提交 d57d3943 编写于 作者: L Linus Torvalds

Merge tag 'pm-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management updates from Rafael Wysocki:
 "The majority of changes go into the cpufreq subsystem this time.

  To me, quite obviously, the biggest ticket item is the new "schedutil"
  governor.  Interestingly enough, it's the first new cpufreq governor
  since the beginning of the git era (except for some out-of-the-tree
  ones).

  There are two main differences between it and the existing governors.
  First, it uses the information provided by the scheduler directly for
  making its decisions, so it doesn't have to track anything by itself.
  Second, it can invoke drivers (supporting that feature) to adjust CPU
  performance right away without having to spawn work items to be
  executed in process context or similar.  Currently, the acpi-cpufreq
  driver is the only one supporting that mode of operation, but then it
  is used on a large number of systems.

  The "schedutil" governor as included here is very simple and mostly
  regarded as a foundation for future work on the integration of the
  scheduler with CPU power management (in fact, there is work in
  progress on top of it already).  Nevertheless it works and the
  preliminary results obtained with it are encouraging.

  There also is some consolidation of CPU frequency management for ARM
  platforms that can add their machine IDs the the new stub dt-platdev
  driver now and that will take care of creating the requisite platform
  device for cpufreq-dt, so it is not necessary to do that in platform
  code any more.  Several ARM platforms are switched over to using this
  generic mechanism.

  In addition to that, the intel_pstate driver is now going to respect
  CPU frequency limits set by the platform firmware (or a BMC) and
  provided via the ACPI _PPC object.

  The devfreq subsystem is getting a new "passive" governor for SoCs
  subsystems that will depend on somebody else to manage their voltage
  rails and its support for Samsung Exynos SoCs is consolidated.

  The rest is support for new hardware (Intel Broxton support in
  intel_idle for one example), bug fixes, optimizations and cleanups in
  a number of places.

  Specifics:

   - New cpufreq "schedutil" governor (making decisions based on CPU
     utilization information provided by the scheduler and capable of
     switching CPU frequencies right away if the underlying driver
     supports that) and support for fast frequency switching in the
     acpi-cpufreq driver (Rafael Wysocki)

   - Consolidation of CPU frequency management on ARM platforms allowing
     them to get rid of some platform-specific boilerplate code if they
     are going to use the cpufreq-dt driver (Viresh Kumar, Finley Xiao,
     Marc Gonzalez)

   - Support for ACPI _PPC and CPU frequency limits in the intel_pstate
     driver (Srinivas Pandruvada)

   - Fixes and cleanups in the cpufreq core and generic governor code
     (Rafael Wysocki, Sai Gurrappadi)

   - intel_pstate driver optimizations and cleanups (Rafael Wysocki,
     Philippe Longepe, Chen Yu, Joe Perches)

   - cpufreq powernv driver fixes and cleanups (Akshay Adiga, Shilpasri
     Bhat)

   - cpufreq qoriq driver fixes and cleanups (Jia Hongtao)

   - ACPI cpufreq driver cleanups (Viresh Kumar)

   - Assorted cpufreq driver updates (Ashwin Chaugule, Geliang Tang,
     Javier Martinez Canillas, Paul Gortmaker, Sudeep Holla)

   - Assorted cpufreq fixes and cleanups (Joe Perches, Arnd Bergmann)

   - Fixes and cleanups in the OPP (Operating Performance Points)
     framework, mostly related to OPP sharing, and reorganization of
     OF-dependent code in it (Viresh Kumar, Arnd Bergmann, Sudeep Holla)

   - New "passive" governor for devfreq (for SoC subsystems that will
     rely on someone else for the management of their power resources)
     and consolidation of devfreq support for Exynos platforms, coding
     style and typo fixes for devfreq (Chanwoo Choi, MyungJoo Ham)

   - PM core fixes and cleanups, mostly to make it work better with the
     generic power domains (genpd) framework, and updates for that
     framework (Ulf Hansson, Thierry Reding, Colin Ian King)

   - Intel Broxton support for the intel_idle driver (Len Brown)

   - cpuidle core optimization and fix (Daniel Lezcano, Dave Gerlach)

   - ARM cpuidle cleanups (Jisheng Zhang)

   - Intel Kabylake support for the RAPL power capping driver (Jacob
     Pan)

   - AVS (Adaptive Voltage Switching) rockchip-io driver update (Heiko
     Stuebner)

   - Updates for the cpupower tool (Arjun Sreedharan, Colin Ian King,
     Mattia Dongili, Thomas Renninger)"

