OFFSET; n_counter--) {
/* Check whether parent of the current buffer in the path is really parent in the tree. */
if (!B_IS_IN_TREE
(p_s_parent = PATH_OFFSET_PBUFFER(p_s_path, n_counter - 1)))
(parent = PATH_OFFSET_PBUFFER(path, n_counter - 1)))
return REPEAT_SEARCH;
/* Check whether position in the parent is correct. */
if ((n_position =
PATH_OFFSET_POSITION(p_s_path,
PATH_OFFSET_POSITION(path,
n_counter - 1)) >
B_NR_ITEMS(p_s_parent))
B_NR_ITEMS(parent))
return REPEAT_SEARCH;
/* Check whether parent at the path really points to the child. */
if (B_N_CHILD_NUM(p_s_parent, n_position) !=
PATH_OFFSET_PBUFFER(p_s_path, n_counter)->b_blocknr)
if (B_N_CHILD_NUM(parent, n_position) !=
PATH_OFFSET_PBUFFER(path, n_counter)->b_blocknr)
return REPEAT_SEARCH;
/* Return delimiting key if position in the parent is not equal to first/last one. */
if (c_lr_par == RIGHT_PARENTS)
n_first_last_position = B_NR_ITEMS(p_s_parent);
n_first_last_position = B_NR_ITEMS(parent);
if (n_position != n_first_last_position) {
*pp_s_com_father = p_s_parent;
get_bh(*pp_s_com_father);
/*(*pp_s_com_father = p_s_parent)->b_count++; */
*pcom_father = parent;
get_bh(*pcom_father);
/*(*pcom_father = parent)->b_count++; */
break;
}
}
......@@ -1009,22 +1009,22 @@ static int get_far_parent(struct tree_balance *tb,
(tb->tb_path,
FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
SB_ROOT_BLOCK(tb->tb_sb)) {
*pp_s_father = *pp_s_com_father = NULL;
*pfather = *pcom_father = NULL;
return CARRY_ON;
}
return REPEAT_SEARCH;
}
RFALSE(B_LEVEL(*pp_s_com_father) <= DISK_LEAF_NODE_LEVEL,
RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL,
"PAP-8185: (%b %z) level too small",
*pp_s_com_father, *pp_s_com_father);
*pcom_father, *pcom_father);
/* Check whether the common parent is locked. */
if (buffer_locked(*pp_s_com_father)) {
__wait_on_buffer(*pp_s_com_father);
if (buffer_locked(*pcom_father)) {
__wait_on_buffer(*pcom_father);
if (FILESYSTEM_CHANGED_TB(tb)) {
brelse(*pp_s_com_father);
brelse(*pcom_father);
return REPEAT_SEARCH;
}
}
......@@ -1034,7 +1034,7 @@ static int get_far_parent(struct tree_balance *tb,
/* Form key to get parent of the left/right neighbor. */
le_key2cpu_key(&s_lr_father_key,
B_N_PDELIM_KEY(*pp_s_com_father,
B_N_PDELIM_KEY(*pcom_father,
(c_lr_par ==
LEFT_PARENTS) ? (tb->lkey[n_h - 1] =
n_position -
......@@ -1053,14 +1053,14 @@ static int get_far_parent(struct tree_balance *tb,
if (FILESYSTEM_CHANGED_TB(tb)) {
pathrelse(&s_path_to_neighbor_father);
brelse(*pp_s_com_father);
brelse(*pcom_father);
return REPEAT_SEARCH;
}
*pp_s_father = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
*pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
RFALSE(B_LEVEL(*pp_s_father) != n_h + 1,
"PAP-8190: (%b %z) level too small", *pp_s_father, *pp_s_father);
RFALSE(B_LEVEL(*pfather) != n_h + 1,
"PAP-8190: (%b %z) level too small", *pfather, *pfather);
RFALSE(s_path_to_neighbor_father.path_length <
FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
......@@ -1078,11 +1078,11 @@ static int get_far_parent(struct tree_balance *tb,
*/
static int get_parents(struct tree_balance *tb, int n_h)
{
struct treepath *p_s_path = tb->tb_path;
struct treepath *path = tb->tb_path;
int n_position,
n_ret_value,
n_path_offset = PATH_H_PATH_OFFSET(tb->tb_path, n_h);
struct buffer_head *p_s_curf, *p_s_curcf;
struct buffer_head *curf, *curcf;
/* Current node is the root of the tree or will be root of the tree */
if (n_path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
......@@ -1100,66 +1100,65 @@ static int get_parents(struct tree_balance *tb, int n_h)
}
/* Get parent FL[n_path_offset] of L[n_path_offset]. */
if ((n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1))) {
n_position = PATH_OFFSET_POSITION(path, n_path_offset - 1);
if (n_position) {
/* Current node is not the first child of its parent. */
/*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2; */
p_s_curf = p_s_curcf =
PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1);
get_bh(p_s_curf);
get_bh(p_s_curf);
curf = PATH_OFFSET_PBUFFER(path, n_path_offset - 1);
curcf = PATH_OFFSET_PBUFFER(path, n_path_offset - 1);
get_bh(curf);
get_bh(curf);
tb->lkey[n_h] = n_position - 1;
} else {
/* Calculate current parent of L[n_path_offset], which is the left neighbor of the current node.
