提交 d3bad75a 编写于 作者: L Linus Torvalds

Merge tag 'driver-core-3.14-rc1' of...

Merge tag 'driver-core-3.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core

Pull driver core / sysfs patches from Greg KH:
 "Here's the big driver core and sysfs patch set for 3.14-rc1.

  There's a lot of work here moving sysfs logic out into a "kernfs" to
  allow other subsystems to also have a virtual filesystem with the same
  attributes of sysfs (handle device disconnect, dynamic creation /
  removal as needed / unneeded, etc)

  This is primarily being done for the cgroups filesystem, but the goal
  is to also move debugfs to it when it is ready, solving all of the
  known issues in that filesystem as well.  The code isn't completed
  yet, but all should be stable now (there is a big section that was
  reverted due to problems found when testing)

  There's also some other smaller fixes, and a driver core addition that
  allows for a "collection" of objects, that the DRM people will be
  using soon (it's in this tree to make merges after -rc1 easier)

  All of this has been in linux-next with no reported issues"

* tag 'driver-core-3.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (113 commits)
  kernfs: associate a new kernfs_node with its parent on creation
  kernfs: add struct dentry declaration in kernfs.h
  kernfs: fix get_active failure handling in kernfs_seq_*()
  Revert "kernfs: fix get_active failure handling in kernfs_seq_*()"
  Revert "kernfs: replace kernfs_node->u.completion with kernfs_root->deactivate_waitq"
  Revert "kernfs: remove KERNFS_ACTIVE_REF and add kernfs_lockdep()"
  Revert "kernfs: remove KERNFS_REMOVED"
  Revert "kernfs: restructure removal path to fix possible premature return"
  Revert "kernfs: invoke kernfs_unmap_bin_file() directly from __kernfs_remove()"
  Revert "kernfs: remove kernfs_addrm_cxt"
  Revert "kernfs: make kernfs_get_active() block if the node is deactivated but not removed"
  Revert "kernfs: implement kernfs_{de|re}activate[_self]()"
  Revert "kernfs, sysfs, driver-core: implement kernfs_remove_self() and its wrappers"
  Revert "pci: use device_remove_file_self() instead of device_schedule_callback()"
  Revert "scsi: use device_remove_file_self() instead of device_schedule_callback()"
  Revert "s390: use device_remove_file_self() instead of device_schedule_callback()"
  Revert "sysfs, driver-core: remove unused {sysfs|device}_schedule_callback_owner()"
  Revert "kernfs: remove unnecessary NULL check in __kernfs_remove()"
  kernfs: remove unnecessary NULL check in __kernfs_remove()
  drivers/base: provide an infrastructure for componentised subsystems
  ...
Device Driver Design Patterns
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This document describes a few common design patterns found in device drivers.
It is likely that subsystem maintainers will ask driver developers to
conform to these design patterns.
1. State Container
2. container_of()
1. State Container
~~~~~~~~~~~~~~~~~~
While the kernel contains a few device drivers that assume that they will
only be probed() once on a certain system (singletons), it is custom to assume
that the device the driver binds to will appear in several instances. This
means that the probe() function and all callbacks need to be reentrant.
The most common way to achieve this is to use the state container design
pattern. It usually has this form:
struct foo {
spinlock_t lock; /* Example member */
(...)
};
static int foo_probe(...)
{
struct foo *foo;
foo = devm_kzalloc(dev, sizeof(*foo), GFP_KERNEL);
if (!foo)
return -ENOMEM;
spin_lock_init(&foo->lock);
(...)
}
This will create an instance of struct foo in memory every time probe() is
called. This is our state container for this instance of the device driver.
Of course it is then necessary to always pass this instance of the
state around to all functions that need access to the state and its members.
For example, if the driver is registering an interrupt handler, you would
pass around a pointer to struct foo like this:
static irqreturn_t foo_handler(int irq, void *arg)
{
struct foo *foo = arg;
(...)
}
static int foo_probe(...)
{
struct foo *foo;
(...)
ret = request_irq(irq, foo_handler, 0, "foo", foo);
}
This way you always get a pointer back to the correct instance of foo in
your interrupt handler.
2. container_of()
~~~~~~~~~~~~~~~~~
Continuing on the above example we add an offloaded work:
struct foo {
spinlock_t lock;
struct workqueue_struct *wq;
struct work_struct offload;
(...)
};
static void foo_work(struct work_struct *work)
{
struct foo *foo = container_of(work, struct foo, offload);
(...)
}
static irqreturn_t foo_handler(int irq, void *arg)
{
struct foo *foo = arg;
queue_work(foo->wq, &foo->offload);
(...)
}
static int foo_probe(...)
{
struct foo *foo;
foo->wq = create_singlethread_workqueue("foo-wq");
INIT_WORK(&foo->offload, foo_work);
(...)
}
The design pattern is the same for an hrtimer or something similar that will
return a single argument which is a pointer to a struct member in the
callback.
container_of() is a macro defined in <linux/kernel.h>
What container_of() does is to obtain a pointer to the containing struct from
a pointer to a member by a simple subtraction using the offsetof() macro from
standard C, which allows something similar to object oriented behaviours.
Notice that the contained member must not be a pointer, but an actual member
for this to work.
We can see here that we avoid having global pointers to our struct foo *
instance this way, while still keeping the number of parameters passed to the
work function to a single pointer.
......@@ -342,7 +342,10 @@ kset use:
When you are finished with the kset, call:
void kset_unregister(struct kset *kset);
to destroy it.
to destroy it. This removes the kset from sysfs and decrements its reference
count. When the reference count goes to zero, the kset will be released.
Because other references to the kset may still exist, the release may happen
after kset_unregister() returns.
An example of using a kset can be seen in the
samples/kobject/kset-example.c file in the kernel tree.
......
......@@ -433,7 +433,7 @@ static enum ucode_state request_microcode_amd(int cpu, struct device *device,
if (c->x86 >= 0x15)
snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
if (request_firmware(&fw, (const char *)fw_name, device)) {
if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
pr_debug("failed to load file %s\n", fw_name);
goto out;
}
......
......@@ -278,7 +278,7 @@ static enum ucode_state request_microcode_fw(int cpu, struct device *device,
sprintf(name, "intel-ucode/%02x-%02x-%02x",
c->x86, c->x86_model, c->x86_mask);
if (request_firmware(&firmware, name, device)) {
if (request_firmware_direct(&firmware, name, device)) {
pr_debug("data file %s load failed\n", name);
return UCODE_NFOUND;
}
......
# Makefile for the Linux device tree
obj-y := core.o bus.o dd.o syscore.o \
obj-y := component.o core.o bus.o dd.o syscore.o \
driver.o class.o platform.o \
cpu.o firmware.o init.o map.o devres.o \
attribute_container.o transport_class.o \
......
......@@ -146,8 +146,19 @@ void bus_remove_file(struct bus_type *bus, struct bus_attribute *attr)
}
EXPORT_SYMBOL_GPL(bus_remove_file);
static void bus_release(struct kobject *kobj)
{
struct subsys_private *priv =
container_of(kobj, typeof(*priv), subsys.kobj);
struct bus_type *bus = priv->bus;
kfree(priv);
bus->p = NULL;
}
static struct kobj_type bus_ktype = {
.sysfs_ops = &bus_sysfs_ops,
.release = bus_release,
};
static int bus_uevent_filter(struct kset *kset, struct kobject *kobj)
......@@ -953,8 +964,6 @@ void bus_unregister(struct bus_type *bus)
kset_unregister(bus->p->devices_kset);
bus_remove_file(bus, &bus_attr_uevent);
kset_unregister(&bus->p->subsys);
kfree(bus->p);
bus->p = NULL;
}
EXPORT_SYMBOL_GPL(bus_unregister);
......