* tag 'pm-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (112 commits)
  intel_pstate: Clean up get_target_pstate_use_performance()
  intel_pstate: Use sample.core_avg_perf in get_avg_pstate()
  intel_pstate: Clarify average performance computation
  intel_pstate: Avoid unnecessary synchronize_sched() during initialization
  cpufreq: schedutil: Make default depend on CONFIG_SMP
  cpufreq: powernv: del_timer_sync when global and local pstate are equal
  cpufreq: powernv: Move smp_call_function_any() out of irq safe block
  intel_pstate: Clean up intel_pstate_get()
  cpufreq: schedutil: Make it depend on CONFIG_SMP
  cpufreq: governor: Fix handling of special cases in dbs_update()
  PM / OPP: Move CONFIG_OF dependent code in a separate file
  cpufreq: intel_pstate: Ignore _PPC processing under HWP
  cpufreq: arm_big_little: use generic OPP functions for {init, free}_opp_table
  PM / OPP: add non-OF versions of dev_pm_opp_{cpumask_, }remove_table
  cpufreq: tango: Use generic platdev driver
  PM / OPP: pass cpumask by reference
  cpufreq: Fix GOV_LIMITS handling for the userspace governor
  cpupower: fix potential memory leak
  PM / devfreq: style/typo fixes
  PM / devfreq: exynos: Add the detailed correlation for Exynos5422 bus
  ..
* Samsung Exynos NoC (Network on Chip) Probe device
The Samsung Exynos542x SoC has NoC (Network on Chip) Probe for NoC bus.
NoC provides the primitive values to get the performance data. The packets
that the Network on Chip (NoC) probes detects are transported over
the network infrastructure to observer units. You can configure probes to
capture packets with header or data on the data request response network,
or as traffic debug or statistic collectors. Exynos542x bus has multiple
NoC probes to provide bandwidth information about behavior of the SoC
that you can use while analyzing system performance.
Required properties:
- compatible: Should be "samsung,exynos5420-nocp"
- reg: physical base address of each NoC Probe and length of memory mapped region.
Optional properties:
- clock-names : the name of clock used by the NoC Probe, "nocp"
- clocks : phandles for clock specified in "clock-names" property
Example : NoC Probe nodes in Device Tree are listed below.
nocp_mem0_0: nocp@10CA1000 {
compatible = "samsung,exynos5420-nocp";
reg = <0x10CA1000 0x200>;
};
* Generic Exynos Bus frequency device
The Samsung Exynos SoC has many buses for data transfer between DRAM
and sub-blocks in SoC. Most Exynos SoCs share the common architecture
for buses. Generally, each bus of Exynos SoC includes a source clock
and a power line, which are able to change the clock frequency
of the bus in runtime. To monitor the usage of each bus in runtime,
the driver uses the PPMU (Platform Performance Monitoring Unit), which
is able to measure the current load of sub-blocks.
The Exynos SoC includes the various sub-blocks which have the each AXI bus.
The each AXI bus has the owned source clock but, has not the only owned
power line. The power line might be shared among one more sub-blocks.
So, we can divide into two type of device as the role of each sub-block.
There are two type of bus devices as following:
- parent bus device
- passive bus device
Basically, parent and passive bus device share the same power line.
The parent bus device can only change the voltage of shared power line
and the rest bus devices (passive bus device) depend on the decision of
the parent bus device. If there are three blocks which share the VDD_xxx
power line, Only one block should be parent device and then the rest blocks
should depend on the parent device as passive device.
VDD_xxx |--- A block (parent)
|--- B block (passive)
|--- C block (passive)
There are a little different composition among Exynos SoC because each Exynos
SoC has different sub-blocks. Therefore, such difference should be specified
in devicetree file instead of each device driver. In result, this driver
is able to support the bus frequency for all Exynos SoCs.
Required properties for all bus devices:
- compatible: Should be "samsung,exynos-bus".
- clock-names : the name of clock used by the bus, "bus".
- clocks : phandles for clock specified in "clock-names" property.
- operating-points-v2: the OPP table including frequency/voltage information
to support DVFS (Dynamic Voltage/Frequency Scaling) feature.
Required properties only for parent bus device:
- vdd-supply: the regulator to provide the buses with the voltage.
- devfreq-events: the devfreq-event device to monitor the current utilization
of buses.
Required properties only for passive bus device:
- devfreq: the parent bus device.
Optional properties only for parent bus device:
- exynos,saturation-ratio: the percentage value which is used to calibrate
the performance count against total cycle count.
- exynos,voltage-tolerance: the percentage value for bus voltage tolerance
which is used to calculate the max voltage.
Detailed correlation between sub-blocks and power line according to Exynos SoC:
- In case of Exynos3250, there are two power line as following:
VDD_MIF |--- DMC
VDD_INT |--- LEFTBUS (parent device)
|--- PERIL
|--- MFC
|--- G3D
|--- RIGHTBUS
|--- PERIR
|--- FSYS
|--- LCD0
|--- PERIR
|--- ISP
|--- CAM
- In case of Exynos4210, there is one power line as following:
VDD_INT |--- DMC (parent device)
|--- LEFTBUS
|--- PERIL
|--- MFC(L)
|--- G3D
|--- TV
|--- LCD0
|--- RIGHTBUS
|--- PERIR
|--- MFC(R)
|--- CAM
|--- FSYS
|--- GPS
|--- LCD0
|--- LCD1
- In case of Exynos4x12, there are two power line as following:
VDD_MIF |--- DMC
VDD_INT |--- LEFTBUS (parent device)
|--- PERIL
|--- MFC(L)
|--- G3D
|--- TV
|--- IMAGE
|--- RIGHTBUS
|--- PERIR
|--- MFC(R)
|--- CAM
|--- FSYS
|--- GPS
|--- LCD0
|--- ISP
- In case of Exynos5422, there are two power line as following:
VDD_MIF |--- DREX 0 (parent device, DRAM EXpress controller)
|--- DREX 1
VDD_INT |--- NoC_Core (parent device)
|--- G2D
|--- G3D
|--- DISP1
|--- NoC_WCORE
|--- GSCL
|--- MSCL
|--- ISP
|--- MFC
|--- GEN
|--- PERIS
|--- PERIC
|--- FSYS
|--- FSYS2
Example1:
Show the AXI buses of Exynos3250 SoC. Exynos3250 divides the buses to
power line (regulator). The MIF (Memory Interface) AXI bus is used to
transfer data between DRAM and CPU and uses the VDD_MIF regulator.
- MIF (Memory Interface) block
: VDD_MIF |--- DMC (Dynamic Memory Controller)
- INT (Internal) block
: VDD_INT |--- LEFTBUS (parent device)
|--- PERIL
|--- MFC
|--- G3D
|--- RIGHTBUS
|--- FSYS
|--- LCD0
|--- PERIR
|--- ISP
|--- CAM
- MIF bus's frequency/voltage table
-----------------------
|Lv| Freq | Voltage |
-----------------------
|L1| 50000 |800000 |
|L2| 100000 |800000 |
|L3| 134000 |800000 |
|L4| 200000 |825000 |
|L5| 400000 |875000 |
-----------------------
- INT bus's frequency/voltage table
----------------------------------------------------------
|Block|LEFTBUS|RIGHTBUS|MCUISP |ISP |PERIL ||VDD_INT |
| name| |LCD0 | | | || |
| | |FSYS | | | || |
| | |MFC | | | || |
----------------------------------------------------------
|Mode |*parent|passive |passive|passive|passive|| |
----------------------------------------------------------
|Lv |Frequency ||Voltage |
----------------------------------------------------------
|L1 |50000 |50000 |50000 |50000 |50000 ||900000 |
|L2 |80000 |80000 |80000 |80000 |80000 ||900000 |
|L3 |100000 |100000 |100000 |100000 |100000 ||1000000 |
|L4 |134000 |134000 |200000 |200000 | ||1000000 |
|L5 |200000 |200000 |400000 |300000 | ||1000000 |
----------------------------------------------------------
Example2 :
The bus of DMC (Dynamic Memory Controller) block in exynos3250.dtsi
is listed below:
bus_dmc: bus_dmc {
compatible = "samsung,exynos-bus";
clocks = <&cmu_dmc CLK_DIV_DMC>;
clock-names = "bus";
operating-points-v2 = <&bus_dmc_opp_table>;
status = "disabled";
};
bus_dmc_opp_table: opp_table1 {
compatible = "operating-points-v2";
opp-shared;
opp@50000000 {
opp-hz = /bits/ 64 <50000000>;
opp-microvolt = <800000>;
};
opp@100000000 {
opp-hz = /bits/ 64 <100000000>;
opp-microvolt = <800000>;
};
opp@134000000 {
opp-hz = /bits/ 64 <134000000>;
opp-microvolt = <800000>;
};
opp@200000000 {
opp-hz = /bits/ 64 <200000000>;
opp-microvolt = <825000>;
};
opp@400000000 {
opp-hz = /bits/ 64 <400000000>;
opp-microvolt = <875000>;
};
};
bus_leftbus: bus_leftbus {
compatible = "samsung,exynos-bus";
clocks = <&cmu CLK_DIV_GDL>;
clock-names = "bus";
operating-points-v2 = <&bus_leftbus_opp_table>;
status = "disabled";
};
bus_rightbus: bus_rightbus {
compatible = "samsung,exynos-bus";
clocks = <&cmu CLK_DIV_GDR>;
clock-names = "bus";
operating-points-v2 = <&bus_leftbus_opp_table>;
status = "disabled";
};
bus_lcd0: bus_lcd0 {
compatible = "samsung,exynos-bus";
clocks = <&cmu CLK_DIV_ACLK_160>;
clock-names = "bus";
operating-points-v2 = <&bus_leftbus_opp_table>;
status = "disabled";
};
bus_fsys: bus_fsys {
compatible = "samsung,exynos-bus";
clocks = <&cmu CLK_DIV_ACLK_200>;
clock-names = "bus";
operating-points-v2 = <&bus_leftbus_opp_table>;
status = "disabled";
};
bus_mcuisp: bus_mcuisp {
compatible = "samsung,exynos-bus";
clocks = <&cmu CLK_DIV_ACLK_400_MCUISP>;
clock-names = "bus";
operating-points-v2 = <&bus_mcuisp_opp_table>;
status = "disabled";
};
bus_isp: bus_isp {
compatible = "samsung,exynos-bus";
clocks = <&cmu CLK_DIV_ACLK_266>;
clock-names = "bus";
operating-points-v2 = <&bus_isp_opp_table>;
status = "disabled";
};
bus_peril: bus_peril {
compatible = "samsung,exynos-bus";
clocks = <&cmu CLK_DIV_ACLK_100>;
clock-names = "bus";
operating-points-v2 = <&bus_peril_opp_table>;
status = "disabled";
};
bus_mfc: bus_mfc {
compatible = "samsung,exynos-bus";
clocks = <&cmu CLK_SCLK_MFC>;
clock-names = "bus";
operating-points-v2 = <&bus_leftbus_opp_table>;
status = "disabled";
};
bus_leftbus_opp_table: opp_table1 {
compatible = "operating-points-v2";
opp-shared;
opp@50000000 {
opp-hz = /bits/ 64 <50000000>;
opp-microvolt = <900000>;
};
opp@80000000 {
opp-hz = /bits/ 64 <80000000>;
opp-microvolt = <900000>;
};
opp@100000000 {
opp-hz = /bits/ 64 <100000000>;
opp-microvolt = <1000000>;
};
opp@134000000 {
opp-hz = /bits/ 64 <134000000>;
opp-microvolt = <1000000>;
};
opp@200000000 {
opp-hz = /bits/ 64 <200000000>;
opp-microvolt = <1000000>;
};
};
bus_mcuisp_opp_table: opp_table2 {
compatible = "operating-points-v2";
opp-shared;
opp@50000000 {
opp-hz = /bits/ 64 <50000000>;
};
opp@80000000 {
opp-hz = /bits/ 64 <80000000>;
};
opp@100000000 {
opp-hz = /bits/ 64 <100000000>;
};
opp@200000000 {
opp-hz = /bits/ 64 <200000000>;
};
opp@400000000 {
opp-hz = /bits/ 64 <400000000>;
};
};
bus_isp_opp_table: opp_table3 {
compatible = "operating-points-v2";
opp-shared;
opp@50000000 {
opp-hz = /bits/ 64 <50000000>;
};
opp@80000000 {
opp-hz = /bits/ 64 <80000000>;
};
opp@100000000 {
opp-hz = /bits/ 64 <100000000>;
};
opp@200000000 {
opp-hz = /bits/ 64 <200000000>;
};
opp@300000000 {
opp-hz = /bits/ 64 <300000000>;
};
};
bus_peril_opp_table: opp_table4 {
compatible = "operating-points-v2";
opp-shared;
opp@50000000 {
opp-hz = /bits/ 64 <50000000>;
};
opp@80000000 {
opp-hz = /bits/ 64 <80000000>;
};
opp@100000000 {
opp-hz = /bits/ 64 <100000000>;
};
};
Usage case to handle the frequency and voltage of bus on runtime
in exynos3250-rinato.dts is listed below:
&bus_dmc {
devfreq-events = <&ppmu_dmc0_3>, <&ppmu_dmc1_3>;
vdd-supply = <&buck1_reg>; /* VDD_MIF */
status = "okay";
};
&bus_leftbus {
devfreq-events = <&ppmu_leftbus_3>, <&ppmu_rightbus_3>;
vdd-supply = <&buck3_reg>;
status = "okay";
};
&bus_rightbus {
devfreq = <&bus_leftbus>;
status = "okay";
};
&bus_lcd0 {
devfreq = <&bus_leftbus>;
status = "okay";
};
&bus_fsys {
devfreq = <&bus_leftbus>;
status = "okay";
};
&bus_mcuisp {
devfreq = <&bus_leftbus>;
status = "okay";
};
&bus_isp {
devfreq = <&bus_leftbus>;
status = "okay";
};
&bus_peril {
devfreq = <&bus_leftbus>;
status = "okay";
};
&bus_mfc {
devfreq = <&bus_leftbus>;
status = "okay";
};
......@@ -37,8 +37,10 @@ Required properties:
- "rockchip,rk3368-pmu-io-voltage-domain" for rk3368 pmu-domains
- "rockchip,rk3399-io-voltage-domain" for rk3399
- "rockchip,rk3399-pmu-io-voltage-domain" for rk3399 pmu-domains
- rockchip,grf: phandle to the syscon managing the "general register files"
Deprecated properties:
- rockchip,grf: phandle to the syscon managing the "general register files"
Systems should move the io-domains to a sub-node of the grf simple-mfd.
You specify supplies using the standard regulator bindings by including
a phandle the relevant regulator. All specified supplies must be able
......
......@@ -1671,6 +1671,11 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
hwp_only
Only load intel_pstate on systems which support
hardware P state control (HWP) if available.
support_acpi_ppc
Enforce ACPI _PPC performance limits. If the Fixed ACPI
Description Table, specifies preferred power management
profile as "Enterprise Server" or "Performance Server",
then this feature is turned on by default.
intremap= [X86-64, Intel-IOMMU]
on enable Interrupt Remapping (default)
......
......@@ -1322,6 +1322,7 @@ F: drivers/rtc/rtc-armada38x.c
F: arch/arm/boot/dts/armada*
F: arch/arm/boot/dts/kirkwood*
F: arch/arm64/boot/dts/marvell/armada*
F: drivers/cpufreq/mvebu-cpufreq.c
ARM/Marvell Berlin SoC support
......@@ -3539,6 +3540,15 @@ F: drivers/devfreq/devfreq-event.c
F: include/linux/devfreq-event.h
F: Documentation/devicetree/bindings/devfreq/event/
BUS FREQUENCY DRIVER FOR SAMSUNG EXYNOS
M: Chanwoo Choi <cw00.choi@samsung.com>
L: linux-pm@vger.kernel.org
L: linux-samsung-soc@vger.kernel.org
T: git git://git.kernel.org/pub/scm/linux/kernel/git/mzx/devfreq.git
S: Maintained
F: drivers/devfreq/exynos-bus.c
F: Documentation/devicetree/bindings/devfreq/exynos-bus.txt
DEVICE NUMBER REGISTRY
M: Torben Mathiasen <device@lanana.org>
W: http://lanana.org/docs/device-list/index.html
......
......@@ -36,7 +36,7 @@ struct cpuidle_ops {
struct of_cpuidle_method {
const char *method;
struct cpuidle_ops *ops;
const struct cpuidle_ops *ops;
};
#define CPUIDLE_METHOD_OF_DECLARE(name, _method, _ops) \
......
......@@ -70,7 +70,7 @@ int arm_cpuidle_suspend(int index)
*
* Returns a struct cpuidle_ops pointer, NULL if not found.
*/
static struct cpuidle_ops *__init arm_cpuidle_get_ops(const char *method)
static const struct cpuidle_ops *__init arm_cpuidle_get_ops(const char *method)
{
struct of_cpuidle_method *m = __cpuidle_method_of_table;
......@@ -88,7 +88,7 @@ static struct cpuidle_ops *__init arm_cpuidle_get_ops(const char *method)
*
* Get the method name defined in the 'enable-method' property, retrieve the
* associated cpuidle_ops and do a struct copy. This copy is needed because all
* cpuidle_ops are tagged __initdata and will be unloaded after the init
* cpuidle_ops are tagged __initconst and will be unloaded after the init
* process.
*
* Return 0 on sucess, -ENOENT if no 'enable-method' is defined, -EOPNOTSUPP if
......@@ -97,7 +97,7 @@ static struct cpuidle_ops *__init arm_cpuidle_get_ops(const char *method)
static int __init arm_cpuidle_read_ops(struct device_node *dn, int cpu)
{
const char *enable_method;
struct cpuidle_ops *ops;
const struct cpuidle_ops *ops;
enable_method = of_get_property(dn, "enable-method", NULL);
if (!enable_method)
......
......@@ -18,11 +18,6 @@
#include <asm/hardware/cache-l2x0.h>
#include <asm/mach/arch.h>
static void __init berlin_init_late(void)
{
platform_device_register_simple("cpufreq-dt", -1, NULL, 0);
}
static const char * const berlin_dt_compat[] = {
"marvell,berlin",
NULL,
......@@ -30,7 +25,6 @@ static const char * const berlin_dt_compat[] = {
DT_MACHINE_START(BERLIN_DT, "Marvell Berlin")
.dt_compat = berlin_dt_compat,
.init_late = berlin_init_late,
/*
* with DT probing for L2CCs, berlin_init_machine can be removed.
* Note: 88DE3005 (Armada 1500-mini) uses pl310 l2cc
......
......@@ -213,33 +213,6 @@ static void __init exynos_init_irq(void)
exynos_map_pmu();
}
static const struct of_device_id exynos_cpufreq_matches[] = {
{ .compatible = "samsung,exynos3250", .data = "cpufreq-dt" },
{ .compatible = "samsung,exynos4210", .data = "cpufreq-dt" },
{ .compatible = "samsung,exynos4212", .data = "cpufreq-dt" },
{ .compatible = "samsung,exynos4412", .data = "cpufreq-dt" },
{ .compatible = "samsung,exynos5250", .data = "cpufreq-dt" },
#ifndef CONFIG_BL_SWITCHER
{ .compatible = "samsung,exynos5420", .data = "cpufreq-dt" },
{ .compatible = "samsung,exynos5800", .data = "cpufreq-dt" },
#endif
{ /* sentinel */ }
};
static void __init exynos_cpufreq_init(void)
{
struct device_node *root = of_find_node_by_path("/");
const struct of_device_id *match;
match = of_match_node(exynos_cpufreq_matches, root);
if (!match) {
platform_device_register_simple("exynos-cpufreq", -1, NULL, 0);
return;
}
platform_device_register_simple(match->data, -1, NULL, 0);
}
static void __init exynos_dt_machine_init(void)
{
/*
......@@ -262,8 +235,6 @@ static void __init exynos_dt_machine_init(void)
of_machine_is_compatible("samsung,exynos5250"))
platform_device_register(&exynos_cpuidle);
exynos_cpufreq_init();
of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL);
}
......
......@@ -18,15 +18,6 @@
#include "common.h"
#include "mx27.h"
static void __init imx27_dt_init(void)
{
struct platform_device_info devinfo = { .name = "cpufreq-dt", };
of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL);
platform_device_register_full(&devinfo);
}
static const char * const imx27_dt_board_compat[] __initconst = {
"fsl,imx27",
NULL
......@@ -36,6 +27,5 @@ DT_MACHINE_START(IMX27_DT, "Freescale i.MX27 (Device Tree Support)")
.map_io = mx27_map_io,
.init_early = imx27_init_early,
.init_irq = mx27_init_irq,
.init_machine = imx27_dt_init,
.dt_compat = imx27_dt_board_compat,
MACHINE_END
......@@ -50,13 +50,10 @@ static void __init imx51_ipu_mipi_setup(void)
static void __init imx51_dt_init(void)
{
struct platform_device_info devinfo = { .name = "cpufreq-dt", };
imx51_ipu_mipi_setup();
imx_src_init();
of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL);
platform_device_register_full(&devinfo);
}
static void __init imx51_init_late(void)
......
......@@ -40,8 +40,6 @@ static void __init imx53_dt_init(void)
static void __init imx53_init_late(void)
{
imx53_pm_init();
platform_device_register_simple("cpufreq-dt", -1, NULL, 0);
}
static const char * const imx53_dt_board_compat[] __initconst = {
......
......@@ -105,11 +105,6 @@ static void __init imx7d_init_irq(void)
irqchip_init();
}
static void __init imx7d_init_late(void)
{
platform_device_register_simple("cpufreq-dt", -1, NULL, 0);
}
static const char *const imx7d_dt_compat[] __initconst = {
"fsl,imx7d",
NULL,
......@@ -117,7 +112,6 @@ static const char *const imx7d_dt_compat[] __initconst = {
DT_MACHINE_START(IMX7D, "Freescale i.MX7 Dual (Device Tree)")
.init_irq = imx7d_init_irq,
.init_late = imx7d_init_late,
.init_machine = imx7d_init_machine,
.dt_compat = imx7d_dt_compat,
MACHINE_END
......@@ -20,7 +20,6 @@
#include <linux/clk.h>
#include <linux/cpu_pm.h>
#include <linux/cpufreq-dt.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/io.h>
......@@ -29,7 +28,6 @@
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/resource.h>
#include <linux/slab.h>
#include <linux/smp.h>
......@@ -608,86 +606,3 @@ int mvebu_pmsu_dfs_request(int cpu)
return 0;
}
struct cpufreq_dt_platform_data cpufreq_dt_pd = {
.independent_clocks = true,
};
static int __init armada_xp_pmsu_cpufreq_init(void)
{
struct device_node *np;
struct resource res;
int ret, cpu;
if (!of_machine_is_compatible("marvell,armadaxp"))
return 0;
/*
* In order to have proper cpufreq handling, we need to ensure
* that the Device Tree description of the CPU clock includes
* the definition of the PMU DFS registers. If not, we do not
* register the clock notifier and the cpufreq driver. This
* piece of code is only for compatibility with old Device
* Trees.
*/
np = of_find_compatible_node(NULL, NULL, "marvell,armada-xp-cpu-clock");
if (!np)
return 0;
ret = of_address_to_resource(np, 1, &res);
if (ret) {
pr_warn(FW_WARN "not enabling cpufreq, deprecated armada-xp-cpu-clock binding\n");
of_node_put(np);
return 0;
}
of_node_put(np);
/*
* For each CPU, this loop registers the operating points
* supported (which are the nominal CPU frequency and half of
* it), and registers the clock notifier that will take care
* of doing the PMSU part of a frequency transition.
*/
for_each_possible_cpu(cpu) {
struct device *cpu_dev;
struct clk *clk;
int ret;
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev) {
pr_err("Cannot get CPU %d\n", cpu);
continue;
}
clk = clk_get(cpu_dev, 0);
if (IS_ERR(clk)) {
pr_err("Cannot get clock for CPU %d\n", cpu);
return PTR_ERR(clk);
}
/*
* In case of a failure of dev_pm_opp_add(), we don't
* bother with cleaning up the registered OPP (there's
* no function to do so), and simply cancel the
* registration of the cpufreq device.
*/
ret = dev_pm_opp_add(cpu_dev, clk_get_rate(clk), 0);
if (ret) {
clk_put(clk);
return ret;
}
ret = dev_pm_opp_add(cpu_dev, clk_get_rate(clk) / 2, 0);
if (ret) {
clk_put(clk);
return ret;
}
}
platform_device_register_data(NULL, "cpufreq-dt", -1,
&cpufreq_dt_pd, sizeof(cpufreq_dt_pd));
return 0;
