提交 c818f97b 编写于 作者: S Sascha Hauer

ARM i.MX: remove now unused clock files

Signed-off-by: NSascha Hauer <s.hauer@pengutronix.de>
上级 2acd1b6f
/*
* Copyright (C) 2008 Sascha Hauer <s.hauer@pengutronix.de>, Pengutronix
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/math64.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/clkdev.h>
#include <mach/clock.h>
#include <mach/hardware.h>
#include <mach/common.h>
#define IO_ADDR_CCM(off) (MX1_IO_ADDRESS(MX1_CCM_BASE_ADDR + (off)))
/* CCM register addresses */
#define CCM_CSCR IO_ADDR_CCM(0x0)
#define CCM_MPCTL0 IO_ADDR_CCM(0x4)
#define CCM_SPCTL0 IO_ADDR_CCM(0xc)
#define CCM_PCDR IO_ADDR_CCM(0x20)
#define CCM_CSCR_CLKO_OFFSET 29
#define CCM_CSCR_CLKO_MASK (0x7 << 29)
#define CCM_CSCR_USB_OFFSET 26
#define CCM_CSCR_USB_MASK (0x7 << 26)
#define CCM_CSCR_OSC_EN_SHIFT 17
#define CCM_CSCR_SYSTEM_SEL (1 << 16)
#define CCM_CSCR_BCLK_OFFSET 10
#define CCM_CSCR_BCLK_MASK (0xf << 10)
#define CCM_CSCR_PRESC (1 << 15)
#define CCM_PCDR_PCLK3_OFFSET 16
#define CCM_PCDR_PCLK3_MASK (0x7f << 16)
#define CCM_PCDR_PCLK2_OFFSET 4
#define CCM_PCDR_PCLK2_MASK (0xf << 4)
#define CCM_PCDR_PCLK1_OFFSET 0
#define CCM_PCDR_PCLK1_MASK 0xf
#define IO_ADDR_SCM(off) (MX1_IO_ADDRESS(MX1_SCM_BASE_ADDR + (off)))
/* SCM register addresses */
#define SCM_GCCR IO_ADDR_SCM(0xc)
#define SCM_GCCR_DMA_CLK_EN_OFFSET 3
#define SCM_GCCR_CSI_CLK_EN_OFFSET 2
#define SCM_GCCR_MMA_CLK_EN_OFFSET 1
#define SCM_GCCR_USBD_CLK_EN_OFFSET 0
static int _clk_enable(struct clk *clk)
{
unsigned int reg;
reg = __raw_readl(clk->enable_reg);
reg |= 1 << clk->enable_shift;
__raw_writel(reg, clk->enable_reg);
return 0;
}
static void _clk_disable(struct clk *clk)
{
unsigned int reg;
reg = __raw_readl(clk->enable_reg);
reg &= ~(1 << clk->enable_shift);
__raw_writel(reg, clk->enable_reg);
}
static int _clk_can_use_parent(const struct clk *clk_arr[], unsigned int size,
struct clk *parent)
{
int i;
for (i = 0; i < size; i++)
if (parent == clk_arr[i])
return i;
return -EINVAL;
}
static unsigned long
_clk_simple_round_rate(struct clk *clk, unsigned long rate, unsigned int limit)
{
int div;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
div = parent_rate / rate;
if (parent_rate % rate)
div++;
if (div > limit)
div = limit;
return parent_rate / div;
}
static unsigned long _clk_parent_round_rate(struct clk *clk, unsigned long rate)
{
return clk->parent->round_rate(clk->parent, rate);
}
static int _clk_parent_set_rate(struct clk *clk, unsigned long rate)
{
return clk->parent->set_rate(clk->parent, rate);
}
static unsigned long clk16m_get_rate(struct clk *clk)
{
return 16000000;
}
static struct clk clk16m = {
.get_rate = clk16m_get_rate,
.enable = _clk_enable,
.enable_reg = CCM_CSCR,
.enable_shift = CCM_CSCR_OSC_EN_SHIFT,
.disable = _clk_disable,
};
/* in Hz */
static unsigned long clk32_rate;
static unsigned long clk32_get_rate(struct clk *clk)
{
return clk32_rate;
}
static struct clk clk32 = {
.get_rate = clk32_get_rate,
};
static unsigned long clk32_premult_get_rate(struct clk *clk)
{
return clk_get_rate(clk->parent) * 512;
}
static struct clk clk32_premult = {
.parent = &clk32,
.get_rate = clk32_premult_get_rate,
};
static const struct clk *prem_clk_clocks[] = {
&clk32_premult,
&clk16m,
};
static int prem_clk_set_parent(struct clk *clk, struct clk *parent)
{
int i;
unsigned int reg = __raw_readl(CCM_CSCR);
i = _clk_can_use_parent(prem_clk_clocks, ARRAY_SIZE(prem_clk_clocks),
parent);
switch (i) {
case 0:
reg &= ~CCM_CSCR_SYSTEM_SEL;
break;
case 1:
reg |= CCM_CSCR_SYSTEM_SEL;
break;
default:
return i;
}
__raw_writel(reg, CCM_CSCR);
return 0;
}
static struct clk prem_clk = {
.set_parent = prem_clk_set_parent,
};
static unsigned long system_clk_get_rate(struct clk *clk)
{
return mxc_decode_pll(__raw_readl(CCM_SPCTL0),
clk_get_rate(clk->parent));
}
static struct clk system_clk = {
.parent = &prem_clk,
.get_rate = system_clk_get_rate,
};
static unsigned long mcu_clk_get_rate(struct clk *clk)
{
return mxc_decode_pll(__raw_readl(CCM_MPCTL0),
clk_get_rate(clk->parent));
}
static struct clk mcu_clk = {
.parent = &clk32_premult,
.get_rate = mcu_clk_get_rate,
};
static unsigned long fclk_get_rate(struct clk *clk)
{
unsigned long fclk = clk_get_rate(clk->parent);
if (__raw_readl(CCM_CSCR) & CCM_CSCR_PRESC)
fclk /= 2;
return fclk;
}
static struct clk fclk = {
.parent = &mcu_clk,
.get_rate = fclk_get_rate,
};
/*
* get hclk ( SDRAM, CSI, Memory Stick, I2C, DMA )
*/
static unsigned long hclk_get_rate(struct clk *clk)
{
return clk_get_rate(clk->parent) / (((__raw_readl(CCM_CSCR) &
CCM_CSCR_BCLK_MASK) >> CCM_CSCR_BCLK_OFFSET) + 1);
}
static unsigned long hclk_round_rate(struct clk *clk, unsigned long rate)
{
return _clk_simple_round_rate(clk, rate, 16);
}
static int hclk_set_rate(struct clk *clk, unsigned long rate)
{
unsigned int div;
unsigned int reg;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
div = parent_rate / rate;
if (div > 16 || div < 1 || ((parent_rate / div) != rate))
return -EINVAL;
div--;
reg = __raw_readl(CCM_CSCR);
reg &= ~CCM_CSCR_BCLK_MASK;
reg |= div << CCM_CSCR_BCLK_OFFSET;
__raw_writel(reg, CCM_CSCR);
return 0;
}
static struct clk hclk = {
.parent = &system_clk,
.get_rate = hclk_get_rate,
.round_rate = hclk_round_rate,
.set_rate = hclk_set_rate,
};
static unsigned long clk48m_get_rate(struct clk *clk)
{
return clk_get_rate(clk->parent) / (((__raw_readl(CCM_CSCR) &
CCM_CSCR_USB_MASK) >> CCM_CSCR_USB_OFFSET) + 1);
}
static unsigned long clk48m_round_rate(struct clk *clk, unsigned long rate)
{
return _clk_simple_round_rate(clk, rate, 8);
}