/*
* Componentized device handling.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This is work in progress. We gather up the component devices into a list,
* and bind them when instructed. At the moment, we're specific to the DRM
* subsystem, and only handles one master device, but this doesn't have to be
* the case.
*/
#include <linux/component.h>
#include <linux/device.h>
#include <linux/kref.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/slab.h>
struct master {
struct list_head node;
struct list_head components;
bool bound;
const struct component_master_ops *ops;
struct device *dev;
};
struct component {
struct list_head node;
struct list_head master_node;
struct master *master;
bool bound;
const struct component_ops *ops;
struct device *dev;
};
static DEFINE_MUTEX(component_mutex);
static LIST_HEAD(component_list);
static LIST_HEAD(masters);
static struct master *__master_find(struct device *dev,
const struct component_master_ops *ops)
{
struct master *m;
list_for_each_entry(m, &masters, node)
if (m->dev == dev && (!ops || m->ops == ops))
return m;
return NULL;
}
/* Attach an unattached component to a master. */
static void component_attach_master(struct master *master, struct component *c)
{
c->master = master;
list_add_tail(&c->master_node, &master->components);
}
/* Detach a component from a master. */
static void component_detach_master(struct master *master, struct component *c)
{
list_del(&c->master_node);
c->master = NULL;
}
int component_master_add_child(struct master *master,
int (*compare)(struct device *, void *), void *compare_data)
{
struct component *c;
int ret = -ENXIO;
list_for_each_entry(c, &component_list, node) {
if (c->master)
continue;
if (compare(c->dev, compare_data)) {
component_attach_master(master, c);
ret = 0;
break;
}
}
return ret;
}
EXPORT_SYMBOL_GPL(component_master_add_child);
/* Detach all attached components from this master */
static void master_remove_components(struct master *master)
{
while (!list_empty(&master->components)) {
struct component *c = list_first_entry(&master->components,
struct component, master_node);
WARN_ON(c->master != master);
component_detach_master(master, c);
}
}
/*
* Try to bring up a master. If component is NULL, we're interested in
* this master, otherwise it's a component which must be present to try
* and bring up the master.
*
* Returns 1 for successful bringup, 0 if not ready, or -ve errno.
*/
static int try_to_bring_up_master(struct master *master,
struct component *component)
{
int ret = 0;
if (!master->bound) {
/*
* Search the list of components, looking for components that
* belong to this master, and attach them to the master.
*/
if (master->ops->add_components(master->dev, master)) {
/* Failed to find all components */
master_remove_components(master);
ret = 0;
goto out;
}
if (component && component->master != master) {
master_remove_components(master);
ret = 0;
goto out;
}
/* Found all components */
ret = master->ops->bind(master->dev);
if (ret < 0) {
master_remove_components(master);
goto out;
}
master->bound = true;
ret = 1;
}
out:
return ret;
}
static int try_to_bring_up_masters(struct component *component)
{
struct master *m;
int ret = 0;
list_for_each_entry(m, &masters, node) {
ret = try_to_bring_up_master(m, component);
if (ret != 0)
break;
}
return ret;
}
static void take_down_master(struct master *master)
{
if (master->bound) {
master->ops->unbind(master->dev);
master->bound = false;
}
master_remove_components(master);
}
int component_master_add(struct device *dev,
const struct component_master_ops *ops)
{
struct master *master;
int ret;
master = kzalloc(sizeof(*master), GFP_KERNEL);
if (!master)
return -ENOMEM;
master->dev = dev;
master->ops = ops;
INIT_LIST_HEAD(&master->components);
/* Add to the list of available masters. */
mutex_lock(&component_mutex);
list_add(&master->node, &masters);
ret = try_to_bring_up_master(master, NULL);
if (ret < 0) {
/* Delete off the list if we weren't successful */
list_del(&master->node);
kfree(master);
}
mutex_unlock(&component_mutex);
return ret < 0 ? ret : 0;
}
EXPORT_SYMBOL_GPL(component_master_add);
void component_master_del(struct device *dev,
const struct component_master_ops *ops)
{
struct master *master;
mutex_lock(&component_mutex);
master = __master_find(dev, ops);
if (master) {
take_down_master(master);
list_del(&master->node);
kfree(master);
}
mutex_unlock(&component_mutex);
}
EXPORT_SYMBOL_GPL(component_master_del);
static void component_unbind(struct component *component,
struct master *master, void *data)
{
WARN_ON(!component->bound);
component->ops->unbind(component->dev, master->dev, data);
component->bound = false;
/* Release all resources claimed in the binding of this component */
devres_release_group(component->dev, component);
}
void component_unbind_all(struct device *master_dev, void *data)
{
struct master *master;
struct component *c;
WARN_ON(!mutex_is_locked(&component_mutex));
master = __master_find(master_dev, NULL);
if (!master)
return;
list_for_each_entry_reverse(c, &master->components, master_node)
component_unbind(c, master, data);
}
EXPORT_SYMBOL_GPL(component_unbind_all);
static int component_bind(struct component *component, struct master *master,
void *data)
{
int ret;
/*
* Each component initialises inside its own devres group.
* This allows us to roll-back a failed component without
* affecting anything else.
*/
if (!devres_open_group(master->dev, NULL, GFP_KERNEL))
return -ENOMEM;
/*
* Also open a group for the device itself: this allows us
* to release the resources claimed against the sub-device
* at the appropriate moment.
*/
if (!devres_open_group(component->dev, component, GFP_KERNEL)) {
devres_release_group(master->dev, NULL);
return -ENOMEM;
}
dev_dbg(master->dev, "binding %s (ops %ps)\n",
dev_name(component->dev), component->ops);
ret = component->ops->bind(component->dev, master->dev, data);
if (!ret) {
component->bound = true;
/*
* Close the component device's group so that resources
* allocated in the binding are encapsulated for removal
* at unbind. Remove the group on the DRM device as we
* can clean those resources up independently.
*/
devres_close_group(component->dev, NULL);
devres_remove_group(master->dev, NULL);
dev_info(master->dev, "bound %s (ops %ps)\n",
dev_name(component->dev), component->ops);
} else {
devres_release_group(component->dev, NULL);
devres_release_group(master->dev, NULL);
dev_err(master->dev, "failed to bind %s (ops %ps): %d\n",
dev_name(component->dev), component->ops, ret);
}
return ret;
}
int component_bind_all(struct device *master_dev, void *data)
{
struct master *master;
struct component *c;
int ret = 0;
WARN_ON(!mutex_is_locked(&component_mutex));
master = __master_find(master_dev, NULL);
if (!master)
return -EINVAL;
list_for_each_entry(c, &master->components, master_node) {
ret = component_bind(c, master, data);
if (ret)
break;
}
if (ret != 0) {
list_for_each_entry_continue_reverse(c, &master->components,
master_node)
component_unbind(c, master, data);
}
return ret;
}
EXPORT_SYMBOL_GPL(component_bind_all);
int component_add(struct device *dev, const struct component_ops *ops)
{
struct component *component;
int ret;
component = kzalloc(sizeof(*component), GFP_KERNEL);
if (!component)
return -ENOMEM;
component->ops = ops;
component->dev = dev;
dev_dbg(dev, "adding component (ops %ps)\n", ops);
mutex_lock(&component_mutex);
list_add_tail(&component->node, &component_list);
ret = try_to_bring_up_masters(component);
if (ret < 0) {
list_del(&component->node);
kfree(component);
}
mutex_unlock(&component_mutex);
return ret < 0 ? ret : 0;
}
EXPORT_SYMBOL_GPL(component_add);
void component_del(struct device *dev, const struct component_ops *ops)
{
struct component *c, *component = NULL;
mutex_lock(&component_mutex);
list_for_each_entry(c, &component_list, node)
if (c->dev == dev && c->ops == ops) {
list_del(&c->node);
component = c;
break;
}
if (component && component->master)
take_down_master(component->master);
mutex_unlock(&component_mutex);
WARN_ON(!component);
kfree(component);
}
EXPORT_SYMBOL_GPL(component_del);
MODULE_LICENSE("GPL v2");
......@@ -491,11 +491,13 @@ static int device_add_attrs(struct device *dev)
if (device_supports_offline(dev) && !dev->offline_disabled) {
error = device_create_file(dev, &dev_attr_online);
if (error)
goto err_remove_type_groups;
goto err_remove_dev_groups;
}
return 0;
err_remove_dev_groups:
device_remove_groups(dev, dev->groups);
err_remove_type_groups:
if (type)
device_remove_groups(dev, type->groups);
......@@ -1603,6 +1605,7 @@ device_create_groups_vargs(struct class *class, struct device *parent,
goto error;
}
device_initialize(dev);
dev->devt = devt;
dev->class = class;
dev->parent = parent;
......@@ -1614,7 +1617,7 @@ device_create_groups_vargs(struct class *class, struct device *parent,
if (retval)
goto error;
retval = device_register(dev);
retval = device_add(dev);
if (retval)
goto error;
......