}
device_initcall(armada_xp_pmsu_cpufreq_init);
......@@ -277,13 +277,10 @@ static void __init omap4_init_voltages(void)
static inline void omap_init_cpufreq(void)
{
struct platform_device_info devinfo = { };
struct platform_device_info devinfo = { .name = "omap-cpufreq" };
if (!of_have_populated_dt())
devinfo.name = "omap-cpufreq";
else
devinfo.name = "cpufreq-dt";
platform_device_register_full(&devinfo);
platform_device_register_full(&devinfo);
}
static int __init omap2_common_pm_init(void)
......
......@@ -74,7 +74,6 @@ static void __init rockchip_dt_init(void)
{
rockchip_suspend_init();
of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL);
platform_device_register_simple("cpufreq-dt", 0, NULL, 0);
}
static const char * const rockchip_board_dt_compat[] = {
......
......@@ -38,7 +38,6 @@ smp-$(CONFIG_ARCH_EMEV2) += smp-emev2.o headsmp-scu.o platsmp-scu.o
# PM objects
obj-$(CONFIG_SUSPEND) += suspend.o
obj-$(CONFIG_CPU_FREQ) += cpufreq.o
obj-$(CONFIG_PM_RCAR) += pm-rcar.o
obj-$(CONFIG_PM_RMOBILE) += pm-rmobile.o
obj-$(CONFIG_ARCH_RCAR_GEN2) += pm-rcar-gen2.o
......
......@@ -25,16 +25,9 @@ static inline int shmobile_suspend_init(void) { return 0; }
static inline void shmobile_smp_apmu_suspend_init(void) { }
#endif
#ifdef CONFIG_CPU_FREQ
int shmobile_cpufreq_init(void);
#else
static inline int shmobile_cpufreq_init(void) { return 0; }
#endif
static inline void __init shmobile_init_late(void)
{
shmobile_suspend_init();
shmobile_cpufreq_init();
}
#endif /* __ARCH_MACH_COMMON_H */
/*
* CPUFreq support code for SH-Mobile ARM
*
* Copyright (C) 2014 Gaku Inami
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/platform_device.h>
#include "common.h"
int __init shmobile_cpufreq_init(void)
{
platform_device_register_simple("cpufreq-dt", -1, NULL, 0);
return 0;
}
......@@ -17,11 +17,6 @@
#include <asm/mach/arch.h>
static void __init sunxi_dt_cpufreq_init(void)
{
platform_device_register_simple("cpufreq-dt", -1, NULL, 0);
}
static const char * const sunxi_board_dt_compat[] = {
"allwinner,sun4i-a10",
"allwinner,sun5i-a10s",
......@@ -32,7 +27,6 @@ static const char * const sunxi_board_dt_compat[] = {
DT_MACHINE_START(SUNXI_DT, "Allwinner sun4i/sun5i Families")
.dt_compat = sunxi_board_dt_compat,
.init_late = sunxi_dt_cpufreq_init,
MACHINE_END
static const char * const sun6i_board_dt_compat[] = {
......@@ -53,7 +47,6 @@ static void __init sun6i_timer_init(void)
DT_MACHINE_START(SUN6I_DT, "Allwinner sun6i (A31) Family")
.init_time = sun6i_timer_init,
.dt_compat = sun6i_board_dt_compat,
.init_late = sunxi_dt_cpufreq_init,
MACHINE_END
static const char * const sun7i_board_dt_compat[] = {
......@@ -63,7 +56,6 @@ static const char * const sun7i_board_dt_compat[] = {
DT_MACHINE_START(SUN7I_DT, "Allwinner sun7i (A20) Family")
.dt_compat = sun7i_board_dt_compat,
.init_late = sunxi_dt_cpufreq_init,
MACHINE_END
static const char * const sun8i_board_dt_compat[] = {
......@@ -77,7 +69,6 @@ static const char * const sun8i_board_dt_compat[] = {
DT_MACHINE_START(SUN8I_DT, "Allwinner sun8i Family")
.init_time = sun6i_timer_init,
.dt_compat = sun8i_board_dt_compat,
.init_late = sunxi_dt_cpufreq_init,
MACHINE_END
static const char * const sun9i_board_dt_compat[] = {
......
......@@ -110,7 +110,6 @@ static void __init zynq_init_late(void)
*/
static void __init zynq_init_machine(void)
{
struct platform_device_info devinfo = { .name = "cpufreq-dt", };
struct soc_device_attribute *soc_dev_attr;
struct soc_device *soc_dev;
struct device *parent = NULL;
......@@ -145,7 +144,6 @@ static void __init zynq_init_machine(void)
of_platform_populate(NULL, of_default_bus_match_table, NULL, parent);
platform_device_register(&zynq_cpuidle_device);
platform_device_register_full(&devinfo);
}
static void __init zynq_timer_init(void)
......
......@@ -159,7 +159,7 @@ int of_pm_clk_add_clks(struct device *dev)
count = of_count_phandle_with_args(dev->of_node, "clocks",
"#clock-cells");
if (count == 0)
if (count <= 0)
return -ENODEV;
clks = kcalloc(count, sizeof(*clks), GFP_KERNEL);
......
......@@ -229,17 +229,6 @@ static int genpd_poweron(struct generic_pm_domain *genpd, unsigned int depth)
return ret;
}
static int genpd_save_dev(struct generic_pm_domain *genpd, struct device *dev)
{
return GENPD_DEV_CALLBACK(genpd, int, save_state, dev);
}
static int genpd_restore_dev(struct generic_pm_domain *genpd,
struct device *dev)
{
return GENPD_DEV_CALLBACK(genpd, int, restore_state, dev);
}
static int genpd_dev_pm_qos_notifier(struct notifier_block *nb,
unsigned long val, void *ptr)
{
......@@ -372,17 +361,63 @@ static void genpd_power_off_work_fn(struct work_struct *work)
}
/**
* pm_genpd_runtime_suspend - Suspend a device belonging to I/O PM domain.
* __genpd_runtime_suspend - walk the hierarchy of ->runtime_suspend() callbacks
* @dev: Device to handle.
*/
static int __genpd_runtime_suspend(struct device *dev)
{
int (*cb)(struct device *__dev);
if (dev->type && dev->type->pm)
cb = dev->type->pm->runtime_suspend;
else if (dev->class && dev->class->pm)
cb = dev->class->pm->runtime_suspend;
else if (dev->bus && dev->bus->pm)
cb = dev->bus->pm->runtime_suspend;
else
cb = NULL;
if (!cb && dev->driver && dev->driver->pm)
cb = dev->driver->pm->runtime_suspend;
return cb ? cb(dev) : 0;
}
/**
* __genpd_runtime_resume - walk the hierarchy of ->runtime_resume() callbacks
* @dev: Device to handle.
*/
static int __genpd_runtime_resume(struct device *dev)
{
int (*cb)(struct device *__dev);
if (dev->type && dev->type->pm)
cb = dev->type->pm->runtime_resume;
else if (dev->class && dev->class->pm)
cb = dev->class->pm->runtime_resume;
else if (dev->bus && dev->bus->pm)
cb = dev->bus->pm->runtime_resume;
else
cb = NULL;
if (!cb && dev->driver && dev->driver->pm)
cb = dev->driver->pm->runtime_resume;
return cb ? cb(dev) : 0;
}
/**
* genpd_runtime_suspend - Suspend a device belonging to I/O PM domain.
* @dev: Device to suspend.
*
* Carry out a runtime suspend of a device under the assumption that its
* pm_domain field points to the domain member of an object of type
* struct generic_pm_domain representing a PM domain consisting of I/O devices.
*/
static int pm_genpd_runtime_suspend(struct device *dev)
static int genpd_runtime_suspend(struct device *dev)
{
struct generic_pm_domain *genpd;
bool (*stop_ok)(struct device *__dev);
bool (*suspend_ok)(struct device *__dev);
struct gpd_timing_data *td = &dev_gpd_data(dev)->td;
bool runtime_pm = pm_runtime_enabled(dev);
ktime_t time_start;
......@@ -401,21 +436,21 @@ static int pm_genpd_runtime_suspend(struct device *dev)
* runtime PM is disabled. Under these circumstances, we shall skip
* validating/measuring the PM QoS latency.
*/
stop_ok = genpd->gov ? genpd->gov->stop_ok : NULL;
if (runtime_pm && stop_ok && !stop_ok(dev))
suspend_ok = genpd->gov ? genpd->gov->suspend_ok : NULL;
if (runtime_pm && suspend_ok && !suspend_ok(dev))
return -EBUSY;
/* Measure suspend latency. */
if (runtime_pm)
time_start = ktime_get();
ret = genpd_save_dev(genpd, dev);
ret = __genpd_runtime_suspend(dev);
if (ret)
return ret;
ret = genpd_stop_dev(genpd, dev);
if (ret) {
genpd_restore_dev(genpd, dev);
__genpd_runtime_resume(dev);
return ret;
}
......@@ -446,14 +481,14 @@ static int pm_genpd_runtime_suspend(struct device *dev)
}
/**
* pm_genpd_runtime_resume - Resume a device belonging to I/O PM domain.
* genpd_runtime_resume - Resume a device belonging to I/O PM domain.
* @dev: Device to resume.
*
* Carry out a runtime resume of a device under the assumption that its
* pm_domain field points to the domain member of an object of type
* struct generic_pm_domain representing a PM domain consisting of I/O devices.
*/
static int pm_genpd_runtime_resume(struct device *dev)
static int genpd_runtime_resume(struct device *dev)
{
struct generic_pm_domain *genpd;
struct gpd_timing_data *td = &dev_gpd_data(dev)->td;
......@@ -491,7 +526,7 @@ static int pm_genpd_runtime_resume(struct device *dev)
if (ret)
goto err_poweroff;
ret = genpd_restore_dev(genpd, dev);
ret = __genpd_runtime_resume(dev);
if (ret)
goto err_stop;
......@@ -695,15 +730,6 @@ static int pm_genpd_prepare(struct device *dev)
* at this point and a system wakeup event should be reported if it's
* set up to wake up the system from sleep states.
*/
pm_runtime_get_noresume(dev);
if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
pm_wakeup_event(dev, 0);
if (pm_wakeup_pending()) {
pm_runtime_put(dev);
return -EBUSY;
}
if (resume_needed(dev, genpd))
pm_runtime_resume(dev);
......@@ -716,10 +742,8 @@ static int pm_genpd_prepare(struct device *dev)
mutex_unlock(&genpd->lock);
if (genpd->suspend_power_off) {
pm_runtime_put_noidle(dev);
if (genpd->suspend_power_off)
return 0;
}
/*
* The PM domain must be in the GPD_STATE_ACTIVE state at this point,
......@@ -741,7 +765,6 @@ static int pm_genpd_prepare(struct device *dev)
pm_runtime_enable(dev);
}
pm_runtime_put(dev);
return ret;
}
......@@ -1427,54 +1450,6 @@ int pm_genpd_remove_subdomain(struct generic_pm_domain *genpd,
}
EXPORT_SYMBOL_GPL(pm_genpd_remove_subdomain);
/* Default device callbacks for generic PM domains. */
/**
* pm_genpd_default_save_state - Default "save device state" for PM domains.
* @dev: Device to handle.
*/
static int pm_genpd_default_save_state(struct device *dev)
{
int (*cb)(struct device *__dev);
if (dev->type && dev->type->pm)
cb = dev->type->pm->runtime_suspend;
else if (dev->class && dev->class->pm)
cb = dev->class->pm->runtime_suspend;
else if (dev->bus && dev->bus->pm)
cb = dev->bus->pm->runtime_suspend;
else
cb = NULL;
if (!cb && dev->driver && dev->driver->pm)
cb = dev->driver->pm->runtime_suspend;
return cb ? cb(dev) : 0;
}
/**
* pm_genpd_default_restore_state - Default PM domains "restore device state".
* @dev: Device to handle.
*/
static int pm_genpd_default_restore_state(struct device *dev)
{
int (*cb)(struct device *__dev);
if (dev->type && dev->type->pm)
cb = dev->type->pm->runtime_resume;
else if (dev->class && dev->class->pm)
cb = dev->class->pm->runtime_resume;
else if (dev->bus && dev->bus->pm)
cb = dev->bus->pm->runtime_resume;
else
cb = NULL;
if (!cb && dev->driver && dev->driver->pm)
cb = dev->driver->pm->runtime_resume;
return cb ? cb(dev) : 0;
}
/**
* pm_genpd_init - Initialize a generic I/O PM domain object.
* @genpd: PM domain object to initialize.
......@@ -1498,8 +1473,8 @@ void pm_genpd_init(struct generic_pm_domain *genpd,
genpd->device_count = 0;
genpd->max_off_time_ns = -1;
genpd->max_off_time_changed = true;
genpd->domain.ops.runtime_suspend = pm_genpd_runtime_suspend;
genpd->domain.ops.runtime_resume = pm_genpd_runtime_resume;
genpd->domain.ops.runtime_suspend = genpd_runtime_suspend;
genpd->domain.ops.runtime_resume = genpd_runtime_resume;
genpd->domain.ops.prepare = pm_genpd_prepare;
genpd->domain.ops.suspend = pm_genpd_suspend;
genpd->domain.ops.suspend_late = pm_genpd_suspend_late;
......@@ -1520,8 +1495,6 @@ void pm_genpd_init(struct generic_pm_domain *genpd,
genpd->domain.ops.restore_early = pm_genpd_resume_early;
genpd->domain.ops.restore = pm_genpd_resume;
genpd->domain.ops.complete = pm_genpd_complete;
genpd->dev_ops.save_state = pm_genpd_default_save_state;
genpd->dev_ops.restore_state = pm_genpd_default_restore_state;
if (genpd->flags & GENPD_FLAG_PM_CLK) {
genpd->dev_ops.stop = pm_clk_suspend;
......
......@@ -37,10 +37,10 @@ static int dev_update_qos_constraint(struct device *dev, void *data)
}
/**
* default_stop_ok - Default PM domain governor routine for stopping devices.
* default_suspend_ok - Default PM domain governor routine to suspend devices.
* @dev: Device to check.
*/
static bool default_stop_ok(struct device *dev)
static bool default_suspend_ok(struct device *dev)
{
struct gpd_timing_data *td = &dev_gpd_data(dev)->td;
unsigned long flags;
......@@ -51,13 +51,13 @@ static bool default_stop_ok(struct device *dev)
spin_lock_irqsave(&dev->power.lock, flags);
if (!td->constraint_changed) {
bool ret = td->cached_stop_ok;
bool ret = td->cached_suspend_ok;
spin_unlock_irqrestore(&dev->power.lock, flags);
return ret;
}
td->constraint_changed = false;
td->cached_stop_ok = false;
td->cached_suspend_ok = false;
td->effective_constraint_ns = -1;
constraint_ns = __dev_pm_qos_read_value(dev);
......@@ -83,13 +83,13 @@ static bool default_stop_ok(struct device *dev)
return false;
}
td->effective_constraint_ns = constraint_ns;
td->cached_stop_ok = constraint_ns >= 0;
td->cached_suspend_ok = constraint_ns >= 0;
/*
* The children have been suspended already, so we don't need to take
* their stop latencies into account here.
* their suspend latencies into account here.
*/
return td->cached_stop_ok;
return td->cached_suspend_ok;
}
/**
......@@ -150,7 +150,7 @@ static bool __default_power_down_ok(struct dev_pm_domain *pd,
*/
td = &to_gpd_data(pdd)->td;
constraint_ns = td->effective_constraint_ns;
/* default_stop_ok() need not be called before us. */
/* default_suspend_ok() need not be called before us. */
if (constraint_ns < 0) {
constraint_ns = dev_pm_qos_read_value(pdd->dev);
constraint_ns *= NSEC_PER_USEC;
......@@ -227,7 +227,7 @@ static bool always_on_power_down_ok(struct dev_pm_domain *domain)
}
struct dev_power_governor simple_qos_governor = {
.stop_ok = default_stop_ok,
.suspend_ok = default_suspend_ok,
.power_down_ok = default_power_down_ok,
};
......@@ -236,5 +236,5 @@ struct dev_power_governor simple_qos_governor = {
*/
struct dev_power_governor pm_domain_always_on_gov = {
.power_down_ok = always_on_power_down_ok,
.stop_ok = default_stop_ok,
.suspend_ok = default_suspend_ok,
};
......@@ -1556,7 +1556,6 @@ int dpm_suspend(pm_message_t state)
static int device_prepare(struct device *dev, pm_message_t state)
{
int (*callback)(struct device *) = NULL;
char *info = NULL;
int ret = 0;
if (dev->power.syscore)
......@@ -1579,24 +1578,17 @@ static int device_prepare(struct device *dev, pm_message_t state)
goto unlock;
}
if (dev->pm_domain) {
info = "preparing power domain ";
if (dev->pm_domain)
callback = dev->pm_domain->ops.prepare;
} else if (dev->type && dev->type->pm) {
info = "preparing type ";
else if (dev->type && dev->type->pm)
callback = dev->type->pm->prepare;
} else if (dev->class && dev->class->pm) {
info = "preparing class ";
else if (dev->class && dev->class->pm)
callback = dev->class->pm->prepare;
} else if (dev->bus && dev->bus->pm) {
info = "preparing bus ";
else if (dev->bus && dev->bus->pm)
callback = dev->bus->pm->prepare;
}
if (!callback && dev->driver && dev->driver->pm) {
info = "preparing driver ";
if (!callback && dev->driver && dev->driver->pm)
callback = dev->driver->pm->prepare;
}
if (callback)
ret = callback(dev);
......
ccflags-$(CONFIG_DEBUG_DRIVER) := -DDEBUG
obj-y += core.o cpu.o
obj-$(CONFIG_OF) += of.o
obj-$(CONFIG_DEBUG_FS) += debugfs.o
......@@ -18,7 +18,6 @@
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/export.h>
#include <linux/regulator/consumer.h>
......@@ -29,7 +28,7 @@
* from here, with each opp_table containing the list of opps it supports in
* various states of availability.
*/
static LIST_HEAD(opp_tables);
LIST_HEAD(opp_tables);
/* Lock to allow exclusive modification to the device and opp lists */
DEFINE_MUTEX(opp_table_lock);
......@@ -53,26 +52,6 @@ static struct opp_device *_find_opp_dev(const struct device *dev,
return NULL;
}
static struct opp_table *_managed_opp(const struct device_node *np)
{
struct opp_table *opp_table;
list_for_each_entry_rcu(opp_table, &opp_tables, node) {
if (opp_table->np == np) {
/*
* Multiple devices can point to the same OPP table and
* so will have same node-pointer, np.
*
* But the OPPs will be considered as shared only if the
* OPP table contains a "opp-shared" property.
*/
return opp_table->shared_opp ? opp_table : NULL;
}
}
return NULL;
}
/**
* _find_opp_table() - find opp_table struct using device pointer
* @dev: device pointer used to lookup OPP table
......@@ -757,7 +736,6 @@ static struct opp_table *_add_opp_table(struct device *dev)
{
struct opp_table *opp_table;
struct opp_device *opp_dev;
struct device_node *np;
int ret;
/* Check for existing table for 'dev' first */
......@@ -781,20 +759,7 @@ static struct opp_table *_add_opp_table(struct device *dev)
return NULL;
}
/*
* Only required for backward compatibility with v1 bindings, but isn't
* harmful for other cases. And so we do it unconditionally.
*/
np = of_node_get(dev->of_node);
if (np) {
u32 val;
if (!of_property_read_u32(np, "clock-latency", &val))
opp_table->clock_latency_ns_max = val;
of_property_read_u32(np, "voltage-tolerance",
&opp_table->voltage_tolerance_v1);
of_node_put(np);
}
_of_init_opp_table(opp_table, dev);
/* Set regulator to a non-NULL error value */
opp_table->regulator = ERR_PTR(-ENXIO);
......@@ -890,8 +855,8 @@ static void _kfree_opp_rcu(struct rcu_head *head)
* It is assumed that the caller holds required mutex for an RCU updater
* strategy.
*/
static void _opp_remove(struct opp_table *opp_table,
struct dev_pm_opp *opp, bool notify)
void _opp_remove(struct opp_table *opp_table, struct dev_pm_opp *opp,
bool notify)
{
/*
* Notify the changes in the availability of the operable
......@@ -952,8 +917,8 @@ void dev_pm_opp_remove(struct device *dev, unsigned long freq)
}
EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
static struct dev_pm_opp *_allocate_opp(struct device *dev,
struct opp_table **opp_table)
struct dev_pm_opp *_allocate_opp(struct device *dev,
struct opp_table **opp_table)
{
struct dev_pm_opp *opp;
......@@ -989,8 +954,8 @@ static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
return true;
}
static int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
struct opp_table *opp_table)
int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
struct opp_table *opp_table)
{
struct dev_pm_opp *opp;
struct list_head *head = &opp_table->opp_list;
......@@ -1066,8 +1031,8 @@ static int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
* Duplicate OPPs (both freq and volt are same) and !opp->available
* -ENOMEM Memory allocation failure
*/
static int _opp_add_v1(struct device *dev, unsigned long freq, long u_volt,
bool dynamic)
int _opp_add_v1(struct device *dev, unsigned long freq, long u_volt,
bool dynamic)
{
struct opp_table *opp_table;
struct dev_pm_opp *new_opp;
......@@ -1112,83 +1077,6 @@ static int _opp_add_v1(struct device *dev, unsigned long freq, long u_volt,
return ret;
}
/* TODO: Support multiple regulators */
static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
struct opp_table *opp_table)
{
u32 microvolt[3] = {0};
u32 val;
int count, ret;
struct property *prop = NULL;
char name[NAME_MAX];
/* Search for "opp-microvolt-<name>" */
if (opp_table->prop_name) {
snprintf(name, sizeof(name), "opp-microvolt-%s",
opp_table->prop_name);
prop = of_find_property(opp->np, name, NULL);
}
if (!prop) {
/* Search for "opp-microvolt" */
sprintf(name, "opp-microvolt");
prop = of_find_property(opp->np, name, NULL);
/* Missing property isn't a problem, but an invalid entry is */
if (!prop)
return 0;
}
count = of_property_count_u32_elems(opp->np, name);
if (count < 0) {
dev_err(dev, "%s: Invalid %s property (%d)\n",
__func__, name, count);
return count;
}
/* There can be one or three elements here */
if (count != 1 && count != 3) {
dev_err(dev, "%s: Invalid number of elements in %s property (%d)\n",
__func__, name, count);
return -EINVAL;
}
ret = of_property_read_u32_array(opp->np, name, microvolt, count);
if (ret) {
dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
return -EINVAL;
}
opp->u_volt = microvolt[0];
if (count == 1) {
opp->u_volt_min = opp->u_volt;
opp->u_volt_max = opp->u_volt;
} else {
opp->u_volt_min = microvolt[1];
opp->u_volt_max = microvolt[2];
}
/* Search for "opp-microamp-<name>" */
prop = NULL;
if (opp_table->prop_name) {
snprintf(name, sizeof(name), "opp-microamp-%s",
opp_table->prop_name);
prop = of_find_property(opp->np, name, NULL);
}
if (!prop) {
/* Search for "opp-microamp" */
sprintf(name, "opp-microamp");
prop = of_find_property(opp->np, name, NULL);
}
if (prop && !of_property_read_u32(opp->np, name, &val))
opp->u_amp = val;
return 0;
}
/**
* dev_pm_opp_set_supported_hw() - Set supported platforms
* @dev: Device for which supported-hw has to be set.
......@@ -1517,144 +1405,6 @@ void dev_pm_opp_put_regulator(struct device *dev)
}
EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulator);
static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
struct device_node *np)
{
unsigned int count = opp_table->supported_hw_count;
u32 version;
int ret;
if (!opp_table->supported_hw)
return true;
while (count--) {
ret = of_property_read_u32_index(np, "opp-supported-hw", count,
&version);
if (ret) {
dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
__func__, count, ret);
return false;
}
/* Both of these are bitwise masks of the versions */
if (!(version & opp_table->supported_hw[count]))
return false;
}
return true;
}
/**
* _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
* @dev: device for which we do this operation
* @np: device node
*
* This function adds an opp definition to the opp table and returns status. The
* opp can be controlled using dev_pm_opp_enable/disable functions and may be