static int clk48m_set_rate(struct clk *clk, unsigned long rate)
{
unsigned int div;
unsigned int reg;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
div = parent_rate / rate;
if (div > 8 || div < 1 || ((parent_rate / div) != rate))
return -EINVAL;
div--;
reg = __raw_readl(CCM_CSCR);
reg &= ~CCM_CSCR_USB_MASK;
reg |= div << CCM_CSCR_USB_OFFSET;
__raw_writel(reg, CCM_CSCR);
return 0;
}
static struct clk clk48m = {
.parent = &system_clk,
.get_rate = clk48m_get_rate,
.round_rate = clk48m_round_rate,
.set_rate = clk48m_set_rate,
};
/*
* get peripheral clock 1 ( UART[12], Timer[12], PWM )
*/
static unsigned long perclk1_get_rate(struct clk *clk)
{
return clk_get_rate(clk->parent) / (((__raw_readl(CCM_PCDR) &
CCM_PCDR_PCLK1_MASK) >> CCM_PCDR_PCLK1_OFFSET) + 1);
}
static unsigned long perclk1_round_rate(struct clk *clk, unsigned long rate)
{
return _clk_simple_round_rate(clk, rate, 16);
}
static int perclk1_set_rate(struct clk *clk, unsigned long rate)
{
unsigned int div;
unsigned int reg;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
div = parent_rate / rate;
if (div > 16 || div < 1 || ((parent_rate / div) != rate))
return -EINVAL;
div--;
reg = __raw_readl(CCM_PCDR);
reg &= ~CCM_PCDR_PCLK1_MASK;
reg |= div << CCM_PCDR_PCLK1_OFFSET;
__raw_writel(reg, CCM_PCDR);
return 0;
}
/*
* get peripheral clock 2 ( LCD, SD, SPI[12] )
*/
static unsigned long perclk2_get_rate(struct clk *clk)
{
return clk_get_rate(clk->parent) / (((__raw_readl(CCM_PCDR) &
CCM_PCDR_PCLK2_MASK) >> CCM_PCDR_PCLK2_OFFSET) + 1);
}
static unsigned long perclk2_round_rate(struct clk *clk, unsigned long rate)
{
return _clk_simple_round_rate(clk, rate, 16);
}
static int perclk2_set_rate(struct clk *clk, unsigned long rate)
{
unsigned int div;
unsigned int reg;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
div = parent_rate / rate;
if (div > 16 || div < 1 || ((parent_rate / div) != rate))
return -EINVAL;
div--;
reg = __raw_readl(CCM_PCDR);
reg &= ~CCM_PCDR_PCLK2_MASK;
reg |= div << CCM_PCDR_PCLK2_OFFSET;
__raw_writel(reg, CCM_PCDR);
return 0;
}
/*
* get peripheral clock 3 ( SSI )
*/
static unsigned long perclk3_get_rate(struct clk *clk)
{
return clk_get_rate(clk->parent) / (((__raw_readl(CCM_PCDR) &
CCM_PCDR_PCLK3_MASK) >> CCM_PCDR_PCLK3_OFFSET) + 1);
}
static unsigned long perclk3_round_rate(struct clk *clk, unsigned long rate)
{
return _clk_simple_round_rate(clk, rate, 128);
}
static int perclk3_set_rate(struct clk *clk, unsigned long rate)
{
unsigned int div;
unsigned int reg;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
div = parent_rate / rate;
if (div > 128 || div < 1 || ((parent_rate / div) != rate))
return -EINVAL;
div--;
reg = __raw_readl(CCM_PCDR);
reg &= ~CCM_PCDR_PCLK3_MASK;
reg |= div << CCM_PCDR_PCLK3_OFFSET;
__raw_writel(reg, CCM_PCDR);
return 0;
}
static struct clk perclk[] = {
{
.id = 0,
.parent = &system_clk,
.get_rate = perclk1_get_rate,
.round_rate = perclk1_round_rate,
.set_rate = perclk1_set_rate,
}, {
.id = 1,
.parent = &system_clk,
.get_rate = perclk2_get_rate,
.round_rate = perclk2_round_rate,
.set_rate = perclk2_set_rate,
}, {
.id = 2,
.parent = &system_clk,
.get_rate = perclk3_get_rate,
.round_rate = perclk3_round_rate,
.set_rate = perclk3_set_rate,
}
};
static const struct clk *clko_clocks[] = {
&perclk[0],
&hclk,
&clk48m,
&clk16m,
&prem_clk,
&fclk,
};
static int clko_set_parent(struct clk *clk, struct clk *parent)
{
int i;
unsigned int reg;
i = _clk_can_use_parent(clko_clocks, ARRAY_SIZE(clko_clocks), parent);
if (i < 0)
return i;
reg = __raw_readl(CCM_CSCR) & ~CCM_CSCR_CLKO_MASK;
reg |= i << CCM_CSCR_CLKO_OFFSET;
__raw_writel(reg, CCM_CSCR);
if (clko_clocks[i]->set_rate && clko_clocks[i]->round_rate) {
clk->set_rate = _clk_parent_set_rate;
clk->round_rate = _clk_parent_round_rate;
} else {
clk->set_rate = NULL;
clk->round_rate = NULL;
}
return 0;
}
static struct clk clko_clk = {
.set_parent = clko_set_parent,
};
static struct clk dma_clk = {
.parent = &hclk,
.round_rate = _clk_parent_round_rate,
.set_rate = _clk_parent_set_rate,
.enable = _clk_enable,
.enable_reg = SCM_GCCR,
.enable_shift = SCM_GCCR_DMA_CLK_EN_OFFSET,
.disable = _clk_disable,
};
static struct clk csi_clk = {
.parent = &hclk,
.round_rate = _clk_parent_round_rate,
.set_rate = _clk_parent_set_rate,
.enable = _clk_enable,
.enable_reg = SCM_GCCR,
.enable_shift = SCM_GCCR_CSI_CLK_EN_OFFSET,
.disable = _clk_disable,
};
static struct clk mma_clk = {
.parent = &hclk,
.round_rate = _clk_parent_round_rate,
.set_rate = _clk_parent_set_rate,
.enable = _clk_enable,
.enable_reg = SCM_GCCR,
.enable_shift = SCM_GCCR_MMA_CLK_EN_OFFSET,
.disable = _clk_disable,
};
static struct clk usbd_clk = {
.parent = &clk48m,
.round_rate = _clk_parent_round_rate,
.set_rate = _clk_parent_set_rate,
.enable = _clk_enable,
.enable_reg = SCM_GCCR,
.enable_shift = SCM_GCCR_USBD_CLK_EN_OFFSET,
.disable = _clk_disable,
};
static struct clk gpt_clk = {
.parent = &perclk[0],
.round_rate = _clk_parent_round_rate,
.set_rate = _clk_parent_set_rate,
};
static struct clk uart_clk = {
.parent = &perclk[0],
.round_rate = _clk_parent_round_rate,
.set_rate = _clk_parent_set_rate,
};
static struct clk i2c_clk = {
.parent = &hclk,
.round_rate = _clk_parent_round_rate,
.set_rate = _clk_parent_set_rate,
};
static struct clk spi_clk = {
.parent = &perclk[1],
.round_rate = _clk_parent_round_rate,
.set_rate = _clk_parent_set_rate,
};
static struct clk sdhc_clk = {
.parent = &perclk[1],
.round_rate = _clk_parent_round_rate,
.set_rate = _clk_parent_set_rate,
};
static struct clk lcdc_clk = {
.parent = &perclk[1],