......@@ -299,7 +299,7 @@ static int handle_remove(const char *nodename, struct device *dev)
{
struct path parent;
struct dentry *dentry;
int deleted = 1;
int deleted = 0;
int err;
dentry = kern_path_locked(nodename, &parent);
......
......@@ -96,6 +96,15 @@ static inline long firmware_loading_timeout(void)
return loading_timeout > 0 ? loading_timeout * HZ : MAX_SCHEDULE_TIMEOUT;
}
/* firmware behavior options */
#define FW_OPT_UEVENT (1U << 0)
#define FW_OPT_NOWAIT (1U << 1)
#ifdef CONFIG_FW_LOADER_USER_HELPER
#define FW_OPT_FALLBACK (1U << 2)
#else
#define FW_OPT_FALLBACK 0
#endif
struct firmware_cache {
/* firmware_buf instance will be added into the below list */
spinlock_t lock;
......@@ -219,6 +228,7 @@ static int fw_lookup_and_allocate_buf(const char *fw_name,
}
static void __fw_free_buf(struct kref *ref)
__releases(&fwc->lock)
{
struct firmware_buf *buf = to_fwbuf(ref);
struct firmware_cache *fwc = buf->fwc;
......@@ -270,21 +280,21 @@ module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
/* Don't inline this: 'struct kstat' is biggish */
static noinline_for_stack long fw_file_size(struct file *file)
static noinline_for_stack int fw_file_size(struct file *file)
{
struct kstat st;
if (vfs_getattr(&file->f_path, &st))
return -1;
if (!S_ISREG(st.mode))
return -1;
if (st.size != (long)st.size)
if (st.size != (int)st.size)
return -1;
return st.size;
}
static int fw_read_file_contents(struct file *file, struct firmware_buf *fw_buf)
{
long size;
int size;
char *buf;
int rc;
......@@ -820,7 +830,7 @@ static void firmware_class_timeout_work(struct work_struct *work)
static struct firmware_priv *
fw_create_instance(struct firmware *firmware, const char *fw_name,
struct device *device, bool uevent, bool nowait)
struct device *device, unsigned int opt_flags)
{
struct firmware_priv *fw_priv;
struct device *f_dev;
......@@ -832,7 +842,7 @@ fw_create_instance(struct firmware *firmware, const char *fw_name,
goto exit;
}
fw_priv->nowait = nowait;
fw_priv->nowait = !!(opt_flags & FW_OPT_NOWAIT);
fw_priv->fw = firmware;
INIT_DELAYED_WORK(&fw_priv->timeout_work,
firmware_class_timeout_work);
......@@ -848,8 +858,8 @@ fw_create_instance(struct firmware *firmware, const char *fw_name,
}
/* load a firmware via user helper */
static int _request_firmware_load(struct firmware_priv *fw_priv, bool uevent,
long timeout)
static int _request_firmware_load(struct firmware_priv *fw_priv,
unsigned int opt_flags, long timeout)
{
int retval = 0;
struct device *f_dev = &fw_priv->dev;
......@@ -885,7 +895,7 @@ static int _request_firmware_load(struct firmware_priv *fw_priv, bool uevent,
goto err_del_bin_attr;
}
if (uevent) {
if (opt_flags & FW_OPT_UEVENT) {
buf->need_uevent = true;
dev_set_uevent_suppress(f_dev, false);
dev_dbg(f_dev, "firmware: requesting %s\n", buf->fw_id);
......@@ -911,16 +921,16 @@ static int _request_firmware_load(struct firmware_priv *fw_priv, bool uevent,
static int fw_load_from_user_helper(struct firmware *firmware,
const char *name, struct device *device,
bool uevent, bool nowait, long timeout)
unsigned int opt_flags, long timeout)
{
struct firmware_priv *fw_priv;
fw_priv = fw_create_instance(firmware, name, device, uevent, nowait);
fw_priv = fw_create_instance(firmware, name, device, opt_flags);
if (IS_ERR(fw_priv))
return PTR_ERR(fw_priv);
fw_priv->buf = firmware->priv;
return _request_firmware_load(fw_priv, uevent, timeout);
return _request_firmware_load(fw_priv, opt_flags, timeout);
}
#ifdef CONFIG_PM_SLEEP
......@@ -942,7 +952,7 @@ static void kill_requests_without_uevent(void)
#else /* CONFIG_FW_LOADER_USER_HELPER */
static inline int
fw_load_from_user_helper(struct firmware *firmware, const char *name,
struct device *device, bool uevent, bool nowait,
struct device *device, unsigned int opt_flags,
long timeout)
{
return -ENOENT;
......@@ -1023,7 +1033,7 @@ _request_firmware_prepare(struct firmware **firmware_p, const char *name,
}
static int assign_firmware_buf(struct firmware *fw, struct device *device,
bool skip_cache)
unsigned int opt_flags)
{
struct firmware_buf *buf = fw->priv;
......@@ -1040,7 +1050,8 @@ static int assign_firmware_buf(struct firmware *fw, struct device *device,
* device may has been deleted already, but the problem
* should be fixed in devres or driver core.