* removed by dev_pm_opp_remove.
*
* Locking: The internal opp_table and opp structures are RCU protected.
* Hence this function internally uses RCU updater strategy with mutex locks
* to keep the integrity of the internal data structures. Callers should ensure
* that this function is *NOT* called under RCU protection or in contexts where
* mutex cannot be locked.
*
* Return:
* 0 On success OR
* Duplicate OPPs (both freq and volt are same) and opp->available
* -EEXIST Freq are same and volt are different OR
* Duplicate OPPs (both freq and volt are same) and !opp->available
* -ENOMEM Memory allocation failure
* -EINVAL Failed parsing the OPP node
*/
static int _opp_add_static_v2(struct device *dev, struct device_node *np)
{
struct opp_table *opp_table;
struct dev_pm_opp *new_opp;
u64 rate;
u32 val;
int ret;
/* Hold our table modification lock here */
mutex_lock(&opp_table_lock);
new_opp = _allocate_opp(dev, &opp_table);
if (!new_opp) {
ret = -ENOMEM;
goto unlock;
}
ret = of_property_read_u64(np, "opp-hz", &rate);
if (ret < 0) {
dev_err(dev, "%s: opp-hz not found\n", __func__);
goto free_opp;
}
/* Check if the OPP supports hardware's hierarchy of versions or not */
if (!_opp_is_supported(dev, opp_table, np)) {
dev_dbg(dev, "OPP not supported by hardware: %llu\n", rate);
goto free_opp;
}
/*
* Rate is defined as an unsigned long in clk API, and so casting
* explicitly to its type. Must be fixed once rate is 64 bit
* guaranteed in clk API.
*/
new_opp->rate = (unsigned long)rate;
new_opp->turbo = of_property_read_bool(np, "turbo-mode");
new_opp->np = np;
new_opp->dynamic = false;
new_opp->available = true;
if (!of_property_read_u32(np, "clock-latency-ns", &val))
new_opp->clock_latency_ns = val;
ret = opp_parse_supplies(new_opp, dev, opp_table);
if (ret)
goto free_opp;
ret = _opp_add(dev, new_opp, opp_table);
if (ret)
goto free_opp;
/* OPP to select on device suspend */
if (of_property_read_bool(np, "opp-suspend")) {
if (opp_table->suspend_opp) {
dev_warn(dev, "%s: Multiple suspend OPPs found (%lu %lu)\n",
__func__, opp_table->suspend_opp->rate,
new_opp->rate);
} else {
new_opp->suspend = true;
opp_table->suspend_opp = new_opp;
}
}
if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
mutex_unlock(&opp_table_lock);
pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu\n",
__func__, new_opp->turbo, new_opp->rate, new_opp->u_volt,
new_opp->u_volt_min, new_opp->u_volt_max,
new_opp->clock_latency_ns);
/*
* Notify the changes in the availability of the operable
* frequency/voltage list.
*/
srcu_notifier_call_chain(&opp_table->srcu_head, OPP_EVENT_ADD, new_opp);
return 0;
free_opp:
_opp_remove(opp_table, new_opp, false);
unlock:
mutex_unlock(&opp_table_lock);
return ret;
}
/**
* dev_pm_opp_add() - Add an OPP table from a table definitions
* @dev: device for which we do this operation
......@@ -1842,21 +1592,11 @@ struct srcu_notifier_head *dev_pm_opp_get_notifier(struct device *dev)
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_notifier);
#ifdef CONFIG_OF
/**
* dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
* entries
* @dev: device pointer used to lookup OPP table.
*
* Free OPPs created using static entries present in DT.
*
* Locking: The internal opp_table and opp structures are RCU protected.
* Hence this function indirectly uses RCU updater strategy with mutex locks
* to keep the integrity of the internal data structures. Callers should ensure
* that this function is *NOT* called under RCU protection or in contexts where
* mutex cannot be locked.
/*
* Free OPPs either created using static entries present in DT or even the
* dynamically added entries based on remove_all param.
*/
void dev_pm_opp_of_remove_table(struct device *dev)
void _dev_pm_opp_remove_table(struct device *dev, bool remove_all)
{
struct opp_table *opp_table;
struct dev_pm_opp *opp, *tmp;
......@@ -1881,7 +1621,7 @@ void dev_pm_opp_of_remove_table(struct device *dev)
if (list_is_singular(&opp_table->dev_list)) {
/* Free static OPPs */
list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
if (!opp->dynamic)
if (remove_all || !opp->dynamic)
_opp_remove(opp_table, opp, true);
}
} else {
......@@ -1891,160 +1631,22 @@ void dev_pm_opp_of_remove_table(struct device *dev)
unlock:
mutex_unlock(&opp_table_lock);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
/* Returns opp descriptor node for a device, caller must do of_node_put() */
struct device_node *_of_get_opp_desc_node(struct device *dev)
{
/*
* TODO: Support for multiple OPP tables.
*
* There should be only ONE phandle present in "operating-points-v2"
* property.
*/
return of_parse_phandle(dev->of_node, "operating-points-v2", 0);
}
/* Initializes OPP tables based on new bindings */
static int _of_add_opp_table_v2(struct device *dev, struct device_node *opp_np)
{
struct device_node *np;
struct opp_table *opp_table;
int ret = 0, count = 0;
mutex_lock(&opp_table_lock);
opp_table = _managed_opp(opp_np);
if (opp_table) {
/* OPPs are already managed */
if (!_add_opp_dev(dev, opp_table))
ret = -ENOMEM;
mutex_unlock(&opp_table_lock);
return ret;
}
mutex_unlock(&opp_table_lock);
/* We have opp-table node now, iterate over it and add OPPs */
for_each_available_child_of_node(opp_np, np) {
count++;
ret = _opp_add_static_v2(dev, np);
if (ret) {
dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
ret);
goto free_table;
}
}
/* There should be one of more OPP defined */
if (WARN_ON(!count))
return -ENOENT;
mutex_lock(&opp_table_lock);
opp_table = _find_opp_table(dev);
if (WARN_ON(IS_ERR(opp_table))) {
ret = PTR_ERR(opp_table);
mutex_unlock(&opp_table_lock);
goto free_table;
}
opp_table->np = opp_np;
opp_table->shared_opp = of_property_read_bool(opp_np, "opp-shared");
mutex_unlock(&opp_table_lock);
return 0;
free_table:
dev_pm_opp_of_remove_table(dev);
return ret;
}
/* Initializes OPP tables based on old-deprecated bindings */
static int _of_add_opp_table_v1(struct device *dev)
{
const struct property *prop;
const __be32 *val;
int nr;
prop = of_find_property(dev->of_node, "operating-points", NULL);
if (!prop)
return -ENODEV;
if (!prop->value)
return -ENODATA;
/*
* Each OPP is a set of tuples consisting of frequency and
* voltage like <freq-kHz vol-uV>.
*/
nr = prop->length / sizeof(u32);
if (nr % 2) {
dev_err(dev, "%s: Invalid OPP table\n", __func__);
return -EINVAL;
}
val = prop->value;
while (nr) {
unsigned long freq = be32_to_cpup(val++) * 1000;
unsigned long volt = be32_to_cpup(val++);
if (_opp_add_v1(dev, freq, volt, false))
dev_warn(dev, "%s: Failed to add OPP %ld\n",
__func__, freq);
nr -= 2;
}
return 0;
}
/**
* dev_pm_opp_of_add_table() - Initialize opp table from device tree
* dev_pm_opp_remove_table() - Free all OPPs associated with the device
* @dev: device pointer used to lookup OPP table.
*
* Register the initial OPP table with the OPP library for given device.
* Free both OPPs created using static entries present in DT and the
* dynamically added entries.
*
* Locking: The internal opp_table and opp structures are RCU protected.
* Hence this function indirectly uses RCU updater strategy with mutex locks
* to keep the integrity of the internal data structures. Callers should ensure
* that this function is *NOT* called under RCU protection or in contexts where
* mutex cannot be locked.
*
* Return:
* 0 On success OR
* Duplicate OPPs (both freq and volt are same) and opp->available
* -EEXIST Freq are same and volt are different OR
* Duplicate OPPs (both freq and volt are same) and !opp->available
* -ENOMEM Memory allocation failure
* -ENODEV when 'operating-points' property is not found or is invalid data
* in device node.
* -ENODATA when empty 'operating-points' property is found
* -EINVAL when invalid entries are found in opp-v2 table
*/
int dev_pm_opp_of_add_table(struct device *dev)
void dev_pm_opp_remove_table(struct device *dev)
{
struct device_node *opp_np;
int ret;
/*
* OPPs have two version of bindings now. The older one is deprecated,
* try for the new binding first.
*/
opp_np = _of_get_opp_desc_node(dev);
if (!opp_np) {
/*
* Try old-deprecated bindings for backward compatibility with
* older dtbs.
*/
return _of_add_opp_table_v1(dev);
}
ret = _of_add_opp_table_v2(dev, opp_np);
of_node_put(opp_np);
return ret;
_dev_pm_opp_remove_table(dev, true);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
#endif
EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
......@@ -18,7 +18,6 @@
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/of.h>
#include <linux/slab.h>
#include "opp.h"
......@@ -119,8 +118,66 @@ void dev_pm_opp_free_cpufreq_table(struct device *dev,
EXPORT_SYMBOL_GPL(dev_pm_opp_free_cpufreq_table);
#endif /* CONFIG_CPU_FREQ */
/* Required only for V1 bindings, as v2 can manage it from DT itself */
int dev_pm_opp_set_sharing_cpus(struct device *cpu_dev, cpumask_var_t cpumask)
void _dev_pm_opp_cpumask_remove_table(const struct cpumask *cpumask, bool of)
{
struct device *cpu_dev;
int cpu;
WARN_ON(cpumask_empty(cpumask));
for_each_cpu(cpu, cpumask) {
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev) {
pr_err("%s: failed to get cpu%d device\n", __func__,
cpu);
continue;
}
if (of)
dev_pm_opp_of_remove_table(cpu_dev);
else
dev_pm_opp_remove_table(cpu_dev);
}
}
/**
* dev_pm_opp_cpumask_remove_table() - Removes OPP table for @cpumask
* @cpumask: cpumask for which OPP table needs to be removed
*
* This removes the OPP tables for CPUs present in the @cpumask.
* This should be used to remove all the OPPs entries associated with
* the cpus in @cpumask.
*
* Locking: The internal opp_table and opp structures are RCU protected.
* Hence this function internally uses RCU updater strategy with mutex locks
* to keep the integrity of the internal data structures. Callers should ensure
* that this function is *NOT* called under RCU protection or in contexts where
* mutex cannot be locked.
*/
void dev_pm_opp_cpumask_remove_table(const struct cpumask *cpumask)
{
_dev_pm_opp_cpumask_remove_table(cpumask, false);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_cpumask_remove_table);
/**
* dev_pm_opp_set_sharing_cpus() - Mark OPP table as shared by few CPUs
* @cpu_dev: CPU device for which we do this operation
* @cpumask: cpumask of the CPUs which share the OPP table with @cpu_dev
*
* This marks OPP table of the @cpu_dev as shared by the CPUs present in
* @cpumask.
*
* Returns -ENODEV if OPP table isn't already present.
*
* Locking: The internal opp_table and opp structures are RCU protected.
* Hence this function internally uses RCU updater strategy with mutex locks
* to keep the integrity of the internal data structures. Callers should ensure
* that this function is *NOT* called under RCU protection or in contexts where
* mutex cannot be locked.
*/
int dev_pm_opp_set_sharing_cpus(struct device *cpu_dev,
const struct cpumask *cpumask)
{
struct opp_device *opp_dev;
struct opp_table *opp_table;
......@@ -131,7 +188,7 @@ int dev_pm_opp_set_sharing_cpus(struct device *cpu_dev, cpumask_var_t cpumask)
opp_table = _find_opp_table(cpu_dev);
if (IS_ERR(opp_table)) {
ret = -EINVAL;
ret = PTR_ERR(opp_table);
goto unlock;
}
......@@ -152,6 +209,9 @@ int dev_pm_opp_set_sharing_cpus(struct device *cpu_dev, cpumask_var_t cpumask)
__func__, cpu);
continue;
}
/* Mark opp-table as multiple CPUs are sharing it now */
opp_table->shared_opp = true;
}
unlock:
mutex_unlock(&opp_table_lock);
......@@ -160,112 +220,47 @@ int dev_pm_opp_set_sharing_cpus(struct device *cpu_dev, cpumask_var_t cpumask)
}
EXPORT_SYMBOL_GPL(dev_pm_opp_set_sharing_cpus);
#ifdef CONFIG_OF
void dev_pm_opp_of_cpumask_remove_table(cpumask_var_t cpumask)
{
struct device *cpu_dev;
int cpu;
WARN_ON(cpumask_empty(cpumask));
for_each_cpu(cpu, cpumask) {
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev) {
pr_err("%s: failed to get cpu%d device\n", __func__,
cpu);
continue;
}
dev_pm_opp_of_remove_table(cpu_dev);
}
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
int dev_pm_opp_of_cpumask_add_table(cpumask_var_t cpumask)
{
struct device *cpu_dev;
int cpu, ret = 0;
WARN_ON(cpumask_empty(cpumask));
for_each_cpu(cpu, cpumask) {
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev) {
pr_err("%s: failed to get cpu%d device\n", __func__,
cpu);
continue;
}
ret = dev_pm_opp_of_add_table(cpu_dev);
if (ret) {
pr_err("%s: couldn't find opp table for cpu:%d, %d\n",
__func__, cpu, ret);
/* Free all other OPPs */
dev_pm_opp_of_cpumask_remove_table(cpumask);
break;
}
}
return ret;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
/*
* Works only for OPP v2 bindings.
/**
* dev_pm_opp_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with @cpu_dev
* @cpu_dev: CPU device for which we do this operation
* @cpumask: cpumask to update with information of sharing CPUs
*
* This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
*
* Returns -ENOENT if operating-points-v2 bindings aren't supported.
* Returns -ENODEV if OPP table isn't already present.
*
* Locking: The internal opp_table and opp structures are RCU protected.
* Hence this function internally uses RCU updater strategy with mutex locks
* to keep the integrity of the internal data structures. Callers should ensure
* that this function is *NOT* called under RCU protection or in contexts where
* mutex cannot be locked.
*/
int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev, cpumask_var_t cpumask)
int dev_pm_opp_get_sharing_cpus(struct device *cpu_dev, struct cpumask *cpumask)
{
struct device_node *np, *tmp_np;
struct device *tcpu_dev;
int cpu, ret = 0;
/* Get OPP descriptor node */
np = _of_get_opp_desc_node(cpu_dev);
if (!np) {
dev_dbg(cpu_dev, "%s: Couldn't find cpu_dev node.\n", __func__);
return -ENOENT;
}
cpumask_set_cpu(cpu_dev->id, cpumask);
/* OPPs are shared ? */
if (!of_property_read_bool(np, "opp-shared"))
goto put_cpu_node;
for_each_possible_cpu(cpu) {
if (cpu == cpu_dev->id)
continue;
struct opp_device *opp_dev;
struct opp_table *opp_table;
int ret = 0;
tcpu_dev = get_cpu_device(cpu);
if (!tcpu_dev) {
dev_err(cpu_dev, "%s: failed to get cpu%d device\n",
__func__, cpu);
ret = -ENODEV;
goto put_cpu_node;
}
mutex_lock(&opp_table_lock);
/* Get OPP descriptor node */
tmp_np = _of_get_opp_desc_node(tcpu_dev);
if (!tmp_np) {
dev_err(tcpu_dev, "%s: Couldn't find tcpu_dev node.\n",
__func__);
ret = -ENOENT;
goto put_cpu_node;
}
opp_table = _find_opp_table(cpu_dev);
if (IS_ERR(opp_table)) {
ret = PTR_ERR(opp_table);
goto unlock;
}
/* CPUs are sharing opp node */
if (np == tmp_np)
cpumask_set_cpu(cpu, cpumask);
cpumask_clear(cpumask);
of_node_put(tmp_np);
if (opp_table->shared_opp) {
list_for_each_entry(opp_dev, &opp_table->dev_list, node)
cpumask_set_cpu(opp_dev->dev->id, cpumask);
} else {
cpumask_set_cpu(cpu_dev->id, cpumask);
}
put_cpu_node:
of_node_put(np);
unlock:
mutex_unlock(&opp_table_lock);
return ret;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
#endif
EXPORT_SYMBOL_GPL(dev_pm_opp_get_sharing_cpus);
/*
* Generic OPP OF helpers
*
* Copyright (C) 2009-2010 Texas Instruments Incorporated.
* Nishanth Menon
* Romit Dasgupta
* Kevin Hilman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/cpu.h>
#include <linux/errno.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/export.h>
#include "opp.h"
static struct opp_table *_managed_opp(const struct device_node *np)
{
struct opp_table *opp_table;
list_for_each_entry_rcu(opp_table, &opp_tables, node) {
if (opp_table->np == np) {
/*
* Multiple devices can point to the same OPP table and
* so will have same node-pointer, np.
*
* But the OPPs will be considered as shared only if the
* OPP table contains a "opp-shared" property.
*/
return opp_table->shared_opp ? opp_table : NULL;
}
}
return NULL;
}
void _of_init_opp_table(struct opp_table *opp_table, struct device *dev)
{
struct device_node *np;
/*
* Only required for backward compatibility with v1 bindings, but isn't
* harmful for other cases. And so we do it unconditionally.
*/
np = of_node_get(dev->of_node);
if (np) {
u32 val;
if (!of_property_read_u32(np, "clock-latency", &val))
opp_table->clock_latency_ns_max = val;
of_property_read_u32(np, "voltage-tolerance",
&opp_table->voltage_tolerance_v1);
of_node_put(np);
}
}
static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
struct device_node *np)
{
unsigned int count = opp_table->supported_hw_count;
u32 version;
int ret;
if (!opp_table->supported_hw)
return true;
while (count--) {
ret = of_property_read_u32_index(np, "opp-supported-hw", count,
&version);
if (ret) {
dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
__func__, count, ret);
return false;
}
/* Both of these are bitwise masks of the versions */
if (!(version & opp_table->supported_hw[count]))
return false;
}
return true;
}
/* TODO: Support multiple regulators */
static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
struct opp_table *opp_table)
{
u32 microvolt[3] = {0};
u32 val;
int count, ret;
struct property *prop = NULL;
char name[NAME_MAX];
/* Search for "opp-microvolt-<name>" */
if (opp_table->prop_name) {
snprintf(name, sizeof(name), "opp-microvolt-%s",
opp_table->prop_name);
prop = of_find_property(opp->np, name, NULL);
}
if (!prop) {
/* Search for "opp-microvolt" */
sprintf(name, "opp-microvolt");
prop = of_find_property(opp->np, name, NULL);
/* Missing property isn't a problem, but an invalid entry is */
if (!prop)
return 0;
}
count = of_property_count_u32_elems(opp->np, name);
if (count < 0) {
dev_err(dev, "%s: Invalid %s property (%d)\n",
__func__, name, count);
return count;
}
/* There can be one or three elements here */
if (count != 1 && count != 3) {
dev_err(dev, "%s: Invalid number of elements in %s property (%d)\n",
__func__, name, count);
return -EINVAL;
}
ret = of_property_read_u32_array(opp->np, name, microvolt, count);
if (ret) {
dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
return -EINVAL;
}
opp->u_volt = microvolt[0];
if (count == 1) {
opp->u_volt_min = opp->u_volt;
opp->u_volt_max = opp->u_volt;
} else {
opp->u_volt_min = microvolt[1];
opp->u_volt_max = microvolt[2];
}
/* Search for "opp-microamp-<name>" */
prop = NULL;
if (opp_table->prop_name) {
snprintf(name, sizeof(name), "opp-microamp-%s",
opp_table->prop_name);
prop = of_find_property(opp->np, name, NULL);
}
if (!prop) {
/* Search for "opp-microamp" */
sprintf(name, "opp-microamp");
prop = of_find_property(opp->np, name, NULL);
}
if (prop && !of_property_read_u32(opp->np, name, &val))
opp->u_amp = val;
return 0;
}
/**
* dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
* entries
* @dev: device pointer used to lookup OPP table.
*
* Free OPPs created using static entries present in DT.
*
* Locking: The internal opp_table and opp structures are RCU protected.
* Hence this function indirectly uses RCU updater strategy with mutex locks
* to keep the integrity of the internal data structures. Callers should ensure
* that this function is *NOT* called under RCU protection or in contexts where
* mutex cannot be locked.
*/
void dev_pm_opp_of_remove_table(struct device *dev)
{
_dev_pm_opp_remove_table(dev, false);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
/* Returns opp descriptor node for a device, caller must do of_node_put() */
struct device_node *_of_get_opp_desc_node(struct device *dev)
{
/*
* TODO: Support for multiple OPP tables.
*
* There should be only ONE phandle present in "operating-points-v2"
* property.
*/
return of_parse_phandle(dev->of_node, "operating-points-v2", 0);
}
/**
* _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
* @dev: device for which we do this operation
* @np: device node
*
* This function adds an opp definition to the opp table and returns status. The
* opp can be controlled using dev_pm_opp_enable/disable functions and may be
* removed by dev_pm_opp_remove.
*
* Locking: The internal opp_table and opp structures are RCU protected.
* Hence this function internally uses RCU updater strategy with mutex locks
* to keep the integrity of the internal data structures. Callers should ensure
* that this function is *NOT* called under RCU protection or in contexts where
* mutex cannot be locked.
*
* Return:
* 0 On success OR
* Duplicate OPPs (both freq and volt are same) and opp->available
* -EEXIST Freq are same and volt are different OR
* Duplicate OPPs (both freq and volt are same) and !opp->available
* -ENOMEM Memory allocation failure
* -EINVAL Failed parsing the OPP node
*/
static int _opp_add_static_v2(struct device *dev, struct device_node *np)
{
struct opp_table *opp_table;
struct dev_pm_opp *new_opp;
u64 rate;
u32 val;
int ret;
/* Hold our table modification lock here */
mutex_lock(&opp_table_lock);
new_opp = _allocate_opp(dev, &opp_table);
if (!new_opp) {
ret = -ENOMEM;
goto unlock;
}
ret = of_property_read_u64(np, "opp-hz", &rate);
if (ret < 0) {
dev_err(dev, "%s: opp-hz not found\n", __func__);
goto free_opp;
}
/* Check if the OPP supports hardware's hierarchy of versions or not */
if (!_opp_is_supported(dev, opp_table, np)) {
dev_dbg(dev, "OPP not supported by hardware: %llu\n", rate);
goto free_opp;
}
/*
* Rate is defined as an unsigned long in clk API, and so casting
* explicitly to its type. Must be fixed once rate is 64 bit