Calculate current common parent of L[n_path_offset] and the current node. Note that
CFL[n_path_offset] not equal FL[n_path_offset] and CFL[n_path_offset] not equal F[n_path_offset].
Calculate lkey[n_path_offset]. */
if ((n_ret_value = get_far_parent(tb, n_h + 1, &p_s_curf,
&p_s_curcf,
if ((n_ret_value = get_far_parent(tb, n_h + 1, &curf,
&curcf,
LEFT_PARENTS)) != CARRY_ON)
return n_ret_value;
}
brelse(tb->FL[n_h]);
tb->FL[n_h] = p_s_curf; /* New initialization of FL[n_h]. */
tb->FL[n_h] = curf; /* New initialization of FL[n_h]. */
brelse(tb->CFL[n_h]);
tb->CFL[n_h] = p_s_curcf; /* New initialization of CFL[n_h]. */
tb->CFL[n_h] = curcf; /* New initialization of CFL[n_h]. */
RFALSE((p_s_curf && !B_IS_IN_TREE(p_s_curf)) ||
(p_s_curcf && !B_IS_IN_TREE(p_s_curcf)),
"PAP-8195: FL (%b) or CFL (%b) is invalid", p_s_curf, p_s_curcf);
RFALSE((curf && !B_IS_IN_TREE(curf)) ||
(curcf && !B_IS_IN_TREE(curcf)),
"PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);
/* Get parent FR[n_h] of R[n_h]. */
/* Current node is the last child of F[n_h]. FR[n_h] != F[n_h]. */
if (n_position == B_NR_ITEMS(PATH_H_PBUFFER(p_s_path, n_h + 1))) {
if (n_position == B_NR_ITEMS(PATH_H_PBUFFER(path, n_h + 1))) {
/* Calculate current parent of R[n_h], which is the right neighbor of F[n_h].
Calculate current common parent of R[n_h] and current node. Note that CFR[n_h]
not equal FR[n_path_offset] and CFR[n_h] not equal F[n_h]. */
if ((n_ret_value =
get_far_parent(tb, n_h + 1, &p_s_curf, &p_s_curcf,
get_far_parent(tb, n_h + 1, &curf, &curcf,
RIGHT_PARENTS)) != CARRY_ON)
return n_ret_value;
} else {
/* Current node is not the last child of its parent F[n_h]. */
/*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2; */
p_s_curf = p_s_curcf =
PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1);
get_bh(p_s_curf);
get_bh(p_s_curf);
curf = PATH_OFFSET_PBUFFER(path, n_path_offset - 1);
curcf = PATH_OFFSET_PBUFFER(path, n_path_offset - 1);
get_bh(curf);
get_bh(curf);
tb->rkey[n_h] = n_position;
}
brelse(tb->FR[n_h]);
/* New initialization of FR[n_path_offset]. */
tb->FR[n_h] = p_s_curf;
tb->FR[n_h] = curf;
brelse(tb->CFR[n_h]);
/* New initialization of CFR[n_path_offset]. */
tb->CFR[n_h] = p_s_curcf;
tb->CFR[n_h] = curcf;
RFALSE((p_s_curf && !B_IS_IN_TREE(p_s_curf)) ||
(p_s_curcf && !B_IS_IN_TREE(p_s_curcf)),
"PAP-8205: FR (%b) or CFR (%b) is invalid", p_s_curf, p_s_curcf);
RFALSE((curf && !B_IS_IN_TREE(curf)) ||
(curcf && !B_IS_IN_TREE(curcf)),
"PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf);
return CARRY_ON;
}
......@@ -1893,7 +1892,7 @@ static int check_balance(int mode,
static int get_direct_parent(struct tree_balance *tb, int n_h)
{
struct buffer_head *bh;
struct treepath *p_s_path = tb->tb_path;
struct treepath *path = tb->tb_path;
int n_position,
n_path_offset = PATH_H_PATH_OFFSET(tb->tb_path, n_h);
......@@ -1903,27 +1902,27 @@ static int get_direct_parent(struct tree_balance *tb, int n_h)
RFALSE(n_path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
"PAP-8260: invalid offset in the path");
if (PATH_OFFSET_PBUFFER(p_s_path, FIRST_PATH_ELEMENT_OFFSET)->
if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)->
b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) {
/* Root is not changed. */
PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1) = NULL;
PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1) = 0;
PATH_OFFSET_PBUFFER(path, n_path_offset - 1) = NULL;
PATH_OFFSET_POSITION(path, n_path_offset - 1) = 0;
return CARRY_ON;
}
return REPEAT_SEARCH; /* Root is changed and we must recalculate the path. */
}
if (!B_IS_IN_TREE
(bh = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1)))
(bh = PATH_OFFSET_PBUFFER(path, n_path_offset - 1)))