*/
if (device && !skip_cache)
/* don't cache firmware handled without uevent */
if (device && (opt_flags & FW_OPT_UEVENT))
fw_add_devm_name(device, buf->fw_id);
/*
......@@ -1061,7 +1072,7 @@ static int assign_firmware_buf(struct firmware *fw, struct device *device,
/* called from request_firmware() and request_firmware_work_func() */
static int
_request_firmware(const struct firmware **firmware_p, const char *name,
struct device *device, bool uevent, bool nowait)
struct device *device, unsigned int opt_flags)
{
struct firmware *fw;
long timeout;
......@@ -1076,7 +1087,7 @@ _request_firmware(const struct firmware **firmware_p, const char *name,
ret = 0;
timeout = firmware_loading_timeout();
if (nowait) {
if (opt_flags & FW_OPT_NOWAIT) {
timeout = usermodehelper_read_lock_wait(timeout);
if (!timeout) {
dev_dbg(device, "firmware: %s loading timed out\n",
......@@ -1095,16 +1106,18 @@ _request_firmware(const struct firmware **firmware_p, const char *name,
ret = fw_get_filesystem_firmware(device, fw->priv);
if (ret) {
dev_warn(device, "Direct firmware load failed with error %d\n",
ret);
dev_warn(device, "Falling back to user helper\n");
ret = fw_load_from_user_helper(fw, name, device,
uevent, nowait, timeout);
if (opt_flags & FW_OPT_FALLBACK) {
dev_warn(device,
"Direct firmware load failed with error %d\n",
ret);
dev_warn(device, "Falling back to user helper\n");
ret = fw_load_from_user_helper(fw, name, device,
opt_flags, timeout);
}
}
/* don't cache firmware handled without uevent */
if (!ret)
ret = assign_firmware_buf(fw, device, !uevent);
ret = assign_firmware_buf(fw, device, opt_flags);
usermodehelper_read_unlock();
......@@ -1146,12 +1159,37 @@ request_firmware(const struct firmware **firmware_p, const char *name,
/* Need to pin this module until return */
__module_get(THIS_MODULE);
ret = _request_firmware(firmware_p, name, device, true, false);
ret = _request_firmware(firmware_p, name, device,
FW_OPT_UEVENT | FW_OPT_FALLBACK);
module_put(THIS_MODULE);
return ret;
}
EXPORT_SYMBOL(request_firmware);
#ifdef CONFIG_FW_LOADER_USER_HELPER
/**
* request_firmware: - load firmware directly without usermode helper
* @firmware_p: pointer to firmware image
* @name: name of firmware file
* @device: device for which firmware is being loaded
*
* This function works pretty much like request_firmware(), but this doesn't
* fall back to usermode helper even if the firmware couldn't be loaded
* directly from fs. Hence it's useful for loading optional firmwares, which
* aren't always present, without extra long timeouts of udev.
**/
int request_firmware_direct(const struct firmware **firmware_p,
const char *name, struct device *device)
{
int ret;
__module_get(THIS_MODULE);
ret = _request_firmware(firmware_p, name, device, FW_OPT_UEVENT);
module_put(THIS_MODULE);
return ret;
}
EXPORT_SYMBOL_GPL(request_firmware_direct);
#endif
/**
* release_firmware: - release the resource associated with a firmware image
* @fw: firmware resource to release
......@@ -1174,7 +1212,7 @@ struct firmware_work {
struct device *device;
void *context;
void (*cont)(const struct firmware *fw, void *context);
bool uevent;
unsigned int opt_flags;
};
static void request_firmware_work_func(struct work_struct *work)
......@@ -1185,7 +1223,7 @@ static void request_firmware_work_func(struct work_struct *work)
fw_work = container_of(work, struct firmware_work, work);
_request_firmware(&fw, fw_work->name, fw_work->device,
fw_work->uevent, true);
fw_work->opt_flags);
fw_work->cont(fw, fw_work->context);
put_device(fw_work->device); /* taken in request_firmware_nowait() */
......@@ -1233,7 +1271,8 @@ request_firmware_nowait(
fw_work->device = device;
fw_work->context = context;
fw_work->cont = cont;
fw_work->uevent = uevent;
fw_work->opt_flags = FW_OPT_NOWAIT | FW_OPT_FALLBACK |
(uevent ? FW_OPT_UEVENT : 0);
if (!try_module_get(module)) {
kfree(fw_work);
......
......@@ -553,7 +553,7 @@ static const struct bin_attribute dmi_entry_raw_attr = {
static void dmi_sysfs_entry_release(struct kobject *kobj)
{
struct dmi_sysfs_entry *entry = to_entry(kobj);
sysfs_remove_bin_file(&entry->kobj, &dmi_entry_raw_attr);
spin_lock(&entry_list_lock);
list_del(&entry->list);
spin_unlock(&entry_list_lock);
......@@ -685,6 +685,7 @@ static void __exit dmi_sysfs_exit(void)
pr_debug("dmi-sysfs: unloading.\n");
cleanup_entry_list();
kset_unregister(dmi_kset);
kobject_del(dmi_kobj);
kobject_put(dmi_kobj);
}
......
......@@ -393,7 +393,7 @@ static const DEVICE_ATTR(value, 0644,
static irqreturn_t gpio_sysfs_irq(int irq, void *priv)
{
struct sysfs_dirent *value_sd = priv;
struct kernfs_node *value_sd = priv;
sysfs_notify_dirent(value_sd);
return IRQ_HANDLED;
......@@ -402,7 +402,7 @@ static irqreturn_t gpio_sysfs_irq(int irq, void *priv)
static int gpio_setup_irq(struct gpio_desc *desc, struct device *dev,
unsigned long gpio_flags)
{
struct sysfs_dirent *value_sd;
struct kernfs_node *value_sd;
unsigned long irq_flags;
int ret, irq, id;
......
......@@ -1635,7 +1635,7 @@ int bitmap_create(struct mddev *mddev)
sector_t blocks = mddev->resync_max_sectors;
struct file *file = mddev->bitmap_info.file;
int err;
struct sysfs_dirent *bm = NULL;
struct kernfs_node *bm = NULL;
BUILD_BUG_ON(sizeof(bitmap_super_t) != 256);
......
......@@ -225,7 +225,7 @@ struct bitmap {
wait_queue_head_t overflow_wait;
wait_queue_head_t behind_wait;
struct sysfs_dirent *sysfs_can_clear;
struct kernfs_node *sysfs_can_clear;
};
/* the bitmap API */
......
......@@ -106,7 +106,7 @@ struct md_rdev {
*/
struct work_struct del_work; /* used for delayed sysfs removal */
struct sysfs_dirent *sysfs_state; /* handle for 'state'
struct kernfs_node *sysfs_state; /* handle for 'state'
* sysfs entry */
struct badblocks {
......@@ -379,10 +379,10 @@ struct mddev {
sector_t resync_max; /* resync should pause
* when it gets here */
struct sysfs_dirent *sysfs_state; /* handle for 'array_state'
struct kernfs_node *sysfs_state; /* handle for 'array_state'
* file in sysfs.
*/
struct sysfs_dirent *sysfs_action; /* handle for 'sync_action' */
struct kernfs_node *sysfs_action; /* handle for 'sync_action' */
struct work_struct del_work; /* used for delayed sysfs removal */
......@@ -501,13 +501,13 @@ struct md_sysfs_entry {
};
extern struct attribute_group md_bitmap_group;
static inline struct sysfs_dirent *sysfs_get_dirent_safe(struct sysfs_dirent *sd, char *name)
static inline struct kernfs_node *sysfs_get_dirent_safe(struct kernfs_node *sd, char *name)
{
if (sd)
return sysfs_get_dirent(sd, name);
return sd;
}
static inline void sysfs_notify_dirent_safe(struct sysfs_dirent *sd)
static inline void sysfs_notify_dirent_safe(struct kernfs_node *sd)
{
if (sd)
sysfs_notify_dirent(sd);
......
......@@ -112,7 +112,7 @@ struct mic_device {
struct work_struct shutdown_work;
u8 state;
u8 shutdown_status;
struct sysfs_dirent *state_sysfs;
struct kernfs_node *state_sysfs;
struct completion reset_wait;
void *log_buf_addr;
int *log_buf_len;
......
......@@ -53,7 +53,7 @@ obj-$(CONFIG_FHANDLE) += fhandle.o
obj-y += quota/
obj-$(CONFIG_PROC_FS) += proc/
obj-$(CONFIG_SYSFS) += sysfs/
obj-$(CONFIG_SYSFS) += sysfs/ kernfs/
obj-$(CONFIG_CONFIGFS_FS) += configfs/
obj-y += devpts/
......