* guaranteed in clk API.
*/
new_opp->rate = (unsigned long)rate;
new_opp->turbo = of_property_read_bool(np, "turbo-mode");
new_opp->np = np;
new_opp->dynamic = false;
new_opp->available = true;
if (!of_property_read_u32(np, "clock-latency-ns", &val))
new_opp->clock_latency_ns = val;
ret = opp_parse_supplies(new_opp, dev, opp_table);
if (ret)
goto free_opp;
ret = _opp_add(dev, new_opp, opp_table);
if (ret)
goto free_opp;
/* OPP to select on device suspend */
if (of_property_read_bool(np, "opp-suspend")) {
if (opp_table->suspend_opp) {
dev_warn(dev, "%s: Multiple suspend OPPs found (%lu %lu)\n",
__func__, opp_table->suspend_opp->rate,
new_opp->rate);
} else {
new_opp->suspend = true;
opp_table->suspend_opp = new_opp;
}
}
if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
mutex_unlock(&opp_table_lock);
pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu\n",
__func__, new_opp->turbo, new_opp->rate, new_opp->u_volt,
new_opp->u_volt_min, new_opp->u_volt_max,
new_opp->clock_latency_ns);
/*
* Notify the changes in the availability of the operable
* frequency/voltage list.
*/
srcu_notifier_call_chain(&opp_table->srcu_head, OPP_EVENT_ADD, new_opp);
return 0;
free_opp:
_opp_remove(opp_table, new_opp, false);
unlock:
mutex_unlock(&opp_table_lock);
return ret;
}
/* Initializes OPP tables based on new bindings */
static int _of_add_opp_table_v2(struct device *dev, struct device_node *opp_np)
{
struct device_node *np;
struct opp_table *opp_table;
int ret = 0, count = 0;
mutex_lock(&opp_table_lock);
opp_table = _managed_opp(opp_np);
if (opp_table) {
/* OPPs are already managed */
if (!_add_opp_dev(dev, opp_table))
ret = -ENOMEM;
mutex_unlock(&opp_table_lock);
return ret;
}
mutex_unlock(&opp_table_lock);
/* We have opp-table node now, iterate over it and add OPPs */
for_each_available_child_of_node(opp_np, np) {
count++;
ret = _opp_add_static_v2(dev, np);
if (ret) {
dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
ret);
goto free_table;
}
}
/* There should be one of more OPP defined */
if (WARN_ON(!count))
return -ENOENT;
mutex_lock(&opp_table_lock);
opp_table = _find_opp_table(dev);
if (WARN_ON(IS_ERR(opp_table))) {
ret = PTR_ERR(opp_table);
mutex_unlock(&opp_table_lock);
goto free_table;
}
opp_table->np = opp_np;
opp_table->shared_opp = of_property_read_bool(opp_np, "opp-shared");
mutex_unlock(&opp_table_lock);
return 0;
free_table:
dev_pm_opp_of_remove_table(dev);
return ret;
}
/* Initializes OPP tables based on old-deprecated bindings */
static int _of_add_opp_table_v1(struct device *dev)
{
const struct property *prop;
const __be32 *val;
int nr;
prop = of_find_property(dev->of_node, "operating-points", NULL);
if (!prop)
return -ENODEV;
if (!prop->value)
return -ENODATA;
/*
* Each OPP is a set of tuples consisting of frequency and
* voltage like <freq-kHz vol-uV>.
*/
nr = prop->length / sizeof(u32);
if (nr % 2) {
dev_err(dev, "%s: Invalid OPP table\n", __func__);
return -EINVAL;
}
val = prop->value;
while (nr) {
unsigned long freq = be32_to_cpup(val++) * 1000;
unsigned long volt = be32_to_cpup(val++);
if (_opp_add_v1(dev, freq, volt, false))
dev_warn(dev, "%s: Failed to add OPP %ld\n",
__func__, freq);
nr -= 2;
}
return 0;
}
/**
* dev_pm_opp_of_add_table() - Initialize opp table from device tree
* @dev: device pointer used to lookup OPP table.
*
* Register the initial OPP table with the OPP library for given device.
*
* Locking: The internal opp_table and opp structures are RCU protected.
* Hence this function indirectly uses RCU updater strategy with mutex locks
* to keep the integrity of the internal data structures. Callers should ensure
* that this function is *NOT* called under RCU protection or in contexts where
* mutex cannot be locked.
*
* Return:
* 0 On success OR
* Duplicate OPPs (both freq and volt are same) and opp->available
* -EEXIST Freq are same and volt are different OR
* Duplicate OPPs (both freq and volt are same) and !opp->available
* -ENOMEM Memory allocation failure
* -ENODEV when 'operating-points' property is not found or is invalid data
* in device node.
* -ENODATA when empty 'operating-points' property is found
* -EINVAL when invalid entries are found in opp-v2 table
*/
int dev_pm_opp_of_add_table(struct device *dev)
{
struct device_node *opp_np;
int ret;
/*
* OPPs have two version of bindings now. The older one is deprecated,
* try for the new binding first.
*/
opp_np = _of_get_opp_desc_node(dev);
if (!opp_np) {
/*
* Try old-deprecated bindings for backward compatibility with
* older dtbs.
*/
return _of_add_opp_table_v1(dev);
}
ret = _of_add_opp_table_v2(dev, opp_np);
of_node_put(opp_np);
return ret;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
/* CPU device specific helpers */
/**
* dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
* @cpumask: cpumask for which OPP table needs to be removed
*
* This removes the OPP tables for CPUs present in the @cpumask.
* This should be used only to remove static entries created from DT.
*
* Locking: The internal opp_table and opp structures are RCU protected.
* Hence this function internally uses RCU updater strategy with mutex locks
* to keep the integrity of the internal data structures. Callers should ensure
* that this function is *NOT* called under RCU protection or in contexts where
* mutex cannot be locked.
*/
void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
{
_dev_pm_opp_cpumask_remove_table(cpumask, true);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
/**
* dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
* @cpumask: cpumask for which OPP table needs to be added.
*
* This adds the OPP tables for CPUs present in the @cpumask.
*
* Locking: The internal opp_table and opp structures are RCU protected.
* Hence this function internally uses RCU updater strategy with mutex locks
* to keep the integrity of the internal data structures. Callers should ensure
* that this function is *NOT* called under RCU protection or in contexts where
* mutex cannot be locked.
*/
int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
{
struct device *cpu_dev;
int cpu, ret = 0;
WARN_ON(cpumask_empty(cpumask));
for_each_cpu(cpu, cpumask) {
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev) {
pr_err("%s: failed to get cpu%d device\n", __func__,
cpu);
continue;
}
ret = dev_pm_opp_of_add_table(cpu_dev);
if (ret) {
pr_err("%s: couldn't find opp table for cpu:%d, %d\n",
__func__, cpu, ret);
/* Free all other OPPs */
dev_pm_opp_of_cpumask_remove_table(cpumask);
break;
}
}
return ret;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
/*
* Works only for OPP v2 bindings.
*
* Returns -ENOENT if operating-points-v2 bindings aren't supported.
*/
/**
* dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
* @cpu_dev using operating-points-v2
* bindings.
*
* @cpu_dev: CPU device for which we do this operation
* @cpumask: cpumask to update with information of sharing CPUs
*
* This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
*
* Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
*
* Locking: The internal opp_table and opp structures are RCU protected.
* Hence this function internally uses RCU updater strategy with mutex locks
* to keep the integrity of the internal data structures. Callers should ensure
* that this function is *NOT* called under RCU protection or in contexts where
* mutex cannot be locked.
*/
int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
struct cpumask *cpumask)
{
struct device_node *np, *tmp_np;
struct device *tcpu_dev;
int cpu, ret = 0;
/* Get OPP descriptor node */
np = _of_get_opp_desc_node(cpu_dev);
if (!np) {
dev_dbg(cpu_dev, "%s: Couldn't find cpu_dev node.\n", __func__);
return -ENOENT;
}
cpumask_set_cpu(cpu_dev->id, cpumask);
/* OPPs are shared ? */
if (!of_property_read_bool(np, "opp-shared"))
goto put_cpu_node;
for_each_possible_cpu(cpu) {
if (cpu == cpu_dev->id)
continue;
tcpu_dev = get_cpu_device(cpu);
if (!tcpu_dev) {
dev_err(cpu_dev, "%s: failed to get cpu%d device\n",
__func__, cpu);
ret = -ENODEV;
goto put_cpu_node;
}
/* Get OPP descriptor node */
tmp_np = _of_get_opp_desc_node(tcpu_dev);
if (!tmp_np) {
dev_err(tcpu_dev, "%s: Couldn't find tcpu_dev node.\n",
__func__);
ret = -ENOENT;
goto put_cpu_node;
}
/* CPUs are sharing opp node */
if (np == tmp_np)
cpumask_set_cpu(cpu, cpumask);
of_node_put(tmp_np);
}
put_cpu_node:
of_node_put(np);
return ret;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
......@@ -28,6 +28,8 @@ struct regulator;
/* Lock to allow exclusive modification to the device and opp lists */
extern struct mutex opp_table_lock;
extern struct list_head opp_tables;
/*
* Internal data structure organization with the OPP layer library is as
* follows:
......@@ -183,6 +185,18 @@ struct opp_table {
struct opp_table *_find_opp_table(struct device *dev);
struct opp_device *_add_opp_dev(const struct device *dev, struct opp_table *opp_table);
struct device_node *_of_get_opp_desc_node(struct device *dev);
void _dev_pm_opp_remove_table(struct device *dev, bool remove_all);
struct dev_pm_opp *_allocate_opp(struct device *dev, struct opp_table **opp_table);
int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, struct opp_table *opp_table);
void _opp_remove(struct opp_table *opp_table, struct dev_pm_opp *opp, bool notify);
int _opp_add_v1(struct device *dev, unsigned long freq, long u_volt, bool dynamic);
void _dev_pm_opp_cpumask_remove_table(const struct cpumask *cpumask, bool of);
#ifdef CONFIG_OF
void _of_init_opp_table(struct opp_table *opp_table, struct device *dev);
#else
static inline void _of_init_opp_table(struct opp_table *opp_table, struct device *dev) {}
#endif
#ifdef CONFIG_DEBUG_FS
void opp_debug_remove_one(struct dev_pm_opp *opp);
......
......@@ -1506,11 +1506,16 @@ int pm_runtime_force_resume(struct device *dev)
goto out;
}
ret = callback(dev);
ret = pm_runtime_set_active(dev);
if (ret)
goto out;
pm_runtime_set_active(dev);
ret = callback(dev);
if (ret) {
pm_runtime_set_suspended(dev);
goto out;
}
pm_runtime_mark_last_busy(dev);
out:
pm_runtime_enable(dev);
......
......@@ -18,7 +18,11 @@ config CPU_FREQ
if CPU_FREQ
config CPU_FREQ_GOV_ATTR_SET
bool
config CPU_FREQ_GOV_COMMON
select CPU_FREQ_GOV_ATTR_SET
select IRQ_WORK
bool
......@@ -103,6 +107,17 @@ config CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
Be aware that not all cpufreq drivers support the conservative
governor. If unsure have a look at the help section of the
driver. Fallback governor will be the performance governor.
config CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
bool "schedutil"
depends on SMP
select CPU_FREQ_GOV_SCHEDUTIL
select CPU_FREQ_GOV_PERFORMANCE
help
Use the 'schedutil' CPUFreq governor by default. If unsure,
have a look at the help section of that governor. The fallback
governor will be 'performance'.
endchoice
config CPU_FREQ_GOV_PERFORMANCE
......@@ -184,6 +199,26 @@ config CPU_FREQ_GOV_CONSERVATIVE
If in doubt, say N.
config CPU_FREQ_GOV_SCHEDUTIL
tristate "'schedutil' cpufreq policy governor"
depends on CPU_FREQ && SMP
select CPU_FREQ_GOV_ATTR_SET
select IRQ_WORK
help
This governor makes decisions based on the utilization data provided
by the scheduler. It sets the CPU frequency to be proportional to
the utilization/capacity ratio coming from the scheduler. If the
utilization is frequency-invariant, the new frequency is also
proportional to the maximum available frequency. If that is not the
case, it is proportional to the current frequency of the CPU. The
frequency tipping point is at utilization/capacity equal to 80% in
both cases.
To compile this driver as a module, choose M here: the module will
be called cpufreq_schedutil.
If in doubt, say N.
comment "CPU frequency scaling drivers"
config CPUFREQ_DT
......@@ -191,6 +226,7 @@ config CPUFREQ_DT
depends on HAVE_CLK && OF
# if CPU_THERMAL is on and THERMAL=m, CPUFREQ_DT cannot be =y:
depends on !CPU_THERMAL || THERMAL
select CPUFREQ_DT_PLATDEV
select PM_OPP
help
This adds a generic DT based cpufreq driver for frequency management.
......@@ -199,6 +235,15 @@ config CPUFREQ_DT
If in doubt, say N.
config CPUFREQ_DT_PLATDEV
bool
help
This adds a generic DT based cpufreq platdev driver for frequency
management. This creates a 'cpufreq-dt' platform device, on the
supported platforms.
If in doubt, say N.
if X86
source "drivers/cpufreq/Kconfig.x86"
endif
......
......@@ -50,15 +50,6 @@ config ARM_HIGHBANK_CPUFREQ
If in doubt, say N.
config ARM_HISI_ACPU_CPUFREQ
tristate "Hisilicon ACPU CPUfreq driver"
depends on ARCH_HISI && CPUFREQ_DT
select PM_OPP
help
This enables the hisilicon ACPU CPUfreq driver.
If in doubt, say N.
config ARM_IMX6Q_CPUFREQ
tristate "Freescale i.MX6 cpufreq support"
depends on ARCH_MXC
......
......@@ -5,6 +5,7 @@
config X86_INTEL_PSTATE
bool "Intel P state control"
depends on X86
select ACPI_PROCESSOR if ACPI
help
This driver provides a P state for Intel core processors.
The driver implements an internal governor and will become
......
......@@ -11,8 +11,10 @@ obj-$(CONFIG_CPU_FREQ_GOV_USERSPACE) += cpufreq_userspace.o
obj-$(CONFIG_CPU_FREQ_GOV_ONDEMAND) += cpufreq_ondemand.o
obj-$(CONFIG_CPU_FREQ_GOV_CONSERVATIVE) += cpufreq_conservative.o
obj-$(CONFIG_CPU_FREQ_GOV_COMMON) += cpufreq_governor.o
obj-$(CONFIG_CPU_FREQ_GOV_ATTR_SET) += cpufreq_governor_attr_set.o
obj-$(CONFIG_CPUFREQ_DT) += cpufreq-dt.o
obj-$(CONFIG_CPUFREQ_DT_PLATDEV) += cpufreq-dt-platdev.o
##################################################################################
# x86 drivers.
......@@ -53,7 +55,6 @@ obj-$(CONFIG_ARCH_DAVINCI) += davinci-cpufreq.o
obj-$(CONFIG_UX500_SOC_DB8500) += dbx500-cpufreq.o
obj-$(CONFIG_ARM_EXYNOS5440_CPUFREQ) += exynos5440-cpufreq.o
obj-$(CONFIG_ARM_HIGHBANK_CPUFREQ) += highbank-cpufreq.o
obj-$(CONFIG_ARM_HISI_ACPU_CPUFREQ) += hisi-acpu-cpufreq.o
obj-$(CONFIG_ARM_IMX6Q_CPUFREQ) += imx6q-cpufreq.o
obj-$(CONFIG_ARM_INTEGRATOR) += integrator-cpufreq.o
obj-$(CONFIG_ARM_KIRKWOOD_CPUFREQ) += kirkwood-cpufreq.o
......@@ -78,6 +79,7 @@ obj-$(CONFIG_ARM_TEGRA20_CPUFREQ) += tegra20-cpufreq.o
obj-$(CONFIG_ARM_TEGRA124_CPUFREQ) += tegra124-cpufreq.o
obj-$(CONFIG_ARM_VEXPRESS_SPC_CPUFREQ) += vexpress-spc-cpufreq.o
obj-$(CONFIG_ACPI_CPPC_CPUFREQ) += cppc_cpufreq.o
obj-$(CONFIG_MACH_MVEBU_V7) += mvebu-cpufreq.o
##################################################################################
......
......@@ -25,6 +25,8 @@
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
......@@ -50,8 +52,6 @@ MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
MODULE_DESCRIPTION("ACPI Processor P-States Driver");
MODULE_LICENSE("GPL");
#define PFX "acpi-cpufreq: "
enum {
UNDEFINED_CAPABLE = 0,
SYSTEM_INTEL_MSR_CAPABLE,
......@@ -65,7 +65,6 @@ enum {
#define MSR_K7_HWCR_CPB_DIS (1ULL << 25)
struct acpi_cpufreq_data {
struct cpufreq_frequency_table *freq_table;
unsigned int resume;
unsigned int cpu_feature;
unsigned int acpi_perf_cpu;
......@@ -200,8 +199,9 @@ static int check_amd_hwpstate_cpu(unsigned int cpuid)
return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
}
static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
{
struct acpi_cpufreq_data *data = policy->driver_data;
struct acpi_processor_performance *perf;
int i;
......@@ -209,13 +209,14 @@ static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
for (i = 0; i < perf->state_count; i++) {
if (value == perf->states[i].status)
return data->freq_table[i].frequency;
return policy->freq_table[i].frequency;
}
return 0;
}
static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
{
struct acpi_cpufreq_data *data = policy->driver_data;
struct cpufreq_frequency_table *pos;
struct acpi_processor_performance *perf;
......@@ -226,20 +227,22 @@ static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
perf = to_perf_data(data);
cpufreq_for_each_entry(pos, data->freq_table)
cpufreq_for_each_entry(pos, policy->freq_table)
if (msr == perf->states[pos->driver_data].status)
return pos->frequency;
return data->freq_table[0].frequency;
return policy->freq_table[0].frequency;
}
static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
{
struct acpi_cpufreq_data *data = policy->driver_data;
switch (data->cpu_feature) {
case SYSTEM_INTEL_MSR_CAPABLE:
case SYSTEM_AMD_MSR_CAPABLE:
return extract_msr(val, data);
return extract_msr(policy, val);
case SYSTEM_IO_CAPABLE:
return extract_io(val, data);
return extract_io(policy, val);
default:
return 0;
}
......@@ -374,11 +377,11 @@ static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
return 0;
data = policy->driver_data;
if (unlikely(!data || !data->freq_table))
if (unlikely(!data || !policy->freq_table))
return 0;
cached_freq = data->freq_table[to_perf_data(data)->state].frequency;
freq = extract_freq(get_cur_val(cpumask_of(cpu), data), data);
cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
if (freq != cached_freq) {
/*
* The dreaded BIOS frequency change behind our back.
......@@ -392,14 +395,15 @@ static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
return freq;
}
static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
struct acpi_cpufreq_data *data)
static unsigned int check_freqs(struct cpufreq_policy *policy,
const struct cpumask *mask, unsigned int freq)
{
struct acpi_cpufreq_data *data = policy->driver_data;
unsigned int cur_freq;
unsigned int i;
for (i = 0; i < 100; i++) {
cur_freq = extract_freq(get_cur_val(mask, data), data);
cur_freq = extract_freq(policy, get_cur_val(mask, data));
if (cur_freq == freq)
return 1;
udelay(10);
......@@ -416,12 +420,12 @@ static int acpi_cpufreq_target(struct cpufreq_policy *policy,
unsigned int next_perf_state = 0; /* Index into perf table */
int result = 0;
if (unlikely(data == NULL || data->freq_table == NULL)) {
if (unlikely(!data)) {
return -ENODEV;
}
perf = to_perf_data(data);
next_perf_state = data->freq_table[index].driver_data;
next_perf_state = policy->freq_table[index].driver_data;
if (perf->state == next_perf_state) {
if (unlikely(data->resume)) {
pr_debug("Called after resume, resetting to P%d\n",
......@@ -444,8 +448,8 @@ static int acpi_cpufreq_target(struct cpufreq_policy *policy,
drv_write(data, mask, perf->states[next_perf_state].control);
if (acpi_pstate_strict) {
if (!check_freqs(mask, data->freq_table[index].frequency,
data)) {
if (!check_freqs(policy, mask,
policy->freq_table[index].frequency)) {
pr_debug("acpi_cpufreq_target failed (%d)\n",
policy->cpu);
result = -EAGAIN;
......@@ -458,6 +462,43 @@ static int acpi_cpufreq_target(struct cpufreq_policy *policy,
return result;
}
unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
unsigned int target_freq)
{
struct acpi_cpufreq_data *data = policy->driver_data;
struct acpi_processor_performance *perf;
struct cpufreq_frequency_table *entry;
unsigned int next_perf_state, next_freq, freq;
/*
* Find the closest frequency above target_freq.
*
* The table is sorted in the reverse order with respect to the
* frequency and all of the entries are valid (see the initialization).
*/
entry = policy->freq_table;
do {
entry++;
freq = entry->frequency;
} while (freq >= target_freq && freq != CPUFREQ_TABLE_END);
entry--;
next_freq = entry->frequency;
next_perf_state = entry->driver_data;
perf = to_perf_data(data);
if (perf->state == next_perf_state) {
if (unlikely(data->resume))
data->resume = 0;
else
return next_freq;
}
data->cpu_freq_write(&perf->control_register,
perf->states[next_perf_state].control);
perf->state = next_perf_state;
return next_freq;
}
static unsigned long
acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
{
......@@ -611,10 +652,7 @@ static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
if ((c->x86 == 15) &&
(c->x86_model == 6) &&
(c->x86_mask == 8)) {
printk(KERN_INFO "acpi-cpufreq: Intel(R) "
"Xeon(R) 7100 Errata AL30, processors may "
"lock up on frequency changes: disabling "
"acpi-cpufreq.\n");
pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
return -ENODEV;
}
}
......@@ -631,6 +669,7 @@ static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
unsigned int result = 0;
struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
struct acpi_processor_performance *perf;
struct cpufreq_frequency_table *freq_table;
#ifdef CONFIG_SMP
static int blacklisted;
#endif
......@@ -690,7 +729,7 @@ static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
cpumask_copy(data->freqdomain_cpus,
topology_sibling_cpumask(cpu));
policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
pr_info_once(PFX "overriding BIOS provided _PSD data\n");
pr_info_once("overriding BIOS provided _PSD data\n");
}
#endif
......@@ -742,9 +781,9 @@ static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
goto err_unreg;
}
data->freq_table = kzalloc(sizeof(*data->freq_table) *
freq_table = kzalloc(sizeof(*freq_table) *
(perf->state_count+1), GFP_KERNEL);
if (!data->freq_table) {
if (!freq_table) {
result = -ENOMEM;
goto err_unreg;
}
......@@ -762,30 +801,29 @@ static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
policy->cpuinfo.transition_latency > 20 * 1000) {
policy->cpuinfo.transition_latency = 20 * 1000;
printk_once(KERN_INFO
"P-state transition latency capped at 20 uS\n");