.round_rate = _clk_parent_round_rate,
.set_rate = _clk_parent_set_rate,
};
static struct clk mshc_clk = {
.parent = &hclk,
.round_rate = _clk_parent_round_rate,
.set_rate = _clk_parent_set_rate,
};
static struct clk ssi_clk = {
.parent = &perclk[2],
.round_rate = _clk_parent_round_rate,
.set_rate = _clk_parent_set_rate,
};
static struct clk rtc_clk = {
.parent = &clk32,
};
#define _REGISTER_CLOCK(d, n, c) \
{ \
.dev_id = d, \
.con_id = n, \
.clk = &c, \
},
static struct clk_lookup lookups[] __initdata = {
_REGISTER_CLOCK(NULL, "dma", dma_clk)
_REGISTER_CLOCK("mx1-camera.0", NULL, csi_clk)
_REGISTER_CLOCK(NULL, "mma", mma_clk)
_REGISTER_CLOCK("imx_udc.0", NULL, usbd_clk)
_REGISTER_CLOCK(NULL, "gpt", gpt_clk)
_REGISTER_CLOCK("imx1-uart.0", NULL, uart_clk)
_REGISTER_CLOCK("imx1-uart.1", NULL, uart_clk)
_REGISTER_CLOCK("imx1-uart.2", NULL, uart_clk)
_REGISTER_CLOCK("imx-i2c.0", NULL, i2c_clk)
_REGISTER_CLOCK("imx1-cspi.0", NULL, spi_clk)
_REGISTER_CLOCK("imx1-cspi.1", NULL, spi_clk)
_REGISTER_CLOCK("imx-mmc.0", NULL, sdhc_clk)
_REGISTER_CLOCK("imx-fb.0", NULL, lcdc_clk)
_REGISTER_CLOCK(NULL, "mshc", mshc_clk)
_REGISTER_CLOCK(NULL, "ssi", ssi_clk)
_REGISTER_CLOCK("mxc_rtc.0", NULL, rtc_clk)
};
int __init mx1_clocks_init(unsigned long fref)
{
unsigned int reg;
/* disable clocks we are able to */
__raw_writel(0, SCM_GCCR);
clk32_rate = fref;
reg = __raw_readl(CCM_CSCR);
/* detect clock reference for system PLL */
if (reg & CCM_CSCR_SYSTEM_SEL) {
prem_clk.parent = &clk16m;
} else {
/* ensure that oscillator is disabled */
reg &= ~(1 << CCM_CSCR_OSC_EN_SHIFT);
__raw_writel(reg, CCM_CSCR);
prem_clk.parent = &clk32_premult;
}
/* detect reference for CLKO */
reg = (reg & CCM_CSCR_CLKO_MASK) >> CCM_CSCR_CLKO_OFFSET;
clko_clk.parent = (struct clk *)clko_clocks[reg];
clkdev_add_table(lookups, ARRAY_SIZE(lookups));
clk_enable(&hclk);
clk_enable(&fclk);
mxc_timer_init(&gpt_clk, MX1_IO_ADDRESS(MX1_TIM1_BASE_ADDR),
MX1_TIM1_INT);
return 0;
}
此差异已折叠。
/*
* Copyright (C) 2009 by Sascha Hauer, Pengutronix
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/clkdev.h>
#include <mach/clock.h>
#include <mach/hardware.h>
#include <mach/common.h>
#include <mach/mx25.h>
#define CRM_BASE MX25_IO_ADDRESS(MX25_CRM_BASE_ADDR)
#define CCM_MPCTL 0x00
#define CCM_UPCTL 0x04
#define CCM_CCTL 0x08
#define CCM_CGCR0 0x0C
#define CCM_CGCR1 0x10
#define CCM_CGCR2 0x14
#define CCM_PCDR0 0x18
#define CCM_PCDR1 0x1C
#define CCM_PCDR2 0x20
#define CCM_PCDR3 0x24
#define CCM_RCSR 0x28
#define CCM_CRDR 0x2C
#define CCM_DCVR0 0x30
#define CCM_DCVR1 0x34
#define CCM_DCVR2 0x38
#define CCM_DCVR3 0x3c
#define CCM_LTR0 0x40
#define CCM_LTR1 0x44
#define CCM_LTR2 0x48
#define CCM_LTR3 0x4c
static unsigned long get_rate_mpll(void)
{
ulong mpctl = __raw_readl(CRM_BASE + CCM_MPCTL);
return mxc_decode_pll(mpctl, 24000000);
}
static unsigned long get_rate_upll(void)
{
ulong mpctl = __raw_readl(CRM_BASE + CCM_UPCTL);
return mxc_decode_pll(mpctl, 24000000);
}
unsigned long get_rate_arm(struct clk *clk)
{
unsigned long cctl = readl(CRM_BASE + CCM_CCTL);
unsigned long rate = get_rate_mpll();
if (cctl & (1 << 14))
rate = (rate * 3) >> 2;
return rate / ((cctl >> 30) + 1);
}
static unsigned long get_rate_ahb(struct clk *clk)
{
unsigned long cctl = readl(CRM_BASE + CCM_CCTL);
return get_rate_arm(NULL) / (((cctl >> 28) & 0x3) + 1);
}
static unsigned long get_rate_ipg(struct clk *clk)
{
return get_rate_ahb(NULL) >> 1;
}
static unsigned long get_rate_per(int per)
{
unsigned long ofs = (per & 0x3) * 8;
unsigned long reg = per & ~0x3;
unsigned long val = (readl(CRM_BASE + CCM_PCDR0 + reg) >> ofs) & 0x3f;
unsigned long fref;
if (readl(CRM_BASE + 0x64) & (1 << per))
fref = get_rate_upll();
else
fref = get_rate_ahb(NULL);
return fref / (val + 1);
}
static unsigned long get_rate_uart(struct clk *clk)
{
return get_rate_per(15);
}
static unsigned long get_rate_ssi2(struct clk *clk)
{
return get_rate_per(14);
}
static unsigned long get_rate_ssi1(struct clk *clk)
{
return get_rate_per(13);
}
static unsigned long get_rate_i2c(struct clk *clk)
{
return get_rate_per(6);
}
static unsigned long get_rate_nfc(struct clk *clk)
{
return get_rate_per(8);
}
static unsigned long get_rate_gpt(struct clk *clk)
{
return get_rate_per(5);
}
static unsigned long get_rate_lcdc(struct clk *clk)
{
return get_rate_per(7);
}
static unsigned long get_rate_esdhc1(struct clk *clk)
{
return get_rate_per(3);
}
static unsigned long get_rate_esdhc2(struct clk *clk)
{
return get_rate_per(4);
}
static unsigned long get_rate_csi(struct clk *clk)
{
return get_rate_per(0);
}
static unsigned long get_rate_otg(struct clk *clk)
{
unsigned long cctl = readl(CRM_BASE + CCM_CCTL);
unsigned long rate = get_rate_upll();
return (cctl & (1 << 23)) ? 0 : rate / ((0x3F & (cctl >> 16)) + 1);
}
static int clk_cgcr_enable(struct clk *clk)
{
u32 reg;
reg = __raw_readl(clk->enable_reg);
reg |= 1 << clk->enable_shift;
__raw_writel(reg, clk->enable_reg);
return 0;
}
static void clk_cgcr_disable(struct clk *clk)
{
u32 reg;
reg = __raw_readl(clk->enable_reg);
reg &= ~(1 << clk->enable_shift);
__raw_writel(reg, clk->enable_reg);
}
#define DEFINE_CLOCK(name, i, er, es, gr, sr, s) \
static struct clk name = { \
.id = i, \
.enable_reg = CRM_BASE + er, \
.enable_shift = es, \
.get_rate = gr, \
.set_rate = sr, \
.enable = clk_cgcr_enable, \
.disable = clk_cgcr_disable, \
.secondary = s, \
}
/*
* Note: the following IPG clock gating bits are wrongly marked "Reserved" in
* the i.MX25 Reference Manual Rev 1, table 15-13. The information below is
* taken from the Freescale released BSP.