#
# Makefile for the kernfs pseudo filesystem
#
obj-y := mount.o inode.o dir.o file.o symlink.o
此差异已折叠。
此差异已折叠。
/*
* fs/sysfs/inode.c - basic sysfs inode and dentry operations
* fs/kernfs/inode.c - kernfs inode implementation
*
* Copyright (c) 2001-3 Patrick Mochel
* Copyright (c) 2007 SUSE Linux Products GmbH
* Copyright (c) 2007 Tejun Heo <teheo@suse.de>
* Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
*
* This file is released under the GPLv2.
*
* Please see Documentation/filesystems/sysfs.txt for more information.
*/
#undef DEBUG
#include <linux/pagemap.h>
#include <linux/namei.h>
#include <linux/backing-dev.h>
#include <linux/capability.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/xattr.h>
#include <linux/security.h>
#include "sysfs.h"
static const struct address_space_operations sysfs_aops = {
#include "kernfs-internal.h"
static const struct address_space_operations kernfs_aops = {
.readpage = simple_readpage,
.write_begin = simple_write_begin,
.write_end = simple_write_end,
};
static struct backing_dev_info sysfs_backing_dev_info = {
.name = "sysfs",
static struct backing_dev_info kernfs_bdi = {
.name = "kernfs",
.ra_pages = 0, /* No readahead */
.capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
};
static const struct inode_operations sysfs_inode_operations = {
.permission = sysfs_permission,
.setattr = sysfs_setattr,
.getattr = sysfs_getattr,
.setxattr = sysfs_setxattr,
static const struct inode_operations kernfs_iops = {
.permission = kernfs_iop_permission,
.setattr = kernfs_iop_setattr,
.getattr = kernfs_iop_getattr,
.setxattr = kernfs_iop_setxattr,
.removexattr = kernfs_iop_removexattr,
.getxattr = kernfs_iop_getxattr,
.listxattr = kernfs_iop_listxattr,
};
int __init sysfs_inode_init(void)
void __init kernfs_inode_init(void)
{
return bdi_init(&sysfs_backing_dev_info);
if (bdi_init(&kernfs_bdi))
panic("failed to init kernfs_bdi");
}
static struct sysfs_inode_attrs *sysfs_init_inode_attrs(struct sysfs_dirent *sd)
static struct kernfs_iattrs *kernfs_iattrs(struct kernfs_node *kn)
{
struct sysfs_inode_attrs *attrs;
struct iattr *iattrs;
attrs = kzalloc(sizeof(struct sysfs_inode_attrs), GFP_KERNEL);
if (!attrs)
if (kn->iattr)
return kn->iattr;
kn->iattr = kzalloc(sizeof(struct kernfs_iattrs), GFP_KERNEL);
if (!kn->iattr)
return NULL;
iattrs = &attrs->ia_iattr;
iattrs = &kn->iattr->ia_iattr;
/* assign default attributes */
iattrs->ia_mode = sd->s_mode;
iattrs->ia_mode = kn->mode;
iattrs->ia_uid = GLOBAL_ROOT_UID;
iattrs->ia_gid = GLOBAL_ROOT_GID;
iattrs->ia_atime = iattrs->ia_mtime = iattrs->ia_ctime = CURRENT_TIME;
return attrs;
simple_xattrs_init(&kn->iattr->xattrs);
return kn->iattr;
}
int sysfs_sd_setattr(struct sysfs_dirent *sd, struct iattr *iattr)
static int __kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr)
{
struct sysfs_inode_attrs *sd_attrs;
struct kernfs_iattrs *attrs;
struct iattr *iattrs;
unsigned int ia_valid = iattr->ia_valid;
sd_attrs = sd->s_iattr;
attrs = kernfs_iattrs(kn);
if (!attrs)
return -ENOMEM;
if (!sd_attrs) {
/* setting attributes for the first time, allocate now */
sd_attrs = sysfs_init_inode_attrs(sd);
if (!sd_attrs)
return -ENOMEM;
sd->s_iattr = sd_attrs;
}
/* attributes were changed at least once in past */
iattrs = &sd_attrs->ia_iattr;
iattrs = &attrs->ia_iattr;
if (ia_valid & ATTR_UID)
iattrs->ia_uid = iattr->ia_uid;
......@@ -97,26 +93,43 @@ int sysfs_sd_setattr(struct sysfs_dirent *sd, struct iattr *iattr)
iattrs->ia_ctime = iattr->ia_ctime;
if (ia_valid & ATTR_MODE) {
umode_t mode = iattr->ia_mode;
iattrs->ia_mode = sd->s_mode = mode;
iattrs->ia_mode = kn->mode = mode;
}
return 0;
}
int sysfs_setattr(struct dentry *dentry, struct iattr *iattr)
/**
* kernfs_setattr - set iattr on a node
* @kn: target node
* @iattr: iattr to set
*
* Returns 0 on success, -errno on failure.
*/
int kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr)
{
int ret;
mutex_lock(&kernfs_mutex);
ret = __kernfs_setattr(kn, iattr);
mutex_unlock(&kernfs_mutex);
return ret;
}
int kernfs_iop_setattr(struct dentry *dentry, struct iattr *iattr)
{
struct inode *inode = dentry->d_inode;
struct sysfs_dirent *sd = dentry->d_fsdata;
struct kernfs_node *kn = dentry->d_fsdata;
int error;
if (!sd)
if (!kn)
return -EINVAL;
mutex_lock(&sysfs_mutex);
mutex_lock(&kernfs_mutex);
error = inode_change_ok(inode, iattr);
if (error)
goto out;
error = sysfs_sd_setattr(sd, iattr);
error = __kernfs_setattr(kn, iattr);
if (error)
goto out;
......@@ -124,67 +137,106 @@ int sysfs_setattr(struct dentry *dentry, struct iattr *iattr)
setattr_copy(inode, iattr);
out:
mutex_unlock(&sysfs_mutex);
mutex_unlock(&kernfs_mutex);
return error;
}
static int sysfs_sd_setsecdata(struct sysfs_dirent *sd, void **secdata,
u32 *secdata_len)
static int kernfs_node_setsecdata(struct kernfs_node *kn, void **secdata,
u32 *secdata_len)
{
struct sysfs_inode_attrs *iattrs;
struct kernfs_iattrs *attrs;
void *old_secdata;
size_t old_secdata_len;
if (!sd->s_iattr) {
sd->s_iattr = sysfs_init_inode_attrs(sd);
if (!sd->s_iattr)
return -ENOMEM;
}
attrs = kernfs_iattrs(kn);
if (!attrs)
return -ENOMEM;
iattrs = sd->s_iattr;
old_secdata = iattrs->ia_secdata;
old_secdata_len = iattrs->ia_secdata_len;
old_secdata = attrs->ia_secdata;
old_secdata_len = attrs->ia_secdata_len;
iattrs->ia_secdata = *secdata;
iattrs->ia_secdata_len = *secdata_len;
attrs->ia_secdata = *secdata;
attrs->ia_secdata_len = *secdata_len;
*secdata = old_secdata;
*secdata_len = old_secdata_len;
return 0;
}
int sysfs_setxattr(struct dentry *dentry, const char *name, const void *value,
size_t size, int flags)
int kernfs_iop_setxattr(struct dentry *dentry, const char *name,
const void *value, size_t size, int flags)
{
struct sysfs_dirent *sd = dentry->d_fsdata;
struct kernfs_node *kn = dentry->d_fsdata;
struct kernfs_iattrs *attrs;
void *secdata;
int error;
u32 secdata_len = 0;
if (!sd)
return -EINVAL;
attrs = kernfs_iattrs(kn);
if (!attrs)
return -ENOMEM;