return REPEAT_SEARCH; /* Parent in the path is not in the tree. */
if ((n_position =
PATH_OFFSET_POSITION(p_s_path,
PATH_OFFSET_POSITION(path,
n_path_offset - 1)) > B_NR_ITEMS(bh))
return REPEAT_SEARCH;
if (B_N_CHILD_NUM(bh, n_position) !=
PATH_OFFSET_PBUFFER(p_s_path, n_path_offset)->b_blocknr)
PATH_OFFSET_PBUFFER(path, n_path_offset)->b_blocknr)
/* Parent in the path is not parent of the current node in the tree. */
return REPEAT_SEARCH;
......@@ -2319,7 +2318,7 @@ static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
*/
int fix_nodes(int n_op_mode, struct tree_balance *tb,
struct item_head *p_s_ins_ih, const void *data)
struct item_head *ins_ih, const void *data)
{
int n_ret_value, n_h, n_item_num = PATH_LAST_POSITION(tb->tb_path);
int n_pos_in_item;
......@@ -2405,7 +2404,7 @@ int fix_nodes(int n_op_mode, struct tree_balance *tb,
goto repeat;
n_ret_value = check_balance(n_op_mode, tb, n_h, n_item_num,
n_pos_in_item, p_s_ins_ih, data);
n_pos_in_item, ins_ih, data);
if (n_ret_value != CARRY_ON) {
if (n_ret_value == NO_BALANCING_NEEDED) {
/* No balancing for higher levels needed. */
......
此差异已折叠。
......@@ -172,10 +172,12 @@ void reiserfs_unmap_buffer(struct buffer_head *bh)
inode */
int indirect2direct(struct reiserfs_transaction_handle *th,
struct inode *inode, struct page *page,
struct treepath *p_s_path, /* path to the indirect item. */
const struct cpu_key *p_s_item_key, /* Key to look for unformatted node pointer to be cut. */
struct treepath *path, /* path to the indirect item. */
const struct cpu_key *item_key, /* Key to look for
* unformatted node
* pointer to be cut. */
loff_t n_new_file_size, /* New file size. */
char *p_c_mode)
char *mode)
{
struct super_block *sb = inode->i_sb;
struct item_head s_ih;
......@@ -189,10 +191,10 @@ int indirect2direct(struct reiserfs_transaction_handle *th,
REISERFS_SB(sb)->s_indirect2direct++;
*p_c_mode = M_SKIP_BALANCING;
*mode = M_SKIP_BALANCING;
/* store item head path points to. */
copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path));
copy_item_head(&s_ih, PATH_PITEM_HEAD(path));
tail_len = (n_new_file_size & (n_block_size - 1));
if (get_inode_sd_version(inode) == STAT_DATA_V2)
......@@ -211,14 +213,14 @@ int indirect2direct(struct reiserfs_transaction_handle *th,
tail = (char *)kmap(page); /* this can schedule */
if (path_changed(&s_ih, p_s_path)) {
if (path_changed(&s_ih, path)) {
/* re-search indirect item */
if (search_for_position_by_key(sb, p_s_item_key, p_s_path)
if (search_for_position_by_key(sb, item_key, path)
== POSITION_NOT_FOUND)
reiserfs_panic(sb, "PAP-5520",
"item to be converted %K does not exist",
p_s_item_key);
copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path));
item_key);
copy_item_head(&s_ih, PATH_PITEM_HEAD(path));
#ifdef CONFIG_REISERFS_CHECK
pos = le_ih_k_offset(&s_ih) - 1 +
(ih_item_len(&s_ih) / UNFM_P_SIZE -
......@@ -240,13 +242,13 @@ int indirect2direct(struct reiserfs_transaction_handle *th,
*/
tail = tail + (pos & (PAGE_CACHE_SIZE - 1));
PATH_LAST_POSITION(p_s_path)++;
PATH_LAST_POSITION(path)++;
key = *p_s_item_key;
key = *item_key;
set_cpu_key_k_type(&key, TYPE_DIRECT);
key.key_length = 4;
/* Insert tail as new direct item in the tree */
if (reiserfs_insert_item(th, p_s_path, &key, &s_ih, inode,
if (reiserfs_insert_item(th, path, &key, &s_ih, inode,
tail ? tail : NULL) < 0) {
/* No disk memory. So we can not convert last unformatted node
to the direct item. In this case we used to adjust
......@@ -268,7 +270,7 @@ int indirect2direct(struct reiserfs_transaction_handle *th,
/* We have inserted new direct item and must remove last
unformatted node. */
*p_c_mode = M_CUT;
*mode = M_CUT;
/* we store position of first direct item in the in-core inode */
/* mark_file_with_tail (inode, pos1 + 1); */
......