*
* bit reg offset clock
*
* 0 CGCR1 0 AUDMUX
* 12 CGCR1 12 ESAI
* 16 CGCR1 16 GPIO1
* 17 CGCR1 17 GPIO2
* 18 CGCR1 18 GPIO3
* 23 CGCR1 23 I2C1
* 24 CGCR1 24 I2C2
* 25 CGCR1 25 I2C3
* 27 CGCR1 27 IOMUXC
* 28 CGCR1 28 KPP
* 30 CGCR1 30 OWIRE
* 36 CGCR2 4 RTIC
* 51 CGCR2 19 WDOG
*/
DEFINE_CLOCK(gpt_clk, 0, CCM_CGCR0, 5, get_rate_gpt, NULL, NULL);
DEFINE_CLOCK(uart_per_clk, 0, CCM_CGCR0, 15, get_rate_uart, NULL, NULL);
DEFINE_CLOCK(ssi1_per_clk, 0, CCM_CGCR0, 13, get_rate_ipg, NULL, NULL);
DEFINE_CLOCK(ssi2_per_clk, 0, CCM_CGCR0, 14, get_rate_ipg, NULL, NULL);
DEFINE_CLOCK(cspi1_clk, 0, CCM_CGCR1, 5, get_rate_ipg, NULL, NULL);
DEFINE_CLOCK(cspi2_clk, 0, CCM_CGCR1, 6, get_rate_ipg, NULL, NULL);
DEFINE_CLOCK(cspi3_clk, 0, CCM_CGCR1, 7, get_rate_ipg, NULL, NULL);
DEFINE_CLOCK(esdhc1_ahb_clk, 0, CCM_CGCR0, 21, get_rate_esdhc1, NULL, NULL);
DEFINE_CLOCK(esdhc1_per_clk, 0, CCM_CGCR0, 3, get_rate_esdhc1, NULL,
&esdhc1_ahb_clk);
DEFINE_CLOCK(esdhc2_ahb_clk, 0, CCM_CGCR0, 22, get_rate_esdhc2, NULL, NULL);
DEFINE_CLOCK(esdhc2_per_clk, 0, CCM_CGCR0, 4, get_rate_esdhc2, NULL,
&esdhc2_ahb_clk);
DEFINE_CLOCK(sdma_ahb_clk, 0, CCM_CGCR0, 26, NULL, NULL, NULL);
DEFINE_CLOCK(fec_ahb_clk, 0, CCM_CGCR0, 23, NULL, NULL, NULL);
DEFINE_CLOCK(lcdc_ahb_clk, 0, CCM_CGCR0, 24, NULL, NULL, NULL);
DEFINE_CLOCK(lcdc_per_clk, 0, CCM_CGCR0, 7, NULL, NULL, &lcdc_ahb_clk);
DEFINE_CLOCK(csi_ahb_clk, 0, CCM_CGCR0, 18, get_rate_csi, NULL, NULL);
DEFINE_CLOCK(csi_per_clk, 0, CCM_CGCR0, 0, get_rate_csi, NULL, &csi_ahb_clk);
DEFINE_CLOCK(uart1_clk, 0, CCM_CGCR2, 14, get_rate_uart, NULL, &uart_per_clk);
DEFINE_CLOCK(uart2_clk, 0, CCM_CGCR2, 15, get_rate_uart, NULL, &uart_per_clk);
DEFINE_CLOCK(uart3_clk, 0, CCM_CGCR2, 16, get_rate_uart, NULL, &uart_per_clk);
DEFINE_CLOCK(uart4_clk, 0, CCM_CGCR2, 17, get_rate_uart, NULL, &uart_per_clk);
DEFINE_CLOCK(uart5_clk, 0, CCM_CGCR2, 18, get_rate_uart, NULL, &uart_per_clk);
DEFINE_CLOCK(nfc_clk, 0, CCM_CGCR0, 8, get_rate_nfc, NULL, NULL);
DEFINE_CLOCK(usbotg_clk, 0, CCM_CGCR0, 28, get_rate_otg, NULL, NULL);
DEFINE_CLOCK(pwm1_clk, 0, CCM_CGCR1, 31, get_rate_ipg, NULL, NULL);
DEFINE_CLOCK(pwm2_clk, 0, CCM_CGCR2, 0, get_rate_ipg, NULL, NULL);
DEFINE_CLOCK(pwm3_clk, 0, CCM_CGCR2, 1, get_rate_ipg, NULL, NULL);
DEFINE_CLOCK(pwm4_clk, 0, CCM_CGCR2, 2, get_rate_ipg, NULL, NULL);
DEFINE_CLOCK(kpp_clk, 0, CCM_CGCR1, 28, get_rate_ipg, NULL, NULL);
DEFINE_CLOCK(tsc_clk, 0, CCM_CGCR2, 13, get_rate_ipg, NULL, NULL);
DEFINE_CLOCK(i2c_clk, 0, CCM_CGCR0, 6, get_rate_i2c, NULL, NULL);
DEFINE_CLOCK(fec_clk, 0, CCM_CGCR1, 15, get_rate_ipg, NULL, &fec_ahb_clk);
DEFINE_CLOCK(dryice_clk, 0, CCM_CGCR1, 8, get_rate_ipg, NULL, NULL);
DEFINE_CLOCK(lcdc_clk, 0, CCM_CGCR1, 29, get_rate_lcdc, NULL, &lcdc_per_clk);
DEFINE_CLOCK(wdt_clk, 0, CCM_CGCR2, 19, get_rate_ipg, NULL, NULL);
DEFINE_CLOCK(ssi1_clk, 0, CCM_CGCR2, 11, get_rate_ssi1, NULL, &ssi1_per_clk);
DEFINE_CLOCK(ssi2_clk, 1, CCM_CGCR2, 12, get_rate_ssi2, NULL, &ssi2_per_clk);
DEFINE_CLOCK(sdma_clk, 0, CCM_CGCR2, 6, get_rate_ipg, NULL, &sdma_ahb_clk);
DEFINE_CLOCK(esdhc1_clk, 0, CCM_CGCR1, 13, get_rate_esdhc1, NULL,
&esdhc1_per_clk);
DEFINE_CLOCK(esdhc2_clk, 1, CCM_CGCR1, 14, get_rate_esdhc2, NULL,
&esdhc2_per_clk);
DEFINE_CLOCK(audmux_clk, 0, CCM_CGCR1, 0, NULL, NULL, NULL);
DEFINE_CLOCK(csi_clk, 0, CCM_CGCR1, 4, get_rate_csi, NULL, &csi_per_clk);
DEFINE_CLOCK(can1_clk, 0, CCM_CGCR1, 2, get_rate_ipg, NULL, NULL);
DEFINE_CLOCK(can2_clk, 1, CCM_CGCR1, 3, get_rate_ipg, NULL, NULL);
DEFINE_CLOCK(iim_clk, 0, CCM_CGCR1, 26, NULL, NULL, NULL);
#define _REGISTER_CLOCK(d, n, c) \
{ \
.dev_id = d, \
.con_id = n, \
.clk = &c, \
},
static struct clk_lookup lookups[] = {
/* i.mx25 has the i.mx21 type uart */
_REGISTER_CLOCK("imx21-uart.0", NULL, uart1_clk)
_REGISTER_CLOCK("imx21-uart.1", NULL, uart2_clk)
_REGISTER_CLOCK("imx21-uart.2", NULL, uart3_clk)
_REGISTER_CLOCK("imx21-uart.3", NULL, uart4_clk)
_REGISTER_CLOCK("imx21-uart.4", NULL, uart5_clk)
_REGISTER_CLOCK("mxc-ehci.0", "usb", usbotg_clk)
_REGISTER_CLOCK("mxc-ehci.1", "usb", usbotg_clk)
_REGISTER_CLOCK("mxc-ehci.2", "usb", usbotg_clk)
_REGISTER_CLOCK("fsl-usb2-udc", "usb", usbotg_clk)
_REGISTER_CLOCK("mxc_nand.0", NULL, nfc_clk)
/* i.mx25 has the i.mx35 type cspi */
_REGISTER_CLOCK("imx35-cspi.0", NULL, cspi1_clk)
_REGISTER_CLOCK("imx35-cspi.1", NULL, cspi2_clk)
_REGISTER_CLOCK("imx35-cspi.2", NULL, cspi3_clk)
_REGISTER_CLOCK("mxc_pwm.0", NULL, pwm1_clk)
_REGISTER_CLOCK("mxc_pwm.1", NULL, pwm2_clk)
_REGISTER_CLOCK("mxc_pwm.2", NULL, pwm3_clk)
_REGISTER_CLOCK("mxc_pwm.3", NULL, pwm4_clk)
_REGISTER_CLOCK("imx-keypad", NULL, kpp_clk)
_REGISTER_CLOCK("mx25-adc", NULL, tsc_clk)
_REGISTER_CLOCK("imx-i2c.0", NULL, i2c_clk)
_REGISTER_CLOCK("imx-i2c.1", NULL, i2c_clk)
_REGISTER_CLOCK("imx-i2c.2", NULL, i2c_clk)
_REGISTER_CLOCK("imx25-fec.0", NULL, fec_clk)
_REGISTER_CLOCK("imxdi_rtc.0", NULL, dryice_clk)
_REGISTER_CLOCK("imx-fb.0", NULL, lcdc_clk)
_REGISTER_CLOCK("imx2-wdt.0", NULL, wdt_clk)
_REGISTER_CLOCK("imx-ssi.0", NULL, ssi1_clk)
_REGISTER_CLOCK("imx-ssi.1", NULL, ssi2_clk)
_REGISTER_CLOCK("sdhci-esdhc-imx25.0", NULL, esdhc1_clk)
_REGISTER_CLOCK("sdhci-esdhc-imx25.1", NULL, esdhc2_clk)
_REGISTER_CLOCK("mx2-camera.0", NULL, csi_clk)
_REGISTER_CLOCK(NULL, "audmux", audmux_clk)
_REGISTER_CLOCK("flexcan.0", NULL, can1_clk)
_REGISTER_CLOCK("flexcan.1", NULL, can2_clk)
/* i.mx25 has the i.mx35 type sdma */
_REGISTER_CLOCK("imx35-sdma", NULL, sdma_clk)
_REGISTER_CLOCK(NULL, "iim", iim_clk)
};
int __init mx25_clocks_init(void)
{
clkdev_add_table(lookups, ARRAY_SIZE(lookups));
/* Turn off all clocks except the ones we need to survive, namely:
* EMI, GPIO1-3 (CCM_CGCR1[18:16]), GPT1, IOMUXC (CCM_CGCR1[27]), IIM,
* SCC
*/
__raw_writel((1 << 19), CRM_BASE + CCM_CGCR0);
__raw_writel((0xf << 16) | (3 << 26), CRM_BASE + CCM_CGCR1);
__raw_writel((1 << 5), CRM_BASE + CCM_CGCR2);
#if defined(CONFIG_DEBUG_LL) && !defined(CONFIG_DEBUG_ICEDCC)
clk_enable(&uart1_clk);
#endif
/* Clock source for lcdc and csi is upll */
__raw_writel(__raw_readl(CRM_BASE+0x64) | (1 << 7) | (1 << 0),
CRM_BASE + 0x64);
/* Clock source for gpt is ahb_div */
__raw_writel(__raw_readl(CRM_BASE+0x64) & ~(1 << 5), CRM_BASE + 0x64);
clk_enable(&iim_clk);
imx_print_silicon_rev("i.MX25", mx25_revision());
clk_disable(&iim_clk);
mxc_timer_init(&gpt_clk, MX25_IO_ADDRESS(MX25_GPT1_BASE_ADDR), 54);
return 0;
}
此差异已折叠。
/*
* Copyright 2005-2007 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright (C) 2008 by Sascha Hauer <kernel@pengutronix.de>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/clkdev.h>
#include <asm/div64.h>
#include <mach/clock.h>
#include <mach/hardware.h>
#include <mach/mx31.h>
#include <mach/common.h>
#include "crmregs-imx3.h"
#define PRE_DIV_MIN_FREQ 10000000 /* Minimum Frequency after Predivider */
static void __calc_pre_post_dividers(u32 div, u32 *pre, u32 *post)
{
u32 min_pre, temp_pre, old_err, err;
if (div >= 512) {
*pre = 8;
*post = 64;
} else if (div >= 64) {
min_pre = (div - 1) / 64 + 1;
old_err = 8;
for (temp_pre = 8; temp_pre >= min_pre; temp_pre--) {
err = div % temp_pre;
if (err == 0) {
*pre = temp_pre;
break;
}
err = temp_pre - err;
if (err < old_err) {
old_err = err;
*pre = temp_pre;
}
}
*post = (div + *pre - 1) / *pre;
} else if (div <= 8) {
*pre = div;
*post = 1;
} else {
*pre = 1;
*post = div;
}
}
static struct clk mcu_pll_clk;
static struct clk serial_pll_clk;
static struct clk ipg_clk;
static struct clk ckih_clk;
static int cgr_enable(struct clk *clk)
{
u32 reg;
if (!clk->enable_reg)
return 0;
reg = __raw_readl(clk->enable_reg);
reg |= 3 << clk->enable_shift;
__raw_writel(reg, clk->enable_reg);
return 0;
}
static void cgr_disable(struct clk *clk)
{
u32 reg;
if (!clk->enable_reg)
return;
reg = __raw_readl(clk->enable_reg);
reg &= ~(3 << clk->enable_shift);
/* special case for EMI clock */
if (clk->enable_reg == MXC_CCM_CGR2 && clk->enable_shift == 8)
reg |= (1 << clk->enable_shift);
__raw_writel(reg, clk->enable_reg);
}
static unsigned long pll_ref_get_rate(void)
{
unsigned long ccmr;
unsigned int prcs;
ccmr = __raw_readl(MXC_CCM_CCMR);
prcs = (ccmr & MXC_CCM_CCMR_PRCS_MASK) >> MXC_CCM_CCMR_PRCS_OFFSET;
if (prcs == 0x1)
return CKIL_CLK_FREQ * 1024;
else
return clk_get_rate(&ckih_clk);
}
static unsigned long usb_pll_get_rate(struct clk *clk)
{
unsigned long reg;
reg = __raw_readl(MXC_CCM_UPCTL);
return mxc_decode_pll(reg, pll_ref_get_rate());
}
static unsigned long serial_pll_get_rate(struct clk *clk)
{
unsigned long reg;
reg = __raw_readl(MXC_CCM_SRPCTL);
return mxc_decode_pll(reg, pll_ref_get_rate());
}
static unsigned long mcu_pll_get_rate(struct clk *clk)
{
unsigned long reg, ccmr;
ccmr = __raw_readl(MXC_CCM_CCMR);
if (!(ccmr & MXC_CCM_CCMR_MPE) || (ccmr & MXC_CCM_CCMR_MDS))
return clk_get_rate(&ckih_clk);
reg = __raw_readl(MXC_CCM_MPCTL);
return mxc_decode_pll(reg, pll_ref_get_rate());
}
static int usb_pll_enable(struct clk *clk)
{
u32 reg;
reg = __raw_readl(MXC_CCM_CCMR);
reg |= MXC_CCM_CCMR_UPE;
__raw_writel(reg, MXC_CCM_CCMR);
/* No lock bit on MX31, so using max time from spec */
udelay(80);
return 0;
}
static void usb_pll_disable(struct clk *clk)
{
u32 reg;
reg = __raw_readl(MXC_CCM_CCMR);
reg &= ~MXC_CCM_CCMR_UPE;
__raw_writel(reg, MXC_CCM_CCMR);
}
static int serial_pll_enable(struct clk *clk)
{
u32 reg;
reg = __raw_readl(MXC_CCM_CCMR);
reg |= MXC_CCM_CCMR_SPE;
__raw_writel(reg, MXC_CCM_CCMR);
/* No lock bit on MX31, so using max time from spec */
udelay(80);
return 0;
}
static void serial_pll_disable(struct clk *clk)
{
u32 reg;
reg = __raw_readl(MXC_CCM_CCMR);
reg &= ~MXC_CCM_CCMR_SPE;
__raw_writel(reg, MXC_CCM_CCMR);
}
#define PDR0(mask, off) ((__raw_readl(MXC_CCM_PDR0) & mask) >> off)
#define PDR1(mask, off) ((__raw_readl(MXC_CCM_PDR1) & mask) >> off)
#define PDR2(mask, off) ((__raw_readl(MXC_CCM_PDR2) & mask) >> off)
static unsigned long mcu_main_get_rate(struct clk *clk)
{
u32 pmcr0 = __raw_readl(MXC_CCM_PMCR0);
if ((pmcr0 & MXC_CCM_PMCR0_DFSUP1) == MXC_CCM_PMCR0_DFSUP1_SPLL)
return clk_get_rate(&serial_pll_clk);
else
return clk_get_rate(&mcu_pll_clk);
}
static unsigned long ahb_get_rate(struct clk *clk)
{
unsigned long max_pdf;
max_pdf = PDR0(MXC_CCM_PDR0_MAX_PODF_MASK,
MXC_CCM_PDR0_MAX_PODF_OFFSET);
return clk_get_rate(clk->parent) / (max_pdf + 1);
}
static unsigned long ipg_get_rate(struct clk *clk)
{
unsigned long ipg_pdf;
ipg_pdf = PDR0(MXC_CCM_PDR0_IPG_PODF_MASK,
MXC_CCM_PDR0_IPG_PODF_OFFSET);
return clk_get_rate(clk->parent) / (ipg_pdf + 1);
}
static unsigned long nfc_get_rate(struct clk *clk)
{
unsigned long nfc_pdf;
nfc_pdf = PDR0(MXC_CCM_PDR0_NFC_PODF_MASK,
MXC_CCM_PDR0_NFC_PODF_OFFSET);
return clk_get_rate(clk->parent) / (nfc_pdf + 1);
}
static unsigned long hsp_get_rate(struct clk *clk)
{
unsigned long hsp_pdf;
hsp_pdf = PDR0(MXC_CCM_PDR0_HSP_PODF_MASK,
MXC_CCM_PDR0_HSP_PODF_OFFSET);
return clk_get_rate(clk->parent) / (hsp_pdf + 1);
}
static unsigned long usb_get_rate(struct clk *clk)
{
unsigned long usb_pdf, usb_prepdf;
usb_pdf = PDR1(MXC_CCM_PDR1_USB_PODF_MASK,
MXC_CCM_PDR1_USB_PODF_OFFSET);
usb_prepdf = PDR1(MXC_CCM_PDR1_USB_PRDF_MASK,
MXC_CCM_PDR1_USB_PRDF_OFFSET);
return clk_get_rate(clk->parent) / (usb_prepdf + 1) / (usb_pdf + 1);
}
static unsigned long csi_get_rate(struct clk *clk)
{
u32 reg, pre, post;