if (!strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN)) {
const char *suffix = name + XATTR_SECURITY_PREFIX_LEN;
error = security_inode_setsecurity(dentry->d_inode, suffix,
value, size, flags);
if (error)
goto out;
return error;
error = security_inode_getsecctx(dentry->d_inode,
&secdata, &secdata_len);
if (error)
goto out;
return error;
mutex_lock(&sysfs_mutex);
error = sysfs_sd_setsecdata(sd, &secdata, &secdata_len);
mutex_unlock(&sysfs_mutex);
mutex_lock(&kernfs_mutex);
error = kernfs_node_setsecdata(kn, &secdata, &secdata_len);
mutex_unlock(&kernfs_mutex);
if (secdata)
security_release_secctx(secdata, secdata_len);
} else
return -EINVAL;
out:
return error;
return error;
} else if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN)) {
return simple_xattr_set(&attrs->xattrs, name, value, size,
flags);
}
return -EINVAL;
}
int kernfs_iop_removexattr(struct dentry *dentry, const char *name)
{
struct kernfs_node *kn = dentry->d_fsdata;
struct kernfs_iattrs *attrs;
attrs = kernfs_iattrs(kn);
if (!attrs)
return -ENOMEM;
return simple_xattr_remove(&attrs->xattrs, name);
}
ssize_t kernfs_iop_getxattr(struct dentry *dentry, const char *name, void *buf,
size_t size)
{
struct kernfs_node *kn = dentry->d_fsdata;
struct kernfs_iattrs *attrs;
attrs = kernfs_iattrs(kn);
if (!attrs)
return -ENOMEM;
return simple_xattr_get(&attrs->xattrs, name, buf, size);
}
ssize_t kernfs_iop_listxattr(struct dentry *dentry, char *buf, size_t size)
{
struct kernfs_node *kn = dentry->d_fsdata;
struct kernfs_iattrs *attrs;
attrs = kernfs_iattrs(kn);
if (!attrs)
return -ENOMEM;
return simple_xattr_list(&attrs->xattrs, buf, size);
}
static inline void set_default_inode_attr(struct inode *inode, umode_t mode)
......@@ -202,68 +254,62 @@ static inline void set_inode_attr(struct inode *inode, struct iattr *iattr)
inode->i_ctime = iattr->ia_ctime;
}
static void sysfs_refresh_inode(struct sysfs_dirent *sd, struct inode *inode)
static void kernfs_refresh_inode(struct kernfs_node *kn, struct inode *inode)
{
struct sysfs_inode_attrs *iattrs = sd->s_iattr;
struct kernfs_iattrs *attrs = kn->iattr;
inode->i_mode = sd->s_mode;
if (iattrs) {
/* sysfs_dirent has non-default attributes
* get them from persistent copy in sysfs_dirent
inode->i_mode = kn->mode;
if (attrs) {
/*
* kernfs_node has non-default attributes get them from
* persistent copy in kernfs_node.
*/
set_inode_attr(inode, &iattrs->ia_iattr);
security_inode_notifysecctx(inode,
iattrs->ia_secdata,
iattrs->ia_secdata_len);
set_inode_attr(inode, &attrs->ia_iattr);
security_inode_notifysecctx(inode, attrs->ia_secdata,
attrs->ia_secdata_len);
}
if (sysfs_type(sd) == SYSFS_DIR)
set_nlink(inode, sd->s_dir.subdirs + 2);
if (kernfs_type(kn) == KERNFS_DIR)
set_nlink(inode, kn->dir.subdirs + 2);
}
int sysfs_getattr(struct vfsmount *mnt, struct dentry *dentry,
struct kstat *stat)
int kernfs_iop_getattr(struct vfsmount *mnt, struct dentry *dentry,
struct kstat *stat)
{
struct sysfs_dirent *sd = dentry->d_fsdata;
struct kernfs_node *kn = dentry->d_fsdata;
struct inode *inode = dentry->d_inode;
mutex_lock(&sysfs_mutex);
sysfs_refresh_inode(sd, inode);
mutex_unlock(&sysfs_mutex);
mutex_lock(&kernfs_mutex);
kernfs_refresh_inode(kn, inode);
mutex_unlock(&kernfs_mutex);
generic_fillattr(inode, stat);
return 0;
}
static void sysfs_init_inode(struct sysfs_dirent *sd, struct inode *inode)
static void kernfs_init_inode(struct kernfs_node *kn, struct inode *inode)
{
struct bin_attribute *bin_attr;
kernfs_get(kn);
inode->i_private = kn;
inode->i_mapping->a_ops = &kernfs_aops;
inode->i_mapping->backing_dev_info = &kernfs_bdi;
inode->i_op = &kernfs_iops;
inode->i_private = sysfs_get(sd);
inode->i_mapping->a_ops = &sysfs_aops;
inode->i_mapping->backing_dev_info = &sysfs_backing_dev_info;
inode->i_op = &sysfs_inode_operations;
set_default_inode_attr(inode, sd->s_mode);
sysfs_refresh_inode(sd, inode);
set_default_inode_attr(inode, kn->mode);
kernfs_refresh_inode(kn, inode);
/* initialize inode according to type */
switch (sysfs_type(sd)) {
case SYSFS_DIR:
inode->i_op = &sysfs_dir_inode_operations;
inode->i_fop = &sysfs_dir_operations;
break;
case SYSFS_KOBJ_ATTR:
inode->i_size = PAGE_SIZE;
inode->i_fop = &sysfs_file_operations;
switch (kernfs_type(kn)) {
case KERNFS_DIR:
inode->i_op = &kernfs_dir_iops;
inode->i_fop = &kernfs_dir_fops;
break;
case SYSFS_KOBJ_BIN_ATTR:
bin_attr = sd->s_attr.bin_attr;
inode->i_size = bin_attr->size;
inode->i_fop = &sysfs_bin_operations;
case KERNFS_FILE:
inode->i_size = kn->attr.size;
inode->i_fop = &kernfs_file_fops;
break;
case SYSFS_KOBJ_LINK:
inode->i_op = &sysfs_symlink_inode_operations;
case KERNFS_LINK:
inode->i_op = &kernfs_symlink_iops;
break;
default:
BUG();
......@@ -273,13 +319,13 @@ static void sysfs_init_inode(struct sysfs_dirent *sd, struct inode *inode)
}
/**
* sysfs_get_inode - get inode for sysfs_dirent
* kernfs_get_inode - get inode for kernfs_node
* @sb: super block
* @sd: sysfs_dirent to allocate inode for
* @kn: kernfs_node to allocate inode for
*
* Get inode for @sd. If such inode doesn't exist, a new inode
* is allocated and basics are initialized. New inode is
* returned locked.
* Get inode for @kn. If such inode doesn't exist, a new inode is
* allocated and basics are initialized. New inode is returned
* locked.
*
* LOCKING:
* Kernel thread context (may sleep).
......@@ -287,45 +333,45 @@ static void sysfs_init_inode(struct sysfs_dirent *sd, struct inode *inode)
* RETURNS:
* Pointer to allocated inode on success, NULL on failure.
*/
struct inode *sysfs_get_inode(struct super_block *sb, struct sysfs_dirent *sd)
struct inode *kernfs_get_inode(struct super_block *sb, struct kernfs_node *kn)
{
struct inode *inode;
inode = iget_locked(sb, sd->s_ino);
inode = iget_locked(sb, kn->ino);
if (inode && (inode->i_state & I_NEW))
sysfs_init_inode(sd, inode);
kernfs_init_inode(kn, inode);
return inode;
}
/*
* The sysfs_dirent serves as both an inode and a directory entry for sysfs.