......@@ -694,9 +694,9 @@ static inline void cpu_key_k_offset_dec(struct cpu_key *key)
#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
#define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \
( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \
I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) )
#define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
(!COMP_SHORT_KEYS(ih, key) && \
I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
/* maximal length of item */
#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
......@@ -1196,33 +1196,33 @@ struct treepath {
struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
/* Get path element by path and path position. */
#define PATH_OFFSET_PELEMENT(p_s_path,n_offset) ((p_s_path)->path_elements +(n_offset))
#define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset))
/* Get buffer header at the path by path and path position. */
#define PATH_OFFSET_PBUFFER(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer)
#define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
/* Get position in the element at the path by path and path position. */
#define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position)
#define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
#define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length))
#define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
/* you know, to the person who didn't
write this the macro name does not
at first suggest what it does.
Maybe POSITION_FROM_PATH_END? Or
maybe we should just focus on
dumping paths... -Hans */
#define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length))
#define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
#define PATH_PITEM_HEAD(p_s_path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path))
#define PATH_PITEM_HEAD(path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path))
/* in do_balance leaf has h == 0 in contrast with path structure,
where root has level == 0. That is why we need these defines */
#define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h)) /* tb->S[h] */
#define PATH_H_PBUFFER(path, h) PATH_OFFSET_PBUFFER (path, path->path_length - (h)) /* tb->S[h] */
#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */
#define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */
#define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h))
#define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
#define get_last_bh(path) PATH_PLAST_BUFFER(path)
#define get_ih(path) PATH_PITEM_HEAD(path)
......@@ -1512,7 +1512,7 @@ extern struct item_operations *item_ops[TYPE_ANY + 1];
#define COMP_SHORT_KEYS comp_short_keys
/* number of blocks pointed to by the indirect item */
#define I_UNFM_NUM(p_s_ih) ( ih_item_len(p_s_ih) / UNFM_P_SIZE )
#define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE)
/* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
......@@ -1793,8 +1793,8 @@ int reiserfs_convert_objectid_map_v1(struct super_block *);
/* stree.c */
int B_IS_IN_TREE(const struct buffer_head *);
extern void copy_item_head(struct item_head *p_v_to,
const struct item_head *p_v_from);
extern void copy_item_head(struct item_head *to,
const struct item_head *from);
// first key is in cpu form, second - le
extern int comp_short_keys(const struct reiserfs_key *le_key,
......@@ -1829,20 +1829,20 @@ static inline void copy_key(struct reiserfs_key *to,
memcpy(to, from, KEY_SIZE);
}
int comp_items(const struct item_head *stored_ih, const struct treepath *p_s_path);
const struct reiserfs_key *get_rkey(const struct treepath *p_s_chk_path,
int comp_items(const struct item_head *stored_ih, const struct treepath *path);
const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
const struct super_block *sb);
int search_by_key(struct super_block *, const struct cpu_key *,
struct treepath *, int);
#define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
int search_for_position_by_key(struct super_block *sb,
const struct cpu_key *p_s_cpu_key,
struct treepath *p_s_search_path);
const struct cpu_key *cpu_key,
struct treepath *search_path);
extern void decrement_bcount(struct buffer_head *bh);
void decrement_counters_in_path(struct treepath *p_s_search_path);
void pathrelse(struct treepath *p_s_search_path);
void decrement_counters_in_path(struct treepath *search_path);
void pathrelse(struct treepath *search_path);
int reiserfs_check_path(struct treepath *p);
void pathrelse_and_restore(struct super_block *s, struct treepath *p_s_search_path);
void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
struct treepath *path,
......@@ -1865,7 +1865,7 @@ int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
struct treepath *path,
const struct cpu_key *key,
struct inode *inode, struct buffer_head *p_s_un_bh);
struct inode *inode, struct buffer_head *un_bh);
void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
struct inode *inode, struct reiserfs_key *key);
......@@ -2005,7 +2005,7 @@ extern const struct address_space_operations reiserfs_address_space_operations;
/* fix_nodes.c */
int fix_nodes(int n_op_mode, struct tree_balance *tb,
struct item_head *p_s_ins_ih, const void *);
struct item_head *ins_ih, const void *);
void unfix_nodes(struct tree_balance *);
/* prints.c */
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册