reg = __raw_readl(MXC_CCM_PDR0);
pre = (reg & MXC_CCM_PDR0_CSI_PRDF_MASK) >>
MXC_CCM_PDR0_CSI_PRDF_OFFSET;
pre++;
post = (reg & MXC_CCM_PDR0_CSI_PODF_MASK) >>
MXC_CCM_PDR0_CSI_PODF_OFFSET;
post++;
return clk_get_rate(clk->parent) / (pre * post);
}
static unsigned long csi_round_rate(struct clk *clk, unsigned long rate)
{
u32 pre, post, parent = clk_get_rate(clk->parent);
u32 div = parent / rate;
if (parent % rate)
div++;
__calc_pre_post_dividers(div, &pre, &post);
return parent / (pre * post);
}
static int csi_set_rate(struct clk *clk, unsigned long rate)
{
u32 reg, div, pre, post, parent = clk_get_rate(clk->parent);
div = parent / rate;
if ((parent / div) != rate)
return -EINVAL;
__calc_pre_post_dividers(div, &pre, &post);
/* Set CSI clock divider */
reg = __raw_readl(MXC_CCM_PDR0) &
~(MXC_CCM_PDR0_CSI_PODF_MASK | MXC_CCM_PDR0_CSI_PRDF_MASK);
reg |= (post - 1) << MXC_CCM_PDR0_CSI_PODF_OFFSET;
reg |= (pre - 1) << MXC_CCM_PDR0_CSI_PRDF_OFFSET;
__raw_writel(reg, MXC_CCM_PDR0);
return 0;
}
static unsigned long ssi1_get_rate(struct clk *clk)
{
unsigned long ssi1_pdf, ssi1_prepdf;
ssi1_pdf = PDR1(MXC_CCM_PDR1_SSI1_PODF_MASK,
MXC_CCM_PDR1_SSI1_PODF_OFFSET);
ssi1_prepdf = PDR1(MXC_CCM_PDR1_SSI1_PRE_PODF_MASK,
MXC_CCM_PDR1_SSI1_PRE_PODF_OFFSET);
return clk_get_rate(clk->parent) / (ssi1_prepdf + 1) / (ssi1_pdf + 1);
}
static unsigned long ssi2_get_rate(struct clk *clk)
{
unsigned long ssi2_pdf, ssi2_prepdf;
ssi2_pdf = PDR1(MXC_CCM_PDR1_SSI2_PODF_MASK,
MXC_CCM_PDR1_SSI2_PODF_OFFSET);
ssi2_prepdf = PDR1(MXC_CCM_PDR1_SSI2_PRE_PODF_MASK,
MXC_CCM_PDR1_SSI2_PRE_PODF_OFFSET);
return clk_get_rate(clk->parent) / (ssi2_prepdf + 1) / (ssi2_pdf + 1);
}
static unsigned long firi_get_rate(struct clk *clk)
{
unsigned long firi_pdf, firi_prepdf;
firi_pdf = PDR1(MXC_CCM_PDR1_FIRI_PODF_MASK,
MXC_CCM_PDR1_FIRI_PODF_OFFSET);
firi_prepdf = PDR1(MXC_CCM_PDR1_FIRI_PRE_PODF_MASK,
MXC_CCM_PDR1_FIRI_PRE_PODF_OFFSET);
return clk_get_rate(clk->parent) / (firi_prepdf + 1) / (firi_pdf + 1);
}
static unsigned long firi_round_rate(struct clk *clk, unsigned long rate)
{
u32 pre, post;
u32 parent = clk_get_rate(clk->parent);
u32 div = parent / rate;
if (parent % rate)
div++;
__calc_pre_post_dividers(div, &pre, &post);
return parent / (pre * post);
}
static int firi_set_rate(struct clk *clk, unsigned long rate)
{
u32 reg, div, pre, post, parent = clk_get_rate(clk->parent);
div = parent / rate;
if ((parent / div) != rate)
return -EINVAL;
__calc_pre_post_dividers(div, &pre, &post);
/* Set FIRI clock divider */
reg = __raw_readl(MXC_CCM_PDR1) &
~(MXC_CCM_PDR1_FIRI_PODF_MASK | MXC_CCM_PDR1_FIRI_PRE_PODF_MASK);
reg |= (pre - 1) << MXC_CCM_PDR1_FIRI_PRE_PODF_OFFSET;
reg |= (post - 1) << MXC_CCM_PDR1_FIRI_PODF_OFFSET;
__raw_writel(reg, MXC_CCM_PDR1);
return 0;
}
static unsigned long mbx_get_rate(struct clk *clk)
{
return clk_get_rate(clk->parent) / 2;
}
static unsigned long mstick1_get_rate(struct clk *clk)
{
unsigned long msti_pdf;
msti_pdf = PDR2(MXC_CCM_PDR2_MST1_PDF_MASK,
MXC_CCM_PDR2_MST1_PDF_OFFSET);
return clk_get_rate(clk->parent) / (msti_pdf + 1);
}
static unsigned long mstick2_get_rate(struct clk *clk)
{
unsigned long msti_pdf;
msti_pdf = PDR2(MXC_CCM_PDR2_MST2_PDF_MASK,
MXC_CCM_PDR2_MST2_PDF_OFFSET);
return clk_get_rate(clk->parent) / (msti_pdf + 1);
}
static unsigned long ckih_rate;
static unsigned long clk_ckih_get_rate(struct clk *clk)
{
return ckih_rate;
}
static unsigned long clk_ckil_get_rate(struct clk *clk)
{
return CKIL_CLK_FREQ;
}
static struct clk ckih_clk = {
.get_rate = clk_ckih_get_rate,
};
static struct clk mcu_pll_clk = {
.parent = &ckih_clk,
.get_rate = mcu_pll_get_rate,
};
static struct clk mcu_main_clk = {
.parent = &mcu_pll_clk,
.get_rate = mcu_main_get_rate,
};
static struct clk serial_pll_clk = {
.parent = &ckih_clk,
.get_rate = serial_pll_get_rate,
.enable = serial_pll_enable,
.disable = serial_pll_disable,
};
static struct clk usb_pll_clk = {
.parent = &ckih_clk,
.get_rate = usb_pll_get_rate,
.enable = usb_pll_enable,
.disable = usb_pll_disable,
};
static struct clk ahb_clk = {
.parent = &mcu_main_clk,
.get_rate = ahb_get_rate,
};
#define DEFINE_CLOCK(name, i, er, es, gr, s, p) \
static struct clk name = { \
.id = i, \
.enable_reg = er, \
.enable_shift = es, \
.get_rate = gr, \
.enable = cgr_enable, \
.disable = cgr_disable, \
.secondary = s, \
.parent = p, \
}
#define DEFINE_CLOCK1(name, i, er, es, getsetround, s, p) \
static struct clk name = { \
.id = i, \
.enable_reg = er, \
.enable_shift = es, \
.get_rate = getsetround##_get_rate, \
.set_rate = getsetround##_set_rate, \
.round_rate = getsetround##_round_rate, \
.enable = cgr_enable, \
.disable = cgr_disable, \
.secondary = s, \
.parent = p, \
}
DEFINE_CLOCK(perclk_clk, 0, NULL, 0, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(ckil_clk, 0, NULL, 0, clk_ckil_get_rate, NULL, NULL);
DEFINE_CLOCK(sdhc1_clk, 0, MXC_CCM_CGR0, 0, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(sdhc2_clk, 1, MXC_CCM_CGR0, 2, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(gpt_clk, 0, MXC_CCM_CGR0, 4, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(epit1_clk, 0, MXC_CCM_CGR0, 6, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(epit2_clk, 1, MXC_CCM_CGR0, 8, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(iim_clk, 0, MXC_CCM_CGR0, 10, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(pata_clk, 0, MXC_CCM_CGR0, 12, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(sdma_clk1, 0, MXC_CCM_CGR0, 14, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(cspi3_clk, 2, MXC_CCM_CGR0, 16, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(rng_clk, 0, MXC_CCM_CGR0, 18, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(uart1_clk, 0, MXC_CCM_CGR0, 20, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(uart2_clk, 1, MXC_CCM_CGR0, 22, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(ssi1_clk, 0, MXC_CCM_CGR0, 24, ssi1_get_rate, NULL, &serial_pll_clk);