pr_info_once("P-state transition latency capped at 20 uS\n");
}
/* table init */
for (i = 0; i < perf->state_count; i++) {
if (i > 0 && perf->states[i].core_frequency >=
data->freq_table[valid_states-1].frequency / 1000)
freq_table[valid_states-1].frequency / 1000)
continue;
data->freq_table[valid_states].driver_data = i;
data->freq_table[valid_states].frequency =
freq_table[valid_states].driver_data = i;
freq_table[valid_states].frequency =
perf->states[i].core_frequency * 1000;
valid_states++;
}
data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
perf->state = 0;
result = cpufreq_table_validate_and_show(policy, data->freq_table);
result = cpufreq_table_validate_and_show(policy, freq_table);
if (result)
goto err_freqfree;
if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
pr_warn(FW_WARN "P-state 0 is not max freq\n");
switch (perf->control_register.space_id) {
case ACPI_ADR_SPACE_SYSTEM_IO:
......@@ -821,10 +859,13 @@ static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
*/
data->resume = 1;
policy->fast_switch_possible = !acpi_pstate_strict &&
!(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
return result;
err_freqfree:
kfree(data->freq_table);
kfree(freq_table);
err_unreg:
acpi_processor_unregister_performance(cpu);
err_free_mask:
......@@ -842,13 +883,12 @@ static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
pr_debug("acpi_cpufreq_cpu_exit\n");
if (data) {
policy->driver_data = NULL;
acpi_processor_unregister_performance(data->acpi_perf_cpu);
free_cpumask_var(data->freqdomain_cpus);
kfree(data->freq_table);
kfree(data);
}
policy->fast_switch_possible = false;
policy->driver_data = NULL;
acpi_processor_unregister_performance(data->acpi_perf_cpu);
free_cpumask_var(data->freqdomain_cpus);
kfree(policy->freq_table);
kfree(data);
return 0;
}
......@@ -876,6 +916,7 @@ static struct freq_attr *acpi_cpufreq_attr[] = {
static struct cpufreq_driver acpi_cpufreq_driver = {
.verify = cpufreq_generic_frequency_table_verify,
.target_index = acpi_cpufreq_target,
.fast_switch = acpi_cpufreq_fast_switch,
.bios_limit = acpi_processor_get_bios_limit,
.init = acpi_cpufreq_cpu_init,
.exit = acpi_cpufreq_cpu_exit,
......
......@@ -298,7 +298,8 @@ static int merge_cluster_tables(void)
return 0;
}
static void _put_cluster_clk_and_freq_table(struct device *cpu_dev)
static void _put_cluster_clk_and_freq_table(struct device *cpu_dev,
const struct cpumask *cpumask)
{
u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
......@@ -308,11 +309,12 @@ static void _put_cluster_clk_and_freq_table(struct device *cpu_dev)
clk_put(clk[cluster]);
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
if (arm_bL_ops->free_opp_table)
arm_bL_ops->free_opp_table(cpu_dev);
arm_bL_ops->free_opp_table(cpumask);
dev_dbg(cpu_dev, "%s: cluster: %d\n", __func__, cluster);
}
static void put_cluster_clk_and_freq_table(struct device *cpu_dev)
static void put_cluster_clk_and_freq_table(struct device *cpu_dev,
const struct cpumask *cpumask)
{
u32 cluster = cpu_to_cluster(cpu_dev->id);
int i;
......@@ -321,7 +323,7 @@ static void put_cluster_clk_and_freq_table(struct device *cpu_dev)
return;
if (cluster < MAX_CLUSTERS)
return _put_cluster_clk_and_freq_table(cpu_dev);
return _put_cluster_clk_and_freq_table(cpu_dev, cpumask);
for_each_present_cpu(i) {
struct device *cdev = get_cpu_device(i);
......@@ -330,14 +332,15 @@ static void put_cluster_clk_and_freq_table(struct device *cpu_dev)
return;
}
_put_cluster_clk_and_freq_table(cdev);
_put_cluster_clk_and_freq_table(cdev, cpumask);
}
/* free virtual table */
kfree(freq_table[cluster]);
}
static int _get_cluster_clk_and_freq_table(struct device *cpu_dev)
static int _get_cluster_clk_and_freq_table(struct device *cpu_dev,
const struct cpumask *cpumask)
{
u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
int ret;
......@@ -345,7 +348,7 @@ static int _get_cluster_clk_and_freq_table(struct device *cpu_dev)
if (freq_table[cluster])
return 0;
ret = arm_bL_ops->init_opp_table(cpu_dev);
ret = arm_bL_ops->init_opp_table(cpumask);
if (ret) {
dev_err(cpu_dev, "%s: init_opp_table failed, cpu: %d, err: %d\n",
__func__, cpu_dev->id, ret);
......@@ -374,14 +377,15 @@ static int _get_cluster_clk_and_freq_table(struct device *cpu_dev)
free_opp_table:
if (arm_bL_ops->free_opp_table)
arm_bL_ops->free_opp_table(cpu_dev);
arm_bL_ops->free_opp_table(cpumask);
out:
dev_err(cpu_dev, "%s: Failed to get data for cluster: %d\n", __func__,
cluster);
return ret;
}
static int get_cluster_clk_and_freq_table(struct device *cpu_dev)
static int get_cluster_clk_and_freq_table(struct device *cpu_dev,
const struct cpumask *cpumask)
{
u32 cluster = cpu_to_cluster(cpu_dev->id);
int i, ret;
......@@ -390,7 +394,7 @@ static int get_cluster_clk_and_freq_table(struct device *cpu_dev)
return 0;
if (cluster < MAX_CLUSTERS) {
ret = _get_cluster_clk_and_freq_table(cpu_dev);
ret = _get_cluster_clk_and_freq_table(cpu_dev, cpumask);
if (ret)
atomic_dec(&cluster_usage[cluster]);
return ret;
......@@ -407,7 +411,7 @@ static int get_cluster_clk_and_freq_table(struct device *cpu_dev)
return -ENODEV;
}
ret = _get_cluster_clk_and_freq_table(cdev);
ret = _get_cluster_clk_and_freq_table(cdev, cpumask);
if (ret)
goto put_clusters;
}
......@@ -433,7 +437,7 @@ static int get_cluster_clk_and_freq_table(struct device *cpu_dev)
return -ENODEV;
}
_put_cluster_clk_and_freq_table(cdev);
_put_cluster_clk_and_freq_table(cdev, cpumask);
}
atomic_dec(&cluster_usage[cluster]);
......@@ -455,18 +459,6 @@ static int bL_cpufreq_init(struct cpufreq_policy *policy)
return -ENODEV;
}
ret = get_cluster_clk_and_freq_table(cpu_dev);
if (ret)
return ret;
ret = cpufreq_table_validate_and_show(policy, freq_table[cur_cluster]);
if (ret) {
dev_err(cpu_dev, "CPU %d, cluster: %d invalid freq table\n",
policy->cpu, cur_cluster);
put_cluster_clk_and_freq_table(cpu_dev);
return ret;
}
if (cur_cluster < MAX_CLUSTERS) {
int cpu;
......@@ -479,6 +471,18 @@ static int bL_cpufreq_init(struct cpufreq_policy *policy)
per_cpu(physical_cluster, policy->cpu) = A15_CLUSTER;
}
ret = get_cluster_clk_and_freq_table(cpu_dev, policy->cpus);
if (ret)
return ret;
ret = cpufreq_table_validate_and_show(policy, freq_table[cur_cluster]);
if (ret) {
dev_err(cpu_dev, "CPU %d, cluster: %d invalid freq table\n",
policy->cpu, cur_cluster);
put_cluster_clk_and_freq_table(cpu_dev, policy->cpus);
return ret;
}
if (arm_bL_ops->get_transition_latency)
policy->cpuinfo.transition_latency =
arm_bL_ops->get_transition_latency(cpu_dev);
......@@ -509,7 +513,7 @@ static int bL_cpufreq_exit(struct cpufreq_policy *policy)
return -ENODEV;
}
put_cluster_clk_and_freq_table(cpu_dev);
put_cluster_clk_and_freq_table(cpu_dev, policy->related_cpus);
dev_dbg(cpu_dev, "%s: Exited, cpu: %d\n", __func__, policy->cpu);
return 0;
......
......@@ -30,11 +30,11 @@ struct cpufreq_arm_bL_ops {
* This must set opp table for cpu_dev in a similar way as done by
* dev_pm_opp_of_add_table().
*/
int (*init_opp_table)(struct device *cpu_dev);
int (*init_opp_table)(const struct cpumask *cpumask);
/* Optional */
int (*get_transition_latency)(struct device *cpu_dev);
void (*free_opp_table)(struct device *cpu_dev);
void (*free_opp_table)(const struct cpumask *cpumask);
};
int bL_cpufreq_register(struct cpufreq_arm_bL_ops *ops);
......
......@@ -43,23 +43,6 @@ static struct device_node *get_cpu_node_with_valid_op(int cpu)
return np;
}
static int dt_init_opp_table(struct device *cpu_dev)
{
struct device_node *np;
int ret;
np = of_node_get(cpu_dev->of_node);
if (!np) {
pr_err("failed to find cpu%d node\n", cpu_dev->id);
return -ENOENT;
}
ret = dev_pm_opp_of_add_table(cpu_dev);
of_node_put(np);
return ret;
}
static int dt_get_transition_latency(struct device *cpu_dev)
{
struct device_node *np;
......@@ -81,8 +64,8 @@ static int dt_get_transition_latency(struct device *cpu_dev)
static struct cpufreq_arm_bL_ops dt_bL_ops = {
.name = "dt-bl",
.get_transition_latency = dt_get_transition_latency,
.init_opp_table = dt_init_opp_table,
.free_opp_table = dev_pm_opp_of_remove_table,
.init_opp_table = dev_pm_opp_of_cpumask_add_table,
.free_opp_table = dev_pm_opp_of_cpumask_remove_table,
};
static int generic_bL_probe(struct platform_device *pdev)
......
......@@ -173,4 +173,25 @@ static int __init cppc_cpufreq_init(void)
return -ENODEV;
}
static void __exit cppc_cpufreq_exit(void)
{
struct cpudata *cpu;
int i;
cpufreq_unregister_driver(&cppc_cpufreq_driver);
for_each_possible_cpu(i) {
cpu = all_cpu_data[i];
free_cpumask_var(cpu->shared_cpu_map);
kfree(cpu);
}
kfree(all_cpu_data);
}
module_exit(cppc_cpufreq_exit);
MODULE_AUTHOR("Ashwin Chaugule");
MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
MODULE_LICENSE("GPL");
late_initcall(cppc_cpufreq_init);
/*
* Copyright (C) 2016 Linaro.
* Viresh Kumar <viresh.kumar@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/err.h>
#include <linux/of.h>
#include <linux/platform_device.h>
static const struct of_device_id machines[] __initconst = {
{ .compatible = "allwinner,sun4i-a10", },
{ .compatible = "allwinner,sun5i-a10s", },
{ .compatible = "allwinner,sun5i-a13", },
{ .compatible = "allwinner,sun5i-r8", },
{ .compatible = "allwinner,sun6i-a31", },
{ .compatible = "allwinner,sun6i-a31s", },
{ .compatible = "allwinner,sun7i-a20", },
{ .compatible = "allwinner,sun8i-a23", },
{ .compatible = "allwinner,sun8i-a33", },
{ .compatible = "allwinner,sun8i-a83t", },
{ .compatible = "allwinner,sun8i-h3", },
{ .compatible = "hisilicon,hi6220", },
{ .compatible = "fsl,imx27", },
{ .compatible = "fsl,imx51", },
{ .compatible = "fsl,imx53", },
{ .compatible = "fsl,imx7d", },
{ .compatible = "marvell,berlin", },
{ .compatible = "samsung,exynos3250", },
{ .compatible = "samsung,exynos4210", },
{ .compatible = "samsung,exynos4212", },
{ .compatible = "samsung,exynos4412", },
{ .compatible = "samsung,exynos5250", },
#ifndef CONFIG_BL_SWITCHER
{ .compatible = "samsung,exynos5420", },
{ .compatible = "samsung,exynos5800", },
#endif
{ .compatible = "renesas,emev2", },
{ .compatible = "renesas,r7s72100", },
{ .compatible = "renesas,r8a73a4", },
{ .compatible = "renesas,r8a7740", },
{ .compatible = "renesas,r8a7778", },
{ .compatible = "renesas,r8a7779", },
{ .compatible = "renesas,r8a7790", },
{ .compatible = "renesas,r8a7791", },
{ .compatible = "renesas,r8a7793", },
{ .compatible = "renesas,r8a7794", },
{ .compatible = "renesas,sh73a0", },
{ .compatible = "rockchip,rk2928", },
{ .compatible = "rockchip,rk3036", },
{ .compatible = "rockchip,rk3066a", },
{ .compatible = "rockchip,rk3066b", },
{ .compatible = "rockchip,rk3188", },
{ .compatible = "rockchip,rk3228", },
{ .compatible = "rockchip,rk3288", },
{ .compatible = "rockchip,rk3366", },
{ .compatible = "rockchip,rk3368", },
{ .compatible = "rockchip,rk3399", },
{ .compatible = "sigma,tango4" },
{ .compatible = "ti,omap2", },
{ .compatible = "ti,omap3", },
{ .compatible = "ti,omap4", },
{ .compatible = "ti,omap5", },
{ .compatible = "xlnx,zynq-7000", },
};
static int __init cpufreq_dt_platdev_init(void)
{
struct device_node *np = of_find_node_by_path("/");
if (!np)
return -ENODEV;
if (!of_match_node(machines, np))
return -ENODEV;
of_node_put(of_root);
return PTR_ERR_OR_ZERO(platform_device_register_simple("cpufreq-dt", -1,
NULL, 0));
}
device_initcall(cpufreq_dt_platdev_init);
......@@ -15,7 +15,6 @@
#include <linux/cpu.h>
#include <linux/cpu_cooling.h>
#include <linux/cpufreq.h>
#include <linux/cpufreq-dt.h>
#include <linux/cpumask.h>
#include <linux/err.h>
#include <linux/module.h>
......@@ -147,7 +146,7 @@ static int cpufreq_init(struct cpufreq_policy *policy)
struct clk *cpu_clk;
struct dev_pm_opp *suspend_opp;
unsigned int transition_latency;
bool opp_v1 = false;
bool fallback = false;
const char *name;
int ret;
......@@ -167,14 +166,16 @@ static int cpufreq_init(struct cpufreq_policy *policy)
/* Get OPP-sharing information from "operating-points-v2" bindings */
ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, policy->cpus);
if (ret) {
if (ret != -ENOENT)
goto out_put_clk;
/*
* operating-points-v2 not supported, fallback to old method of
* finding shared-OPPs for backward compatibility.
* finding shared-OPPs for backward compatibility if the
* platform hasn't set sharing CPUs.
*/
if (ret == -ENOENT)
opp_v1 = true;
else
goto out_put_clk;
if (dev_pm_opp_get_sharing_cpus(cpu_dev, policy->cpus))
fallback = true;
}
/*
......@@ -214,11 +215,8 @@ static int cpufreq_init(struct cpufreq_policy *policy)
goto out_free_opp;
}
if (opp_v1) {
struct cpufreq_dt_platform_data *pd = cpufreq_get_driver_data();
if (!pd || !pd->independent_clocks)
cpumask_setall(policy->cpus);
if (fallback) {
cpumask_setall(policy->cpus);
/*
* OPP tables are initialized only for policy->cpu, do it for
......
......@@ -7,6 +7,8 @@
* BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
......@@ -56,8 +58,6 @@ MODULE_PARM_DESC(fid, "CPU multiplier to use (11.5 = 115)");
MODULE_PARM_DESC(min_fsb,
"Minimum FSB to use, if not defined: current FSB - 50");
#define PFX "cpufreq-nforce2: "
/**
* nforce2_calc_fsb - calculate FSB
* @pll: PLL value
......@@ -174,13 +174,13 @@ static int nforce2_set_fsb(unsigned int fsb)
int pll = 0;
if ((fsb > max_fsb) || (fsb < NFORCE2_MIN_FSB)) {
printk(KERN_ERR PFX "FSB %d is out of range!\n", fsb);
pr_err("FSB %d is out of range!\n", fsb);
return -EINVAL;
}
tfsb = nforce2_fsb_read(0);
if (!tfsb) {
printk(KERN_ERR PFX "Error while reading the FSB\n");
pr_err("Error while reading the FSB\n");
return -EINVAL;
}
......@@ -276,8 +276,7 @@ static int nforce2_target(struct cpufreq_policy *policy,
/* local_irq_save(flags); */
if (nforce2_set_fsb(target_fsb) < 0)
printk(KERN_ERR PFX "Changing FSB to %d failed\n",
target_fsb);
pr_err("Changing FSB to %d failed\n", target_fsb);
else
pr_debug("Changed FSB successfully to %d\n",
target_fsb);
......@@ -325,8 +324,7 @@ static int nforce2_cpu_init(struct cpufreq_policy *policy)
/* FIX: Get FID from CPU */
if (!fid) {
if (!cpu_khz) {
printk(KERN_WARNING PFX
"cpu_khz not set, can't calculate multiplier!\n");
pr_warn("cpu_khz not set, can't calculate multiplier!\n");
return -ENODEV;
}
......@@ -341,8 +339,8 @@ static int nforce2_cpu_init(struct cpufreq_policy *policy)
}
}
printk(KERN_INFO PFX "FSB currently at %i MHz, FID %d.%d\n", fsb,
fid / 10, fid % 10);
pr_info("FSB currently at %i MHz, FID %d.%d\n",
fsb, fid / 10, fid % 10);
/* Set maximum FSB to FSB at boot time */
max_fsb = nforce2_fsb_read(1);
......@@ -401,11 +399,9 @@ static int nforce2_detect_chipset(void)
if (nforce2_dev == NULL)
return -ENODEV;
printk(KERN_INFO PFX "Detected nForce2 chipset revision %X\n",
nforce2_dev->revision);
printk(KERN_INFO PFX
"FSB changing is maybe unstable and can lead to "
"crashes and data loss.\n");
pr_info("Detected nForce2 chipset revision %X\n",
nforce2_dev->revision);
pr_info("FSB changing is maybe unstable and can lead to crashes and data loss\n");
return 0;
}
......@@ -423,7 +419,7 @@ static int __init nforce2_init(void)
/* detect chipset */
if (nforce2_detect_chipset()) {
printk(KERN_INFO PFX "No nForce2 chipset.\n");
pr_info("No nForce2 chipset\n");
return -ENODEV;
}
......
......@@ -78,6 +78,11 @@ static int cpufreq_governor(struct cpufreq_policy *policy, unsigned int event);
static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
static int cpufreq_start_governor(struct cpufreq_policy *policy);
static inline int cpufreq_exit_governor(struct cpufreq_policy *policy)
{
return cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
}
/**
* Two notifier lists: the "policy" list is involved in the
* validation process for a new CPU frequency policy; the
......@@ -429,6 +434,73 @@ void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
}
EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
/*
* Fast frequency switching status count. Positive means "enabled", negative
* means "disabled" and 0 means "not decided yet".
*/
static int cpufreq_fast_switch_count;
static DEFINE_MUTEX(cpufreq_fast_switch_lock);
static void cpufreq_list_transition_notifiers(void)
{
struct notifier_block *nb;
pr_info("Registered transition notifiers:\n");
mutex_lock(&cpufreq_transition_notifier_list.mutex);
for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
pr_info("%pF\n", nb->notifier_call);
mutex_unlock(&cpufreq_transition_notifier_list.mutex);
}
/**
* cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
* @policy: cpufreq policy to enable fast frequency switching for.
*
* Try to enable fast frequency switching for @policy.
*
* The attempt will fail if there is at least one transition notifier registered
* at this point, as fast frequency switching is quite fundamentally at odds
* with transition notifiers. Thus if successful, it will make registration of
* transition notifiers fail going forward.
*/
void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
{
lockdep_assert_held(&policy->rwsem);
if (!policy->fast_switch_possible)
return;
mutex_lock(&cpufreq_fast_switch_lock);
if (cpufreq_fast_switch_count >= 0) {
cpufreq_fast_switch_count++;
policy->fast_switch_enabled = true;
} else {
pr_warn("CPU%u: Fast frequency switching not enabled\n",
policy->cpu);
cpufreq_list_transition_notifiers();
}
mutex_unlock(&cpufreq_fast_switch_lock);
}
EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
/**
* cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
* @policy: cpufreq policy to disable fast frequency switching for.
*/
void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
{
mutex_lock(&cpufreq_fast_switch_lock);
if (policy->fast_switch_enabled) {
policy->fast_switch_enabled = false;
if (!WARN_ON(cpufreq_fast_switch_count <= 0))
cpufreq_fast_switch_count--;
}
mutex_unlock(&cpufreq_fast_switch_lock);
}
EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
/*********************************************************************
* SYSFS INTERFACE *
......@@ -1248,26 +1320,24 @@ static int cpufreq_online(unsigned int cpu)
*/
static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
{
struct cpufreq_policy *policy;
unsigned cpu = dev->id;
int ret;
dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
if (cpu_online(cpu)) {
ret = cpufreq_online(cpu);
} else {
/*
* A hotplug notifier will follow and we will handle it as CPU
* online then. For now, just create the sysfs link, unless
* there is no policy or the link is already present.
*/
struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
if (cpu_online(cpu))
return cpufreq_online(cpu);
ret = policy && !cpumask_test_and_set_cpu(cpu, policy->real_cpus)
? add_cpu_dev_symlink(policy, cpu) : 0;
}
/*
* A hotplug notifier will follow and we will handle it as CPU online
* then. For now, just create the sysfs link, unless there is no policy
* or the link is already present.
*/
policy = per_cpu(cpufreq_cpu_data, cpu);
if (!policy || cpumask_test_and_set_cpu(cpu, policy->real_cpus))
return 0;
return ret;
return add_cpu_dev_symlink(policy, cpu);
}
static void cpufreq_offline(unsigned int cpu)
......@@ -1319,7 +1389,7 @@ static void cpufreq_offline(unsigned int cpu)
/* If cpu is last user of policy, free policy */
if (has_target()) {
ret = cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
ret = cpufreq_exit_governor(policy);
if (ret)
pr_err("%s: Failed to exit governor\n", __func__);
}
......@@ -1447,8 +1517,12 @@ static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
ret_freq = cpufreq_driver->get(policy->cpu);
/* Updating inactive policies is invalid, so avoid doing that. */
if (unlikely(policy_is_inactive(policy)))
/*
* Updating inactive policies is invalid, so avoid doing that. Also
* if fast frequency switching is used with the given policy, the check
* against policy->cur is pointless, so skip it in that case too.
*/
if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
return ret_freq;
if (ret_freq && policy->cur &&
......@@ -1679,8 +1753,18 @@ int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
switch (list) {
case CPUFREQ_TRANSITION_NOTIFIER:
mutex_lock(&cpufreq_fast_switch_lock);
if (cpufreq_fast_switch_count > 0) {
mutex_unlock(&cpufreq_fast_switch_lock);
return -EBUSY;
}
ret = srcu_notifier_chain_register(
&cpufreq_transition_notifier_list, nb);
if (!ret)
cpufreq_fast_switch_count--;
mutex_unlock(&cpufreq_fast_switch_lock);
break;
case CPUFREQ_POLICY_NOTIFIER:
ret = blocking_notifier_chain_register(
......@@ -1713,8 +1797,14 @@ int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
switch (list) {
case CPUFREQ_TRANSITION_NOTIFIER:
mutex_lock(&cpufreq_fast_switch_lock);
ret = srcu_notifier_chain_unregister(
&cpufreq_transition_notifier_list, nb);
if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
cpufreq_fast_switch_count++;
mutex_unlock(&cpufreq_fast_switch_lock);
break;
case CPUFREQ_POLICY_NOTIFIER:
ret = blocking_notifier_chain_unregister(
......@@ -1733,6 +1823,37 @@ EXPORT_SYMBOL(cpufreq_unregister_notifier);
* GOVERNORS *
*********************************************************************/
/**
* cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
* @policy: cpufreq policy to switch the frequency for.
* @target_freq: New frequency to set (may be approximate).