* To prevent the sysfs inode numbers from being freed prematurely we take a
* reference to sysfs_dirent from the sysfs inode. A
* The kernfs_node serves as both an inode and a directory entry for
* kernfs. To prevent the kernfs inode numbers from being freed
* prematurely we take a reference to kernfs_node from the kernfs inode. A
* super_operations.evict_inode() implementation is needed to drop that
* reference upon inode destruction.
*/
void sysfs_evict_inode(struct inode *inode)
void kernfs_evict_inode(struct inode *inode)
{
struct sysfs_dirent *sd = inode->i_private;
struct kernfs_node *kn = inode->i_private;
truncate_inode_pages(&inode->i_data, 0);
clear_inode(inode);
sysfs_put(sd);
kernfs_put(kn);
}
int sysfs_permission(struct inode *inode, int mask)
int kernfs_iop_permission(struct inode *inode, int mask)
{
struct sysfs_dirent *sd;
struct kernfs_node *kn;
if (mask & MAY_NOT_BLOCK)
return -ECHILD;
sd = inode->i_private;
kn = inode->i_private;
mutex_lock(&sysfs_mutex);
sysfs_refresh_inode(sd, inode);
mutex_unlock(&sysfs_mutex);
mutex_lock(&kernfs_mutex);
kernfs_refresh_inode(kn, inode);
mutex_unlock(&kernfs_mutex);
return generic_permission(inode, mask);
}
/*
* fs/kernfs/kernfs-internal.h - kernfs internal header file
*
* Copyright (c) 2001-3 Patrick Mochel
* Copyright (c) 2007 SUSE Linux Products GmbH
* Copyright (c) 2007, 2013 Tejun Heo <teheo@suse.de>
*
* This file is released under the GPLv2.
*/
#ifndef __KERNFS_INTERNAL_H
#define __KERNFS_INTERNAL_H
#include <linux/lockdep.h>
#include <linux/fs.h>
#include <linux/mutex.h>
#include <linux/xattr.h>
#include <linux/kernfs.h>
struct kernfs_iattrs {
struct iattr ia_iattr;
void *ia_secdata;
u32 ia_secdata_len;
struct simple_xattrs xattrs;
};
#define KN_DEACTIVATED_BIAS INT_MIN
/* KERNFS_TYPE_MASK and types are defined in include/linux/kernfs.h */
/**
* kernfs_root - find out the kernfs_root a kernfs_node belongs to
* @kn: kernfs_node of interest
*
* Return the kernfs_root @kn belongs to.
*/
static inline struct kernfs_root *kernfs_root(struct kernfs_node *kn)
{
/* if parent exists, it's always a dir; otherwise, @sd is a dir */
if (kn->parent)
kn = kn->parent;
return kn->dir.root;
}
/*
* Context structure to be used while adding/removing nodes.
*/
struct kernfs_addrm_cxt {
struct kernfs_node *removed;
};
/*
* mount.c
*/
struct kernfs_super_info {
/*
* The root associated with this super_block. Each super_block is
* identified by the root and ns it's associated with.
*/
struct kernfs_root *root;
/*
* Each sb is associated with one namespace tag, currently the
* network namespace of the task which mounted this kernfs
* instance. If multiple tags become necessary, make the following
* an array and compare kernfs_node tag against every entry.
*/
const void *ns;
};
#define kernfs_info(SB) ((struct kernfs_super_info *)(SB->s_fs_info))
extern struct kmem_cache *kernfs_node_cache;
/*
* inode.c
*/
struct inode *kernfs_get_inode(struct super_block *sb, struct kernfs_node *kn);
void kernfs_evict_inode(struct inode *inode);
int kernfs_iop_permission(struct inode *inode, int mask);
int kernfs_iop_setattr(struct dentry *dentry, struct iattr *iattr);
int kernfs_iop_getattr(struct vfsmount *mnt, struct dentry *dentry,
struct kstat *stat);
int kernfs_iop_setxattr(struct dentry *dentry, const char *name, const void *value,
size_t size, int flags);
int kernfs_iop_removexattr(struct dentry *dentry, const char *name);
ssize_t kernfs_iop_getxattr(struct dentry *dentry, const char *name, void *buf,
size_t size);
ssize_t kernfs_iop_listxattr(struct dentry *dentry, char *buf, size_t size);
void kernfs_inode_init(void);
/*
* dir.c
*/
extern struct mutex kernfs_mutex;
extern const struct dentry_operations kernfs_dops;
extern const struct file_operations kernfs_dir_fops;
extern const struct inode_operations kernfs_dir_iops;
struct kernfs_node *kernfs_get_active(struct kernfs_node *kn);
void kernfs_put_active(struct kernfs_node *kn);
void kernfs_addrm_start(struct kernfs_addrm_cxt *acxt);
int kernfs_add_one(struct kernfs_addrm_cxt *acxt, struct kernfs_node *kn);
void kernfs_addrm_finish(struct kernfs_addrm_cxt *acxt);
struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
const char *name, umode_t mode,
unsigned flags);
/*
* file.c
*/
extern const struct file_operations kernfs_file_fops;
void kernfs_unmap_bin_file(struct kernfs_node *kn);
/*
* symlink.c
*/
extern const struct inode_operations kernfs_symlink_iops;
#endif /* __KERNFS_INTERNAL_H */
/*
* fs/kernfs/mount.c - kernfs mount implementation
*
* Copyright (c) 2001-3 Patrick Mochel
* Copyright (c) 2007 SUSE Linux Products GmbH
* Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
*
* This file is released under the GPLv2.
*/
#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/init.h>
#include <linux/magic.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include "kernfs-internal.h"
struct kmem_cache *kernfs_node_cache;
static const struct super_operations kernfs_sops = {
.statfs = simple_statfs,
.drop_inode = generic_delete_inode,
.evict_inode = kernfs_evict_inode,
};
static int kernfs_fill_super(struct super_block *sb)
{
struct kernfs_super_info *info = kernfs_info(sb);
struct inode *inode;
struct dentry *root;
sb->s_blocksize = PAGE_CACHE_SIZE;
sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
sb->s_magic = SYSFS_MAGIC;
sb->s_op = &kernfs_sops;
sb->s_time_gran = 1;
/* get root inode, initialize and unlock it */
mutex_lock(&kernfs_mutex);
inode = kernfs_get_inode(sb, info->root->kn);
mutex_unlock(&kernfs_mutex);
if (!inode) {
pr_debug("kernfs: could not get root inode\n");
return -ENOMEM;
}
/* instantiate and link root dentry */
root = d_make_root(inode);
if (!root) {
pr_debug("%s: could not get root dentry!\n", __func__);
return -ENOMEM;
}
kernfs_get(info->root->kn);
root->d_fsdata = info->root->kn;
sb->s_root = root;
sb->s_d_op = &kernfs_dops;
return 0;
}
static int kernfs_test_super(struct super_block *sb, void *data)
{
struct kernfs_super_info *sb_info = kernfs_info(sb);
struct kernfs_super_info *info = data;
return sb_info->root == info->root && sb_info->ns == info->ns;
}
static int kernfs_set_super(struct super_block *sb, void *data)
{
int error;
error = set_anon_super(sb, data);
if (!error)
sb->s_fs_info = data;
return error;
}
/**
* kernfs_super_ns - determine the namespace tag of a kernfs super_block
* @sb: super_block of interest
*
* Return the namespace tag associated with kernfs super_block @sb.