DEFINE_CLOCK(i2c1_clk, 0, MXC_CCM_CGR0, 26, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(i2c2_clk, 1, MXC_CCM_CGR0, 28, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(i2c3_clk, 2, MXC_CCM_CGR0, 30, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(mpeg4_clk, 0, MXC_CCM_CGR1, 0, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(mstick1_clk, 0, MXC_CCM_CGR1, 2, mstick1_get_rate, NULL, &usb_pll_clk);
DEFINE_CLOCK(mstick2_clk, 1, MXC_CCM_CGR1, 4, mstick2_get_rate, NULL, &usb_pll_clk);
DEFINE_CLOCK1(csi_clk, 0, MXC_CCM_CGR1, 6, csi, NULL, &serial_pll_clk);
DEFINE_CLOCK(rtc_clk, 0, MXC_CCM_CGR1, 8, NULL, NULL, &ckil_clk);
DEFINE_CLOCK(wdog_clk, 0, MXC_CCM_CGR1, 10, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(pwm_clk, 0, MXC_CCM_CGR1, 12, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(usb_clk2, 0, MXC_CCM_CGR1, 18, usb_get_rate, NULL, &ahb_clk);
DEFINE_CLOCK(kpp_clk, 0, MXC_CCM_CGR1, 20, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(ipu_clk, 0, MXC_CCM_CGR1, 22, hsp_get_rate, NULL, &mcu_main_clk);
DEFINE_CLOCK(uart3_clk, 2, MXC_CCM_CGR1, 24, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(uart4_clk, 3, MXC_CCM_CGR1, 26, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(uart5_clk, 4, MXC_CCM_CGR1, 28, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(owire_clk, 0, MXC_CCM_CGR1, 30, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(ssi2_clk, 1, MXC_CCM_CGR2, 0, ssi2_get_rate, NULL, &serial_pll_clk);
DEFINE_CLOCK(cspi1_clk, 0, MXC_CCM_CGR2, 2, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(cspi2_clk, 1, MXC_CCM_CGR2, 4, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(mbx_clk, 0, MXC_CCM_CGR2, 6, mbx_get_rate, NULL, &ahb_clk);
DEFINE_CLOCK(emi_clk, 0, MXC_CCM_CGR2, 8, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(rtic_clk, 0, MXC_CCM_CGR2, 10, NULL, NULL, &ahb_clk);
DEFINE_CLOCK1(firi_clk, 0, MXC_CCM_CGR2, 12, firi, NULL, &usb_pll_clk);
DEFINE_CLOCK(sdma_clk2, 0, NULL, 0, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(usb_clk1, 0, NULL, 0, usb_get_rate, NULL, &usb_pll_clk);
DEFINE_CLOCK(nfc_clk, 0, NULL, 0, nfc_get_rate, NULL, &ahb_clk);
DEFINE_CLOCK(scc_clk, 0, NULL, 0, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(ipg_clk, 0, NULL, 0, ipg_get_rate, NULL, &ahb_clk);
#define _REGISTER_CLOCK(d, n, c) \
{ \
.dev_id = d, \
.con_id = n, \
.clk = &c, \
},
static struct clk_lookup lookups[] = {
_REGISTER_CLOCK(NULL, "emi", emi_clk)
_REGISTER_CLOCK("imx31-cspi.0", NULL, cspi1_clk)
_REGISTER_CLOCK("imx31-cspi.1", NULL, cspi2_clk)
_REGISTER_CLOCK("imx31-cspi.2", NULL, cspi3_clk)
_REGISTER_CLOCK(NULL, "gpt", gpt_clk)
_REGISTER_CLOCK(NULL, "pwm", pwm_clk)
_REGISTER_CLOCK("imx2-wdt.0", NULL, wdog_clk)
_REGISTER_CLOCK(NULL, "rtc", rtc_clk)
_REGISTER_CLOCK(NULL, "epit", epit1_clk)
_REGISTER_CLOCK(NULL, "epit", epit2_clk)
_REGISTER_CLOCK("mxc_nand.0", NULL, nfc_clk)
_REGISTER_CLOCK("ipu-core", NULL, ipu_clk)
_REGISTER_CLOCK("mx3_sdc_fb", NULL, ipu_clk)
_REGISTER_CLOCK(NULL, "kpp", kpp_clk)
_REGISTER_CLOCK("mxc-ehci.0", "usb", usb_clk1)
_REGISTER_CLOCK("mxc-ehci.0", "usb_ahb", usb_clk2)
_REGISTER_CLOCK("mxc-ehci.1", "usb", usb_clk1)
_REGISTER_CLOCK("mxc-ehci.1", "usb_ahb", usb_clk2)
_REGISTER_CLOCK("mxc-ehci.2", "usb", usb_clk1)
_REGISTER_CLOCK("mxc-ehci.2", "usb_ahb", usb_clk2)
_REGISTER_CLOCK("fsl-usb2-udc", "usb", usb_clk1)
_REGISTER_CLOCK("fsl-usb2-udc", "usb_ahb", usb_clk2)
_REGISTER_CLOCK("mx3-camera.0", NULL, csi_clk)
/* i.mx31 has the i.mx21 type uart */
_REGISTER_CLOCK("imx21-uart.0", NULL, uart1_clk)
_REGISTER_CLOCK("imx21-uart.1", NULL, uart2_clk)
_REGISTER_CLOCK("imx21-uart.2", NULL, uart3_clk)
_REGISTER_CLOCK("imx21-uart.3", NULL, uart4_clk)
_REGISTER_CLOCK("imx21-uart.4", NULL, uart5_clk)
_REGISTER_CLOCK("imx-i2c.0", NULL, i2c1_clk)
_REGISTER_CLOCK("imx-i2c.1", NULL, i2c2_clk)
_REGISTER_CLOCK("imx-i2c.2", NULL, i2c3_clk)
_REGISTER_CLOCK("mxc_w1.0", NULL, owire_clk)
_REGISTER_CLOCK("mxc-mmc.0", NULL, sdhc1_clk)
_REGISTER_CLOCK("mxc-mmc.1", NULL, sdhc2_clk)
_REGISTER_CLOCK("imx-ssi.0", NULL, ssi1_clk)
_REGISTER_CLOCK("imx-ssi.1", NULL, ssi2_clk)
_REGISTER_CLOCK(NULL, "firi", firi_clk)
_REGISTER_CLOCK("pata_imx", NULL, pata_clk)
_REGISTER_CLOCK(NULL, "rtic", rtic_clk)
_REGISTER_CLOCK(NULL, "rng", rng_clk)
_REGISTER_CLOCK("imx31-sdma", NULL, sdma_clk1)
_REGISTER_CLOCK(NULL, "sdma_ipg", sdma_clk2)
_REGISTER_CLOCK(NULL, "mstick", mstick1_clk)
_REGISTER_CLOCK(NULL, "mstick", mstick2_clk)
_REGISTER_CLOCK(NULL, "scc", scc_clk)
_REGISTER_CLOCK(NULL, "iim", iim_clk)
_REGISTER_CLOCK(NULL, "mpeg4", mpeg4_clk)
_REGISTER_CLOCK(NULL, "mbx", mbx_clk)
};
int __init mx31_clocks_init(unsigned long fref)
{
u32 reg;
ckih_rate = fref;
clkdev_add_table(lookups, ARRAY_SIZE(lookups));
/* change the csi_clk parent if necessary */
reg = __raw_readl(MXC_CCM_CCMR);
if (!(reg & MXC_CCM_CCMR_CSCS))
if (clk_set_parent(&csi_clk, &usb_pll_clk))
pr_err("%s: error changing csi_clk parent\n", __func__);
/* Turn off all possible clocks */
__raw_writel((3 << 4), MXC_CCM_CGR0);
__raw_writel(0, MXC_CCM_CGR1);
__raw_writel((3 << 8) | (3 << 14) | (3 << 16)|
1 << 27 | 1 << 28, /* Bit 27 and 28 are not defined for
MX32, but still required to be set */
MXC_CCM_CGR2);
/*
* Before turning off usb_pll make sure ipg_per_clk is generated
* by ipg_clk and not usb_pll.