*
* Carry out a fast frequency switch without sleeping.
*
* The driver's ->fast_switch() callback invoked by this function must be
* suitable for being called from within RCU-sched read-side critical sections
* and it is expected to select the minimum available frequency greater than or
* equal to @target_freq (CPUFREQ_RELATION_L).
*
* This function must not be called if policy->fast_switch_enabled is unset.
*
* Governors calling this function must guarantee that it will never be invoked
* twice in parallel for the same policy and that it will never be called in
* parallel with either ->target() or ->target_index() for the same policy.
*
* If CPUFREQ_ENTRY_INVALID is returned by the driver's ->fast_switch()
* callback to indicate an error condition, the hardware configuration must be
* preserved.
*/
unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
unsigned int target_freq)
{
clamp_val(target_freq, policy->min, policy->max);
return cpufreq_driver->fast_switch(policy, target_freq);
}
EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
/* Must set freqs->new to intermediate frequency */
static int __target_intermediate(struct cpufreq_policy *policy,
struct cpufreq_freqs *freqs, int index)
......@@ -2108,7 +2229,7 @@ static int cpufreq_set_policy(struct cpufreq_policy *policy,
return ret;
}
ret = cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
ret = cpufreq_exit_governor(policy);
if (ret) {
pr_err("%s: Failed to Exit Governor: %s (%d)\n",
__func__, old_gov->name, ret);
......@@ -2125,7 +2246,7 @@ static int cpufreq_set_policy(struct cpufreq_policy *policy,
pr_debug("cpufreq: governor change\n");
return 0;
}
cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
cpufreq_exit_governor(policy);
}
/* new governor failed, so re-start old one */
......@@ -2193,16 +2314,13 @@ static int cpufreq_cpu_callback(struct notifier_block *nfb,
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_ONLINE:
case CPU_DOWN_FAILED:
cpufreq_online(cpu);
break;
case CPU_DOWN_PREPARE:
cpufreq_offline(cpu);
break;
case CPU_DOWN_FAILED:
cpufreq_online(cpu);
break;
}
return NOTIFY_OK;
}
......
......@@ -129,9 +129,10 @@ static struct notifier_block cs_cpufreq_notifier_block = {
/************************** sysfs interface ************************/
static struct dbs_governor cs_dbs_gov;
static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
const char *buf, size_t count)
static ssize_t store_sampling_down_factor(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct dbs_data *dbs_data = to_dbs_data(attr_set);
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
......@@ -143,9 +144,10 @@ static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
return count;
}
static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
size_t count)
static ssize_t store_up_threshold(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct dbs_data *dbs_data = to_dbs_data(attr_set);
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
unsigned int input;
int ret;
......@@ -158,9 +160,10 @@ static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
return count;
}
static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
size_t count)
static ssize_t store_down_threshold(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct dbs_data *dbs_data = to_dbs_data(attr_set);
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
unsigned int input;
int ret;
......@@ -175,9 +178,10 @@ static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
return count;
}
static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
const char *buf, size_t count)
static ssize_t store_ignore_nice_load(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct dbs_data *dbs_data = to_dbs_data(attr_set);
unsigned int input;
int ret;
......@@ -199,9 +203,10 @@ static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
return count;
}
static ssize_t store_freq_step(struct dbs_data *dbs_data, const char *buf,
size_t count)
static ssize_t store_freq_step(struct gov_attr_set *attr_set, const char *buf,
size_t count)
{
struct dbs_data *dbs_data = to_dbs_data(attr_set);
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
unsigned int input;
int ret;
......
......@@ -43,9 +43,10 @@ static DEFINE_MUTEX(gov_dbs_data_mutex);
* This must be called with dbs_data->mutex held, otherwise traversing
* policy_dbs_list isn't safe.
*/
ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
ssize_t store_sampling_rate(struct gov_attr_set *attr_set, const char *buf,
size_t count)
{
struct dbs_data *dbs_data = to_dbs_data(attr_set);
struct policy_dbs_info *policy_dbs;
unsigned int rate;
int ret;
......@@ -59,7 +60,7 @@ ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
* We are operating under dbs_data->mutex and so the list and its
* entries can't be freed concurrently.
*/
list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) {
list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
mutex_lock(&policy_dbs->timer_mutex);
/*
* On 32-bit architectures this may race with the
......@@ -96,13 +97,13 @@ void gov_update_cpu_data(struct dbs_data *dbs_data)
{
struct policy_dbs_info *policy_dbs;
list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) {
list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) {
unsigned int j;
for_each_cpu(j, policy_dbs->policy->cpus) {
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall,
j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time,
dbs_data->io_is_busy);
if (dbs_data->ignore_nice_load)
j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
......@@ -111,54 +112,6 @@ void gov_update_cpu_data(struct dbs_data *dbs_data)
}
EXPORT_SYMBOL_GPL(gov_update_cpu_data);
static inline struct dbs_data *to_dbs_data(struct kobject *kobj)
{
return container_of(kobj, struct dbs_data, kobj);
}
static inline struct governor_attr *to_gov_attr(struct attribute *attr)
{
return container_of(attr, struct governor_attr, attr);
}
static ssize_t governor_show(struct kobject *kobj, struct attribute *attr,
char *buf)
{
struct dbs_data *dbs_data = to_dbs_data(kobj);
struct governor_attr *gattr = to_gov_attr(attr);
return gattr->show(dbs_data, buf);
}
static ssize_t governor_store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
struct dbs_data *dbs_data = to_dbs_data(kobj);
struct governor_attr *gattr = to_gov_attr(attr);
int ret = -EBUSY;
mutex_lock(&dbs_data->mutex);
if (dbs_data->usage_count)
ret = gattr->store(dbs_data, buf, count);
mutex_unlock(&dbs_data->mutex);
return ret;
}
/*
* Sysfs Ops for accessing governor attributes.
*
* All show/store invocations for governor specific sysfs attributes, will first
* call the below show/store callbacks and the attribute specific callback will
* be called from within it.
*/
static const struct sysfs_ops governor_sysfs_ops = {
.show = governor_show,
.store = governor_store,
};
unsigned int dbs_update(struct cpufreq_policy *policy)
{
struct policy_dbs_info *policy_dbs = policy->governor_data;
......@@ -184,14 +137,14 @@ unsigned int dbs_update(struct cpufreq_policy *policy)
/* Get Absolute Load */
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
u64 cur_wall_time, cur_idle_time;
unsigned int idle_time, wall_time;
u64 update_time, cur_idle_time;
unsigned int idle_time, time_elapsed;
unsigned int load;
cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy);
wall_time = cur_wall_time - j_cdbs->prev_cpu_wall;
j_cdbs->prev_cpu_wall = cur_wall_time;
time_elapsed = update_time - j_cdbs->prev_update_time;
j_cdbs->prev_update_time = update_time;
idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
j_cdbs->prev_cpu_idle = cur_idle_time;
......@@ -203,47 +156,62 @@ unsigned int dbs_update(struct cpufreq_policy *policy)
j_cdbs->prev_cpu_nice = cur_nice;
}
if (unlikely(!wall_time || wall_time < idle_time))
continue;
/*
* If the CPU had gone completely idle, and a task just woke up
* on this CPU now, it would be unfair to calculate 'load' the
* usual way for this elapsed time-window, because it will show
* near-zero load, irrespective of how CPU intensive that task
* actually is. This is undesirable for latency-sensitive bursty
* workloads.
*
* To avoid this, we reuse the 'load' from the previous
* time-window and give this task a chance to start with a
* reasonably high CPU frequency. (However, we shouldn't over-do
* this copy, lest we get stuck at a high load (high frequency)
* for too long, even when the current system load has actually
* dropped down. So we perform the copy only once, upon the
* first wake-up from idle.)
*
* Detecting this situation is easy: the governor's utilization
* update handler would not have run during CPU-idle periods.
* Hence, an unusually large 'wall_time' (as compared to the
* sampling rate) indicates this scenario.
*
* prev_load can be zero in two cases and we must recalculate it
* for both cases:
* - during long idle intervals
* - explicitly set to zero
*/
if (unlikely(wall_time > (2 * sampling_rate) &&
j_cdbs->prev_load)) {
if (unlikely(!time_elapsed)) {
/*
* That can only happen when this function is called
* twice in a row with a very short interval between the
* calls, so the previous load value can be used then.
*/
load = j_cdbs->prev_load;
} else if (unlikely(time_elapsed > 2 * sampling_rate &&
j_cdbs->prev_load)) {
/*
* Perform a destructive copy, to ensure that we copy
* the previous load only once, upon the first wake-up
* from idle.
* If the CPU had gone completely idle and a task has
* just woken up on this CPU now, it would be unfair to
* calculate 'load' the usual way for this elapsed
* time-window, because it would show near-zero load,
* irrespective of how CPU intensive that task actually
* was. This is undesirable for latency-sensitive bursty
* workloads.
*
* To avoid this, reuse the 'load' from the previous
* time-window and give this task a chance to start with
* a reasonably high CPU frequency. However, that
* shouldn't be over-done, lest we get stuck at a high
* load (high frequency) for too long, even when the
* current system load has actually dropped down, so
* clear prev_load to guarantee that the load will be
* computed again next time.
*
* Detecting this situation is easy: the governor's
* utilization update handler would not have run during
* CPU-idle periods. Hence, an unusually large
* 'time_elapsed' (as compared to the sampling rate)
* indicates this scenario.
*/
load = j_cdbs->prev_load;
j_cdbs->prev_load = 0;
} else {
load = 100 * (wall_time - idle_time) / wall_time;
if (time_elapsed >= idle_time) {
load = 100 * (time_elapsed - idle_time) / time_elapsed;
} else {
/*
* That can happen if idle_time is returned by
* get_cpu_idle_time_jiffy(). In that case
* idle_time is roughly equal to the difference
* between time_elapsed and "busy time" obtained
* from CPU statistics. Then, the "busy time"
* can end up being greater than time_elapsed
* (for example, if jiffies_64 and the CPU
* statistics are updated by different CPUs),
* so idle_time may in fact be negative. That
* means, though, that the CPU was busy all
* the time (on the rough average) during the
* last sampling interval and 100 can be
* returned as the load.
*/
load = (int)idle_time < 0 ? 100 : 0;
}
j_cdbs->prev_load = load;
}
......@@ -254,43 +222,6 @@ unsigned int dbs_update(struct cpufreq_policy *policy)
}
EXPORT_SYMBOL_GPL(dbs_update);
static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
unsigned int delay_us)
{
struct cpufreq_policy *policy = policy_dbs->policy;
int cpu;
gov_update_sample_delay(policy_dbs, delay_us);
policy_dbs->last_sample_time = 0;
for_each_cpu(cpu, policy->cpus) {
struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
cpufreq_set_update_util_data(cpu, &cdbs->update_util);
}
}
static inline void gov_clear_update_util(struct cpufreq_policy *policy)
{
int i;
for_each_cpu(i, policy->cpus)
cpufreq_set_update_util_data(i, NULL);
synchronize_sched();
}
static void gov_cancel_work(struct cpufreq_policy *policy)
{
struct policy_dbs_info *policy_dbs = policy->governor_data;
gov_clear_update_util(policy_dbs->policy);
irq_work_sync(&policy_dbs->irq_work);
cancel_work_sync(&policy_dbs->work);
atomic_set(&policy_dbs->work_count, 0);
policy_dbs->work_in_progress = false;
}
static void dbs_work_handler(struct work_struct *work)
{
struct policy_dbs_info *policy_dbs;
......@@ -378,6 +309,44 @@ static void dbs_update_util_handler(struct update_util_data *data, u64 time,
irq_work_queue(&policy_dbs->irq_work);
}
static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
unsigned int delay_us)
{
struct cpufreq_policy *policy = policy_dbs->policy;
int cpu;
gov_update_sample_delay(policy_dbs, delay_us);
policy_dbs->last_sample_time = 0;
for_each_cpu(cpu, policy->cpus) {
struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
cpufreq_add_update_util_hook(cpu, &cdbs->update_util,
dbs_update_util_handler);
}
}
static inline void gov_clear_update_util(struct cpufreq_policy *policy)
{
int i;
for_each_cpu(i, policy->cpus)
cpufreq_remove_update_util_hook(i);
synchronize_sched();
}
static void gov_cancel_work(struct cpufreq_policy *policy)
{
struct policy_dbs_info *policy_dbs = policy->governor_data;
gov_clear_update_util(policy_dbs->policy);
irq_work_sync(&policy_dbs->irq_work);
cancel_work_sync(&policy_dbs->work);
atomic_set(&policy_dbs->work_count, 0);
policy_dbs->work_in_progress = false;
}
static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
struct dbs_governor *gov)
{
......@@ -400,7 +369,6 @@ static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *poli
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
j_cdbs->policy_dbs = policy_dbs;
j_cdbs->update_util.func = dbs_update_util_handler;
}
return policy_dbs;
}
......@@ -449,10 +417,7 @@ static int cpufreq_governor_init(struct cpufreq_policy *policy)
policy_dbs->dbs_data = dbs_data;
policy->governor_data = policy_dbs;
mutex_lock(&dbs_data->mutex);
dbs_data->usage_count++;
list_add(&policy_dbs->list, &dbs_data->policy_dbs_list);
mutex_unlock(&dbs_data->mutex);
gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list);
goto out;
}
......@@ -462,8 +427,7 @@ static int cpufreq_governor_init(struct cpufreq_policy *policy)
goto free_policy_dbs_info;
}
INIT_LIST_HEAD(&dbs_data->policy_dbs_list);
mutex_init(&dbs_data->mutex);
gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list);
ret = gov->init(dbs_data, !policy->governor->initialized);
if (ret)
......@@ -483,14 +447,11 @@ static int cpufreq_governor_init(struct cpufreq_policy *policy)
if (!have_governor_per_policy())
gov->gdbs_data = dbs_data;
policy->governor_data = policy_dbs;
policy_dbs->dbs_data = dbs_data;
dbs_data->usage_count = 1;
list_add(&policy_dbs->list, &dbs_data->policy_dbs_list);
policy->governor_data = policy_dbs;
gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
ret = kobject_init_and_add(&dbs_data->kobj, &gov->kobj_type,
ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type,
get_governor_parent_kobj(policy),
"%s", gov->gov.name);
if (!ret)
......@@ -519,29 +480,21 @@ static int cpufreq_governor_exit(struct cpufreq_policy *policy)
struct dbs_governor *gov = dbs_governor_of(policy);
struct policy_dbs_info *policy_dbs = policy->governor_data;
struct dbs_data *dbs_data = policy_dbs->dbs_data;
int count;
unsigned int count;
/* Protect gov->gdbs_data against concurrent updates. */
mutex_lock(&gov_dbs_data_mutex);
mutex_lock(&dbs_data->mutex);
list_del(&policy_dbs->list);
count = --dbs_data->usage_count;
mutex_unlock(&dbs_data->mutex);
count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list);
if (!count) {
kobject_put(&dbs_data->kobj);
policy->governor_data = NULL;
policy->governor_data = NULL;
if (!count) {
if (!have_governor_per_policy())
gov->gdbs_data = NULL;
gov->exit(dbs_data, policy->governor->initialized == 1);
mutex_destroy(&dbs_data->mutex);
kfree(dbs_data);
} else {
policy->governor_data = NULL;
}
free_policy_dbs_info(policy_dbs, gov);
......@@ -570,12 +523,12 @@ static int cpufreq_governor_start(struct cpufreq_policy *policy)
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
unsigned int prev_load;
j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
prev_load = j_cdbs->prev_cpu_wall - j_cdbs->prev_cpu_idle;
j_cdbs->prev_load = 100 * prev_load / (unsigned int)j_cdbs->prev_cpu_wall;
j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy);
/*
* Make the first invocation of dbs_update() compute the load.
*/
j_cdbs->prev_load = 0;
if (ignore_nice)
j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
......
......@@ -24,20 +24,6 @@
#include <linux/module.h>
#include <linux/mutex.h>
/*
* The polling frequency depends on the capability of the processor. Default
* polling frequency is 1000 times the transition latency of the processor. The
* governor will work on any processor with transition latency <= 10ms, using
* appropriate sampling rate.
*
* For CPUs with transition latency > 10ms (mostly drivers with CPUFREQ_ETERNAL)
* this governor will not work. All times here are in us (micro seconds).
*/
#define MIN_SAMPLING_RATE_RATIO (2)
#define LATENCY_MULTIPLIER (1000)
#define MIN_LATENCY_MULTIPLIER (20)
#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
/* Ondemand Sampling types */
enum {OD_NORMAL_SAMPLE, OD_SUB_SAMPLE};
......@@ -52,7 +38,7 @@ enum {OD_NORMAL_SAMPLE, OD_SUB_SAMPLE};
/* Governor demand based switching data (per-policy or global). */
struct dbs_data {
int usage_count;
struct gov_attr_set attr_set;
void *tuners;
unsigned int min_sampling_rate;
unsigned int ignore_nice_load;
......@@ -60,37 +46,27 @@ struct dbs_data {
unsigned int sampling_down_factor;
unsigned int up_threshold;
unsigned int io_is_busy;
struct kobject kobj;
struct list_head policy_dbs_list;
/*
* Protect concurrent updates to governor tunables from sysfs,
* policy_dbs_list and usage_count.
*/
struct mutex mutex;
};
/* Governor's specific attributes */
struct dbs_data;
struct governor_attr {
struct attribute attr;
ssize_t (*show)(struct dbs_data *dbs_data, char *buf);
ssize_t (*store)(struct dbs_data *dbs_data, const char *buf,
size_t count);
};
static inline struct dbs_data *to_dbs_data(struct gov_attr_set *attr_set)
{
return container_of(attr_set, struct dbs_data, attr_set);
}
#define gov_show_one(_gov, file_name) \
static ssize_t show_##file_name \
(struct dbs_data *dbs_data, char *buf) \
(struct gov_attr_set *attr_set, char *buf) \
{ \
struct dbs_data *dbs_data = to_dbs_data(attr_set); \
struct _gov##_dbs_tuners *tuners = dbs_data->tuners; \
return sprintf(buf, "%u\n", tuners->file_name); \
}
#define gov_show_one_common(file_name) \
static ssize_t show_##file_name \
(struct dbs_data *dbs_data, char *buf) \
(struct gov_attr_set *attr_set, char *buf) \
{ \
struct dbs_data *dbs_data = to_dbs_data(attr_set); \
return sprintf(buf, "%u\n", dbs_data->file_name); \
}
......@@ -135,7 +111,7 @@ static inline void gov_update_sample_delay(struct policy_dbs_info *policy_dbs,
/* Per cpu structures */
struct cpu_dbs_info {
u64 prev_cpu_idle;
u64 prev_cpu_wall;
u64 prev_update_time;
u64 prev_cpu_nice;
/*
* Used to keep track of load in the previous interval. However, when
......@@ -184,7 +160,7 @@ void od_register_powersave_bias_handler(unsigned int (*f)
(struct cpufreq_policy *, unsigned int, unsigned int),
unsigned int powersave_bias);
void od_unregister_powersave_bias_handler(void);
ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
ssize_t store_sampling_rate(struct gov_attr_set *attr_set, const char *buf,
size_t count);
void gov_update_cpu_data(struct dbs_data *dbs_data);
#endif /* _CPUFREQ_GOVERNOR_H */
/*
* Abstract code for CPUFreq governor tunable sysfs attributes.
*
* Copyright (C) 2016, Intel Corporation
* Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include "cpufreq_governor.h"
static inline struct gov_attr_set *to_gov_attr_set(struct kobject *kobj)
{
return container_of(kobj, struct gov_attr_set, kobj);
}
static inline struct governor_attr *to_gov_attr(struct attribute *attr)
{
return container_of(attr, struct governor_attr, attr);
}
static ssize_t governor_show(struct kobject *kobj, struct attribute *attr,
char *buf)
{
struct governor_attr *gattr = to_gov_attr(attr);
return gattr->show(to_gov_attr_set(kobj), buf);
}
static ssize_t governor_store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
struct governor_attr *gattr = to_gov_attr(attr);
int ret;
mutex_lock(&attr_set->update_lock);
ret = attr_set->usage_count ? gattr->store(attr_set, buf, count) : -EBUSY;
mutex_unlock(&attr_set->update_lock);
return ret;
}
const struct sysfs_ops governor_sysfs_ops = {
.show = governor_show,
.store = governor_store,
};
EXPORT_SYMBOL_GPL(governor_sysfs_ops);
void gov_attr_set_init(struct gov_attr_set *attr_set, struct list_head *list_node)
{
INIT_LIST_HEAD(&attr_set->policy_list);
mutex_init(&attr_set->update_lock);
attr_set->usage_count = 1;
list_add(list_node, &attr_set->policy_list);
}
EXPORT_SYMBOL_GPL(gov_attr_set_init);
void gov_attr_set_get(struct gov_attr_set *attr_set, struct list_head *list_node)
{
mutex_lock(&attr_set->update_lock);
attr_set->usage_count++;
list_add(list_node, &attr_set->policy_list);
mutex_unlock(&attr_set->update_lock);
}