*/
const void *kernfs_super_ns(struct super_block *sb)
{
struct kernfs_super_info *info = kernfs_info(sb);
return info->ns;
}
/**
* kernfs_mount_ns - kernfs mount helper
* @fs_type: file_system_type of the fs being mounted
* @flags: mount flags specified for the mount
* @root: kernfs_root of the hierarchy being mounted
* @ns: optional namespace tag of the mount
*
* This is to be called from each kernfs user's file_system_type->mount()
* implementation, which should pass through the specified @fs_type and
* @flags, and specify the hierarchy and namespace tag to mount via @root
* and @ns, respectively.
*
* The return value can be passed to the vfs layer verbatim.
*/
struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
struct kernfs_root *root, const void *ns)
{
struct super_block *sb;
struct kernfs_super_info *info;
int error;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return ERR_PTR(-ENOMEM);
info->root = root;
info->ns = ns;
sb = sget(fs_type, kernfs_test_super, kernfs_set_super, flags, info);
if (IS_ERR(sb) || sb->s_fs_info != info)
kfree(info);
if (IS_ERR(sb))
return ERR_CAST(sb);
if (!sb->s_root) {
error = kernfs_fill_super(sb);
if (error) {
deactivate_locked_super(sb);
return ERR_PTR(error);
}
sb->s_flags |= MS_ACTIVE;
}
return dget(sb->s_root);
}
/**
* kernfs_kill_sb - kill_sb for kernfs
* @sb: super_block being killed
*
* This can be used directly for file_system_type->kill_sb(). If a kernfs
* user needs extra cleanup, it can implement its own kill_sb() and call
* this function at the end.
*/
void kernfs_kill_sb(struct super_block *sb)
{
struct kernfs_super_info *info = kernfs_info(sb);
struct kernfs_node *root_kn = sb->s_root->d_fsdata;
/*
* Remove the superblock from fs_supers/s_instances
* so we can't find it, before freeing kernfs_super_info.
*/
kill_anon_super(sb);
kfree(info);
kernfs_put(root_kn);
}
void __init kernfs_init(void)
{
kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
sizeof(struct kernfs_node),
0, SLAB_PANIC, NULL);
kernfs_inode_init();
}
/*
* fs/kernfs/symlink.c - kernfs symlink implementation
*
* Copyright (c) 2001-3 Patrick Mochel
* Copyright (c) 2007 SUSE Linux Products GmbH
* Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
*
* This file is released under the GPLv2.
*/
#include <linux/fs.h>
#include <linux/gfp.h>
#include <linux/namei.h>
#include "kernfs-internal.h"
/**
* kernfs_create_link - create a symlink
* @parent: directory to create the symlink in
* @name: name of the symlink
* @target: target node for the symlink to point to
*
* Returns the created node on success, ERR_PTR() value on error.
*/
struct kernfs_node *kernfs_create_link(struct kernfs_node *parent,
const char *name,
struct kernfs_node *target)
{
struct kernfs_node *kn;
struct kernfs_addrm_cxt acxt;
int error;
kn = kernfs_new_node(parent, name, S_IFLNK|S_IRWXUGO, KERNFS_LINK);
if (!kn)
return ERR_PTR(-ENOMEM);
if (kernfs_ns_enabled(parent))
kn->ns = target->ns;
kn->symlink.target_kn = target;
kernfs_get(target); /* ref owned by symlink */
kernfs_addrm_start(&acxt);
error = kernfs_add_one(&acxt, kn);
kernfs_addrm_finish(&acxt);
if (!error)
return kn;
kernfs_put(kn);
return ERR_PTR(error);
}
static int kernfs_get_target_path(struct kernfs_node *parent,
struct kernfs_node *target, char *path)
{
struct kernfs_node *base, *kn;
char *s = path;
int len = 0;
/* go up to the root, stop at the base */
base = parent;
while (base->parent) {
kn = target->parent;
while (kn->parent && base != kn)
kn = kn->parent;
if (base == kn)
break;
strcpy(s, "../");
s += 3;
base = base->parent;
}
/* determine end of target string for reverse fillup */
kn = target;
while (kn->parent && kn != base) {
len += strlen(kn->name) + 1;
kn = kn->parent;
}
/* check limits */
if (len < 2)
return -EINVAL;
len--;
if ((s - path) + len > PATH_MAX)
return -ENAMETOOLONG;
/* reverse fillup of target string from target to base */
kn = target;
while (kn->parent && kn != base) {
int slen = strlen(kn->name);
len -= slen;
strncpy(s + len, kn->name, slen);
if (len)
s[--len] = '/';
kn = kn->parent;
}
return 0;
}
static int kernfs_getlink(struct dentry *dentry, char *path)
{
struct kernfs_node *kn = dentry->d_fsdata;
struct kernfs_node *parent = kn->parent;
struct kernfs_node *target = kn->symlink.target_kn;
int error;
mutex_lock(&kernfs_mutex);
error = kernfs_get_target_path(parent, target, path);
mutex_unlock(&kernfs_mutex);
return error;
}
static void *kernfs_iop_follow_link(struct dentry *dentry, struct nameidata *nd)
{
int error = -ENOMEM;
unsigned long page = get_zeroed_page(GFP_KERNEL);
if (page) {
error = kernfs_getlink(dentry, (char *) page);
if (error < 0)
free_page((unsigned long)page);
}
nd_set_link(nd, error ? ERR_PTR(error) : (char *)page);
return NULL;
}
static void kernfs_iop_put_link(struct dentry *dentry, struct nameidata *nd,
void *cookie)
{
char *page = nd_get_link(nd);
if (!IS_ERR(page))
free_page((unsigned long)page);
}
const struct inode_operations kernfs_symlink_iops = {
.setxattr = kernfs_iop_setxattr,
.removexattr = kernfs_iop_removexattr,
.getxattr = kernfs_iop_getxattr,
.listxattr = kernfs_iop_listxattr,
.readlink = generic_readlink,
.follow_link = kernfs_iop_follow_link,
.put_link = kernfs_iop_put_link,
.setattr = kernfs_iop_setattr,
.getattr = kernfs_iop_getattr,
.permission = kernfs_iop_permission,
};
......@@ -2790,6 +2790,8 @@ void __init mnt_init(void)
for (u = 0; u < HASH_SIZE; u++)
INIT_LIST_HEAD(&mountpoint_hashtable[u]);
kernfs_init();
err = sysfs_init();
if (err)
printk(KERN_WARNING "%s: sysfs_init error: %d\n",
......
......@@ -2,4 +2,4 @@
# Makefile for the sysfs virtual filesystem
#
obj-y := inode.o file.o dir.o symlink.o mount.o group.o
obj-y := file.o dir.o symlink.o mount.o group.o
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
#ifndef COMPONENT_H
#define COMPONENT_H
struct device;
struct component_ops {
int (*bind)(struct device *, struct device *, void *);
void (*unbind)(struct device *, struct device *, void *);
};
int component_add(struct device *, const struct component_ops *);
void component_del(struct device *, const struct component_ops *);
int component_bind_all(struct device *, void *);
void component_unbind_all(struct device *, void *);
struct master;
struct component_master_ops {
int (*add_components)(struct device *, struct master *);
int (*bind)(struct device *);
void (*unbind)(struct device *);
};
int component_master_add(struct device *, const struct component_master_ops *);
void component_master_del(struct device *,
const struct component_master_ops *);
int component_master_add_child(struct master *master,
int (*compare)(struct device *, void *), void *compare_data);
#endif
此差异已折叠。
此差异已折叠。
此差异已折叠。
......@@ -64,7 +64,7 @@ struct kobject {
struct kobject *parent;
struct kset *kset;
struct kobj_type *ktype;
struct sysfs_dirent *sd;
struct kernfs_node *sd;
struct kref kref;
#ifdef CONFIG_DEBUG_KOBJECT_RELEASE
struct delayed_work release;
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册