EXPORT_SYMBOL_GPL(gov_attr_set_get);
unsigned int gov_attr_set_put(struct gov_attr_set *attr_set, struct list_head *list_node)
{
unsigned int count;
mutex_lock(&attr_set->update_lock);
list_del(list_node);
count = --attr_set->usage_count;
mutex_unlock(&attr_set->update_lock);
if (count)
return count;
kobject_put(&attr_set->kobj);
mutex_destroy(&attr_set->update_lock);
return 0;
}
EXPORT_SYMBOL_GPL(gov_attr_set_put);
......@@ -207,9 +207,10 @@ static unsigned int od_dbs_timer(struct cpufreq_policy *policy)
/************************** sysfs interface ************************/
static struct dbs_governor od_dbs_gov;
static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
size_t count)
static ssize_t store_io_is_busy(struct gov_attr_set *attr_set, const char *buf,
size_t count)
{
struct dbs_data *dbs_data = to_dbs_data(attr_set);
unsigned int input;
int ret;
......@@ -224,9 +225,10 @@ static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
return count;
}
static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
size_t count)
static ssize_t store_up_threshold(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct dbs_data *dbs_data = to_dbs_data(attr_set);
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
......@@ -240,9 +242,10 @@ static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
return count;
}
static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
const char *buf, size_t count)
static ssize_t store_sampling_down_factor(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct dbs_data *dbs_data = to_dbs_data(attr_set);
struct policy_dbs_info *policy_dbs;
unsigned int input;
int ret;
......@@ -254,7 +257,7 @@ static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
dbs_data->sampling_down_factor = input;
/* Reset down sampling multiplier in case it was active */
list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) {
list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
/*
* Doing this without locking might lead to using different
* rate_mult values in od_update() and od_dbs_timer().
......@@ -267,9 +270,10 @@ static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
return count;
}
static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
const char *buf, size_t count)
static ssize_t store_ignore_nice_load(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct dbs_data *dbs_data = to_dbs_data(attr_set);
unsigned int input;
int ret;
......@@ -291,9 +295,10 @@ static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
return count;
}
static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
size_t count)
static ssize_t store_powersave_bias(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct dbs_data *dbs_data = to_dbs_data(attr_set);
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
struct policy_dbs_info *policy_dbs;
unsigned int input;
......@@ -308,7 +313,7 @@ static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
od_tuners->powersave_bias = input;
list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list)
list_for_each_entry(policy_dbs, &attr_set->policy_list, list)
ondemand_powersave_bias_init(policy_dbs->policy);
return count;
......
......@@ -17,6 +17,7 @@
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/slab.h>
static DEFINE_PER_CPU(unsigned int, cpu_is_managed);
static DEFINE_MUTEX(userspace_mutex);
......@@ -31,6 +32,7 @@ static DEFINE_MUTEX(userspace_mutex);
static int cpufreq_set(struct cpufreq_policy *policy, unsigned int freq)
{
int ret = -EINVAL;
unsigned int *setspeed = policy->governor_data;
pr_debug("cpufreq_set for cpu %u, freq %u kHz\n", policy->cpu, freq);
......@@ -38,6 +40,8 @@ static int cpufreq_set(struct cpufreq_policy *policy, unsigned int freq)
if (!per_cpu(cpu_is_managed, policy->cpu))
goto err;
*setspeed = freq;
ret = __cpufreq_driver_target(policy, freq, CPUFREQ_RELATION_L);
err:
mutex_unlock(&userspace_mutex);
......@@ -49,19 +53,45 @@ static ssize_t show_speed(struct cpufreq_policy *policy, char *buf)
return sprintf(buf, "%u\n", policy->cur);
}
static int cpufreq_userspace_policy_init(struct cpufreq_policy *policy)
{
unsigned int *setspeed;
setspeed = kzalloc(sizeof(*setspeed), GFP_KERNEL);
if (!setspeed)
return -ENOMEM;
policy->governor_data = setspeed;
return 0;
}
static int cpufreq_governor_userspace(struct cpufreq_policy *policy,
unsigned int event)
{
unsigned int *setspeed = policy->governor_data;
unsigned int cpu = policy->cpu;
int rc = 0;
if (event == CPUFREQ_GOV_POLICY_INIT)
return cpufreq_userspace_policy_init(policy);
if (!setspeed)
return -EINVAL;
switch (event) {
case CPUFREQ_GOV_POLICY_EXIT:
mutex_lock(&userspace_mutex);
policy->governor_data = NULL;
kfree(setspeed);
mutex_unlock(&userspace_mutex);
break;
case CPUFREQ_GOV_START:
BUG_ON(!policy->cur);
pr_debug("started managing cpu %u\n", cpu);
mutex_lock(&userspace_mutex);
per_cpu(cpu_is_managed, cpu) = 1;
*setspeed = policy->cur;
mutex_unlock(&userspace_mutex);
break;
case CPUFREQ_GOV_STOP:
......@@ -69,20 +99,23 @@ static int cpufreq_governor_userspace(struct cpufreq_policy *policy,
mutex_lock(&userspace_mutex);
per_cpu(cpu_is_managed, cpu) = 0;
*setspeed = 0;
mutex_unlock(&userspace_mutex);
break;
case CPUFREQ_GOV_LIMITS:
mutex_lock(&userspace_mutex);
pr_debug("limit event for cpu %u: %u - %u kHz, currently %u kHz\n",
cpu, policy->min, policy->max,
policy->cur);
pr_debug("limit event for cpu %u: %u - %u kHz, currently %u kHz, last set to %u kHz\n",
cpu, policy->min, policy->max, policy->cur, *setspeed);
if (policy->max < policy->cur)
if (policy->max < *setspeed)
__cpufreq_driver_target(policy, policy->max,
CPUFREQ_RELATION_H);
else if (policy->min > policy->cur)
else if (policy->min > *setspeed)
__cpufreq_driver_target(policy, policy->min,
CPUFREQ_RELATION_L);
else
__cpufreq_driver_target(policy, *setspeed,
CPUFREQ_RELATION_L);
mutex_unlock(&userspace_mutex);
break;
}
......
......@@ -6,6 +6,8 @@
* BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
......@@ -20,7 +22,7 @@
#include <asm/msr.h>
#include <asm/tsc.h>
#if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
#if IS_ENABLED(CONFIG_ACPI_PROCESSOR)
#include <linux/acpi.h>
#include <acpi/processor.h>
#endif
......@@ -33,7 +35,7 @@
struct eps_cpu_data {
u32 fsb;
#if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
#if IS_ENABLED(CONFIG_ACPI_PROCESSOR)
u32 bios_limit;
#endif
struct cpufreq_frequency_table freq_table[];
......@@ -46,7 +48,7 @@ static int freq_failsafe_off;
static int voltage_failsafe_off;
static int set_max_voltage;
#if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
#if IS_ENABLED(CONFIG_ACPI_PROCESSOR)
static int ignore_acpi_limit;
static struct acpi_processor_performance *eps_acpi_cpu_perf;
......@@ -141,11 +143,9 @@ static int eps_set_state(struct eps_cpu_data *centaur,
/* Print voltage and multiplier */
rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
current_voltage = lo & 0xff;
printk(KERN_INFO "eps: Current voltage = %dmV\n",
current_voltage * 16 + 700);
pr_info("Current voltage = %dmV\n", current_voltage * 16 + 700);
current_multiplier = (lo >> 8) & 0xff;
printk(KERN_INFO "eps: Current multiplier = %d\n",
current_multiplier);
pr_info("Current multiplier = %d\n", current_multiplier);
}
#endif
return 0;
......@@ -166,7 +166,7 @@ static int eps_target(struct cpufreq_policy *policy, unsigned int index)
dest_state = centaur->freq_table[index].driver_data & 0xffff;
ret = eps_set_state(centaur, policy, dest_state);
if (ret)
printk(KERN_ERR "eps: Timeout!\n");
pr_err("Timeout!\n");
return ret;
}
......@@ -186,7 +186,7 @@ static int eps_cpu_init(struct cpufreq_policy *policy)
int k, step, voltage;
int ret;
int states;
#if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
#if IS_ENABLED(CONFIG_ACPI_PROCESSOR)
unsigned int limit;
#endif
......@@ -194,36 +194,36 @@ static int eps_cpu_init(struct cpufreq_policy *policy)
return -ENODEV;
/* Check brand */
printk(KERN_INFO "eps: Detected VIA ");
pr_info("Detected VIA ");
switch (c->x86_model) {
case 10:
rdmsr(0x1153, lo, hi);
brand = (((lo >> 2) ^ lo) >> 18) & 3;
printk(KERN_CONT "Model A ");
pr_cont("Model A ");
break;
case 13:
rdmsr(0x1154, lo, hi);
brand = (((lo >> 4) ^ (lo >> 2))) & 0x000000ff;
printk(KERN_CONT "Model D ");
pr_cont("Model D ");
break;
}
switch (brand) {
case EPS_BRAND_C7M:
printk(KERN_CONT "C7-M\n");
pr_cont("C7-M\n");
break;
case EPS_BRAND_C7:
printk(KERN_CONT "C7\n");
pr_cont("C7\n");
break;
case EPS_BRAND_EDEN:
printk(KERN_CONT "Eden\n");
pr_cont("Eden\n");
break;
case EPS_BRAND_C7D:
printk(KERN_CONT "C7-D\n");
pr_cont("C7-D\n");
break;
case EPS_BRAND_C3:
printk(KERN_CONT "C3\n");
pr_cont("C3\n");
return -ENODEV;
break;
}
......@@ -235,7 +235,7 @@ static int eps_cpu_init(struct cpufreq_policy *policy)
/* Can be locked at 0 */
rdmsrl(MSR_IA32_MISC_ENABLE, val);
if (!(val & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) {
printk(KERN_INFO "eps: Can't enable Enhanced PowerSaver\n");
pr_info("Can't enable Enhanced PowerSaver\n");
return -ENODEV;
}
}
......@@ -243,22 +243,19 @@ static int eps_cpu_init(struct cpufreq_policy *policy)
/* Print voltage and multiplier */
rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
current_voltage = lo & 0xff;
printk(KERN_INFO "eps: Current voltage = %dmV\n",
current_voltage * 16 + 700);
pr_info("Current voltage = %dmV\n", current_voltage * 16 + 700);
current_multiplier = (lo >> 8) & 0xff;
printk(KERN_INFO "eps: Current multiplier = %d\n", current_multiplier);
pr_info("Current multiplier = %d\n", current_multiplier);
/* Print limits */
max_voltage = hi & 0xff;
printk(KERN_INFO "eps: Highest voltage = %dmV\n",
max_voltage * 16 + 700);
pr_info("Highest voltage = %dmV\n", max_voltage * 16 + 700);
max_multiplier = (hi >> 8) & 0xff;
printk(KERN_INFO "eps: Highest multiplier = %d\n", max_multiplier);
pr_info("Highest multiplier = %d\n", max_multiplier);
min_voltage = (hi >> 16) & 0xff;
printk(KERN_INFO "eps: Lowest voltage = %dmV\n",
min_voltage * 16 + 700);
pr_info("Lowest voltage = %dmV\n", min_voltage * 16 + 700);
min_multiplier = (hi >> 24) & 0xff;
printk(KERN_INFO "eps: Lowest multiplier = %d\n", min_multiplier);
pr_info("Lowest multiplier = %d\n", min_multiplier);
/* Sanity checks */
if (current_multiplier == 0 || max_multiplier == 0
......@@ -276,34 +273,30 @@ static int eps_cpu_init(struct cpufreq_policy *policy)
/* Check for systems using underclocked CPU */
if (!freq_failsafe_off && max_multiplier != current_multiplier) {
printk(KERN_INFO "eps: Your processor is running at different "
"frequency then its maximum. Aborting.\n");
printk(KERN_INFO "eps: You can use freq_failsafe_off option "
"to disable this check.\n");
pr_info("Your processor is running at different frequency then its maximum. Aborting.\n");
pr_info("You can use freq_failsafe_off option to disable this check.\n");
return -EINVAL;
}
if (!voltage_failsafe_off && max_voltage != current_voltage) {
printk(KERN_INFO "eps: Your processor is running at different "
"voltage then its maximum. Aborting.\n");
printk(KERN_INFO "eps: You can use voltage_failsafe_off "
"option to disable this check.\n");
pr_info("Your processor is running at different voltage then its maximum. Aborting.\n");
pr_info("You can use voltage_failsafe_off option to disable this check.\n");
return -EINVAL;
}
/* Calc FSB speed */
fsb = cpu_khz / current_multiplier;
#if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
#if IS_ENABLED(CONFIG_ACPI_PROCESSOR)
/* Check for ACPI processor speed limit */
if (!ignore_acpi_limit && !eps_acpi_init()) {
if (!acpi_processor_get_bios_limit(policy->cpu, &limit)) {
printk(KERN_INFO "eps: ACPI limit %u.%uGHz\n",
pr_info("ACPI limit %u.%uGHz\n",
limit/1000000,
(limit%1000000)/10000);
eps_acpi_exit(policy);
/* Check if max_multiplier is in BIOS limits */
if (limit && max_multiplier * fsb > limit) {
printk(KERN_INFO "eps: Aborting.\n");
pr_info("Aborting\n");
return -EINVAL;
}
}
......@@ -319,8 +312,7 @@ static int eps_cpu_init(struct cpufreq_policy *policy)
v = (set_max_voltage - 700) / 16;
/* Check if voltage is within limits */
if (v >= min_voltage && v <= max_voltage) {
printk(KERN_INFO "eps: Setting %dmV as maximum.\n",
v * 16 + 700);
pr_info("Setting %dmV as maximum\n", v * 16 + 700);
max_voltage = v;
}
}
......@@ -341,7 +333,7 @@ static int eps_cpu_init(struct cpufreq_policy *policy)
/* Copy basic values */
centaur->fsb = fsb;
#if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
#if IS_ENABLED(CONFIG_ACPI_PROCESSOR)
centaur->bios_limit = limit;
#endif
......@@ -426,7 +418,7 @@ module_param(freq_failsafe_off, int, 0644);
MODULE_PARM_DESC(freq_failsafe_off, "Disable current vs max frequency check");
module_param(voltage_failsafe_off, int, 0644);
MODULE_PARM_DESC(voltage_failsafe_off, "Disable current vs max voltage check");
#if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
#if IS_ENABLED(CONFIG_ACPI_PROCESSOR)
module_param(ignore_acpi_limit, int, 0644);
MODULE_PARM_DESC(ignore_acpi_limit, "Don't check ACPI's processor speed limit");
#endif
......
......@@ -16,6 +16,8 @@
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
......@@ -185,7 +187,7 @@ static int elanfreq_cpu_init(struct cpufreq_policy *policy)
static int __init elanfreq_setup(char *str)
{
max_freq = simple_strtoul(str, &str, 0);
printk(KERN_WARNING "You're using the deprecated elanfreq command line option. Use elanfreq.max_freq instead, please!\n");
pr_warn("You're using the deprecated elanfreq command line option. Use elanfreq.max_freq instead, please!\n");
return 1;
}
__setup("elanfreq=", elanfreq_setup);
......
/*
* Hisilicon Platforms Using ACPU CPUFreq Support
*
* Copyright (c) 2015 Hisilicon Limited.
* Copyright (c) 2015 Linaro Limited.
*
* Leo Yan <leo.yan@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
static int __init hisi_acpu_cpufreq_driver_init(void)
{
struct platform_device *pdev;
if (!of_machine_is_compatible("hisilicon,hi6220"))
return -ENODEV;
pdev = platform_device_register_simple("cpufreq-dt", -1, NULL, 0);
return PTR_ERR_OR_ZERO(pdev);
}
module_init(hisi_acpu_cpufreq_driver_init);
MODULE_AUTHOR("Leo Yan <leo.yan@linaro.org>");
MODULE_DESCRIPTION("Hisilicon acpu cpufreq driver");
MODULE_LICENSE("GPL v2");
......@@ -8,6 +8,8 @@
* Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/module.h>
......@@ -118,8 +120,7 @@ processor_get_freq (
if (ret) {
set_cpus_allowed_ptr(current, &saved_mask);
printk(KERN_WARNING "get performance failed with error %d\n",
ret);
pr_warn("get performance failed with error %d\n", ret);
ret = 0;
goto migrate_end;
}
......@@ -177,7 +178,7 @@ processor_set_freq (
ret = processor_set_pstate(value);
if (ret) {
printk(KERN_WARNING "Transition failed with error %d\n", ret);
pr_warn("Transition failed with error %d\n", ret);
retval = -ENODEV;
goto migrate_end;
}
......@@ -291,8 +292,7 @@ acpi_cpufreq_cpu_init (
/* notify BIOS that we exist */
acpi_processor_notify_smm(THIS_MODULE);
printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management "
"activated.\n", cpu);
pr_info("CPU%u - ACPI performance management activated\n", cpu);
for (i = 0; i < data->acpi_data.state_count; i++)
pr_debug(" %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n",
......
此差异已折叠。
此差异已折叠。
......@@ -10,6 +10,9 @@
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/cpufreq.h>
#include <linux/module.h>
#include <linux/err.h>
......@@ -76,7 +79,7 @@ static int loongson2_cpufreq_cpu_init(struct cpufreq_policy *policy)
cpuclk = clk_get(NULL, "cpu_clk");
if (IS_ERR(cpuclk)) {
printk(KERN_ERR "cpufreq: couldn't get CPU clk\n");
pr_err("couldn't get CPU clk\n");
return PTR_ERR(cpuclk);
}
......@@ -163,7 +166,7 @@ static int __init cpufreq_init(void)
if (ret)
return ret;
pr_info("cpufreq: Loongson-2F CPU frequency driver.\n");
pr_info("Loongson-2F CPU frequency driver\n");
cpufreq_register_notifier(&loongson2_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
......
......@@ -13,6 +13,8 @@
#undef DEBUG
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/types.h>
#include <linux/errno.h>
......@@ -174,7 +176,7 @@ static int __init maple_cpufreq_init(void)
/* Get first CPU node */
cpunode = of_cpu_device_node_get(0);
if (cpunode == NULL) {
printk(KERN_ERR "cpufreq: Can't find any CPU 0 node\n");
pr_err("Can't find any CPU 0 node\n");
goto bail_noprops;
}
......@@ -182,8 +184,7 @@ static int __init maple_cpufreq_init(void)
/* we actually don't care on which CPU to access PVR */
pvr_hi = PVR_VER(mfspr(SPRN_PVR));
if (pvr_hi != 0x3c && pvr_hi != 0x44) {
printk(KERN_ERR "cpufreq: Unsupported CPU version (%x)\n",
pvr_hi);
pr_err("Unsupported CPU version (%x)\n", pvr_hi);
goto bail_noprops;
}
......@@ -222,8 +223,8 @@ static int __init maple_cpufreq_init(void)
maple_pmode_cur = -1;
maple_scom_switch_freq(maple_scom_query_freq());
printk(KERN_INFO "Registering Maple CPU frequency driver\n");
printk(KERN_INFO "Low: %d Mhz, High: %d Mhz, Cur: %d MHz\n",
pr_info("Registering Maple CPU frequency driver\n");
pr_info("Low: %d Mhz, High: %d Mhz, Cur: %d MHz\n",
maple_cpu_freqs[1].frequency/1000,
maple_cpu_freqs[0].frequency/1000,
maple_cpu_freqs[maple_pmode_cur].frequency/1000);
......
......@@ -59,11 +59,8 @@ static LIST_HEAD(dvfs_info_list);
static struct mtk_cpu_dvfs_info *mtk_cpu_dvfs_info_lookup(int cpu)
{
struct mtk_cpu_dvfs_info *info;
struct list_head *list;
list_for_each(list, &dvfs_info_list) {
info = list_entry(list, struct mtk_cpu_dvfs_info, list_head);
list_for_each_entry(info, &dvfs_info_list, list_head) {
if (cpumask_test_cpu(cpu, &info->cpus))
return info;
}
......@@ -524,8 +521,7 @@ static struct cpufreq_driver mt8173_cpufreq_driver = {
static int mt8173_cpufreq_probe(struct platform_device *pdev)
{
struct mtk_cpu_dvfs_info *info;
struct list_head *list, *tmp;
struct mtk_cpu_dvfs_info *info, *tmp;
int cpu, ret;
for_each_possible_cpu(cpu) {
......@@ -559,11 +555,9 @@ static int mt8173_cpufreq_probe(struct platform_device *pdev)
return 0;
release_dvfs_info_list:
list_for_each_safe(list, tmp, &dvfs_info_list) {
info = list_entry(list, struct mtk_cpu_dvfs_info, list_head);
list_for_each_entry_safe(info, tmp, &dvfs_info_list, list_head) {
mtk_cpu_dvfs_info_release(info);
list_del(list);
list_del(&info->list_head);
}
return ret;
......
/*
* CPUFreq support for Armada 370/XP platforms.
*
* Copyright (C) 2012-2016 Marvell
*
* Yehuda Yitschak <yehuday@marvell.com>
* Gregory Clement <gregory.clement@free-electrons.com>
* Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#define pr_fmt(fmt) "mvebu-pmsu: " fmt
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/resource.h>
static int __init armada_xp_pmsu_cpufreq_init(void)
{
struct device_node *np;
struct resource res;
int ret, cpu;
if (!of_machine_is_compatible("marvell,armadaxp"))
return 0;
/*
* In order to have proper cpufreq handling, we need to ensure
* that the Device Tree description of the CPU clock includes
* the definition of the PMU DFS registers. If not, we do not
* register the clock notifier and the cpufreq driver. This
* piece of code is only for compatibility with old Device
* Trees.
*/
np = of_find_compatible_node(NULL, NULL, "marvell,armada-xp-cpu-clock");
if (!np)
return 0;
ret = of_address_to_resource(np, 1, &res);
if (ret) {
pr_warn(FW_WARN "not enabling cpufreq, deprecated armada-xp-cpu-clock binding\n");
of_node_put(np);
return 0;
}
of_node_put(np);
/*
* For each CPU, this loop registers the operating points
* supported (which are the nominal CPU frequency and half of
* it), and registers the clock notifier that will take care
* of doing the PMSU part of a frequency transition.
*/
for_each_possible_cpu(cpu) {
struct device *cpu_dev;
struct clk *clk;
int ret;
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev) {
pr_err("Cannot get CPU %d\n", cpu);
continue;
}
clk = clk_get(cpu_dev, 0);
if (IS_ERR(clk)) {
pr_err("Cannot get clock for CPU %d\n", cpu);
return PTR_ERR(clk);
}
/*
* In case of a failure of dev_pm_opp_add(), we don't
* bother with cleaning up the registered OPP (there's
* no function to do so), and simply cancel the
* registration of the cpufreq device.
*/
ret = dev_pm_opp_add(cpu_dev, clk_get_rate(clk), 0);
if (ret) {
clk_put(clk);
return ret;
}
ret = dev_pm_opp_add(cpu_dev, clk_get_rate(clk) / 2, 0);
if (ret) {
clk_put(clk);
return ret;
}
ret = dev_pm_opp_set_sharing_cpus(cpu_dev,
cpumask_of(cpu_dev->id));
if (ret)
dev_err(cpu_dev, "%s: failed to mark OPPs as shared: %d\n",
__func__, ret);
}
platform_device_register_simple("cpufreq-dt", -1, NULL, 0);
return 0;
}
device_initcall(armada_xp_pmsu_cpufreq_init);
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
......@@ -17,7 +17,7 @@ int cbe_cpufreq_get_pmode(int cpu);
int cbe_cpufreq_set_pmode_pmi(int cpu, unsigned int pmode);
#if defined(CONFIG_CPU_FREQ_CBE_PMI) || defined(CONFIG_CPU_FREQ_CBE_PMI_MODULE)
#if IS_ENABLED(CONFIG_CPU_FREQ_CBE_PMI)
extern bool cbe_cpufreq_has_pmi;
#else
#define cbe_cpufreq_has_pmi (0)
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
# Exynos DEVFREQ Event Drivers
obj-$(CONFIG_DEVFREQ_EVENT_EXYNOS_NOCP) += exynos-nocp.o
obj-$(CONFIG_DEVFREQ_EVENT_EXYNOS_PPMU) += exynos-ppmu.o
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册