*/
__raw_writel(__raw_readl(MXC_CCM_CCMR) | (1 << 24), MXC_CCM_CCMR);
usb_pll_disable(&usb_pll_clk);
pr_info("Clock input source is %ld\n", clk_get_rate(&ckih_clk));
clk_enable(&gpt_clk);
clk_enable(&emi_clk);
clk_enable(&iim_clk);
mx31_revision();
clk_disable(&iim_clk);
clk_enable(&serial_pll_clk);
if (mx31_revision() >= IMX_CHIP_REVISION_2_0) {
reg = __raw_readl(MXC_CCM_PMCR1);
/* No PLL restart on DVFS switch; enable auto EMI handshake */
reg |= MXC_CCM_PMCR1_PLLRDIS | MXC_CCM_PMCR1_EMIRQ_EN;
__raw_writel(reg, MXC_CCM_PMCR1);
}
mxc_timer_init(&ipg_clk, MX31_IO_ADDRESS(MX31_GPT1_BASE_ADDR),
MX31_INT_GPT);
return 0;
}
/*
* Copyright (C) 2009 by Sascha Hauer, Pengutronix
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/clkdev.h>
#include <mach/clock.h>
#include <mach/hardware.h>
#include <mach/common.h>
#include "crmregs-imx3.h"
#ifdef HAVE_SET_RATE_SUPPORT
static void calc_dividers(u32 div, u32 *pre, u32 *post, u32 maxpost)
{
u32 min_pre, temp_pre, old_err, err;
min_pre = (div - 1) / maxpost + 1;
old_err = 8;
for (temp_pre = 8; temp_pre >= min_pre; temp_pre--) {
if (div > (temp_pre * maxpost))
break;
if (div < (temp_pre * temp_pre))
continue;
err = div % temp_pre;
if (err == 0) {
*pre = temp_pre;
break;
}
err = temp_pre - err;
if (err < old_err) {
old_err = err;
*pre = temp_pre;
}
}
*post = (div + *pre - 1) / *pre;
}
/* get the best values for a 3-bit divider combined with a 6-bit divider */
static void calc_dividers_3_6(u32 div, u32 *pre, u32 *post)
{
if (div >= 512) {
*pre = 8;
*post = 64;
} else if (div >= 64) {
calc_dividers(div, pre, post, 64);
} else if (div <= 8) {
*pre = div;
*post = 1;
} else {
*pre = 1;
*post = div;
}
}
/* get the best values for two cascaded 3-bit dividers */
static void calc_dividers_3_3(u32 div, u32 *pre, u32 *post)
{
if (div >= 64) {
*pre = *post = 8;
} else if (div > 8) {
calc_dividers(div, pre, post, 8);
} else {
*pre = 1;
*post = div;
}
}
#endif
static unsigned long get_rate_mpll(void)
{
ulong mpctl = __raw_readl(MX35_CCM_MPCTL);
return mxc_decode_pll(mpctl, 24000000);
}
static unsigned long get_rate_ppll(void)
{
ulong ppctl = __raw_readl(MX35_CCM_PPCTL);
return mxc_decode_pll(ppctl, 24000000);
}
struct arm_ahb_div {
unsigned char arm, ahb, sel;
};
static struct arm_ahb_div clk_consumer[] = {
{ .arm = 1, .ahb = 4, .sel = 0},
{ .arm = 1, .ahb = 3, .sel = 1},
{ .arm = 2, .ahb = 2, .sel = 0},
{ .arm = 0, .ahb = 0, .sel = 0},
{ .arm = 0, .ahb = 0, .sel = 0},
{ .arm = 0, .ahb = 0, .sel = 0},
{ .arm = 4, .ahb = 1, .sel = 0},
{ .arm = 1, .ahb = 5, .sel = 0},
{ .arm = 1, .ahb = 8, .sel = 0},
{ .arm = 1, .ahb = 6, .sel = 1},
{ .arm = 2, .ahb = 4, .sel = 0},
{ .arm = 0, .ahb = 0, .sel = 0},
{ .arm = 0, .ahb = 0, .sel = 0},
{ .arm = 0, .ahb = 0, .sel = 0},
{ .arm = 4, .ahb = 2, .sel = 0},
{ .arm = 0, .ahb = 0, .sel = 0},
};
static unsigned long get_rate_arm(void)
{
unsigned long pdr0 = __raw_readl(MXC_CCM_PDR0);
struct arm_ahb_div *aad;
unsigned long fref = get_rate_mpll();
aad = &clk_consumer[(pdr0 >> 16) & 0xf];
if (aad->sel)
fref = fref * 3 / 4;
return fref / aad->arm;
}
static unsigned long get_rate_ahb(struct clk *clk)
{
unsigned long pdr0 = __raw_readl(MXC_CCM_PDR0);
struct arm_ahb_div *aad;
unsigned long fref = get_rate_arm();
aad = &clk_consumer[(pdr0 >> 16) & 0xf];
return fref / aad->ahb;
}
static unsigned long get_rate_ipg(struct clk *clk)
{
return get_rate_ahb(NULL) >> 1;
}
static unsigned long get_rate_uart(struct clk *clk)
{
unsigned long pdr3 = __raw_readl(MX35_CCM_PDR3);
unsigned long pdr4 = __raw_readl(MX35_CCM_PDR4);
unsigned long div = ((pdr4 >> 10) & 0x3f) + 1;
if (pdr3 & (1 << 14))
return get_rate_arm() / div;
else
return get_rate_ppll() / div;
}
static unsigned long get_rate_sdhc(struct clk *clk)
{
unsigned long pdr3 = __raw_readl(MX35_CCM_PDR3);
unsigned long div, rate;
if (pdr3 & (1 << 6))
rate = get_rate_arm();
else
rate = get_rate_ppll();
switch (clk->id) {
default:
case 0:
div = pdr3 & 0x3f;
break;
case 1:
div = (pdr3 >> 8) & 0x3f;
break;
case 2:
div = (pdr3 >> 16) & 0x3f;
break;
}
return rate / (div + 1);
}
static unsigned long get_rate_mshc(struct clk *clk)
{
unsigned long pdr1 = __raw_readl(MXC_CCM_PDR1);
unsigned long div1, div2, rate;
if (pdr1 & (1 << 7))
rate = get_rate_arm();
else
rate = get_rate_ppll();
div1 = (pdr1 >> 29) & 0x7;
div2 = (pdr1 >> 22) & 0x3f;
return rate / ((div1 + 1) * (div2 + 1));
}
static unsigned long get_rate_ssi(struct clk *clk)
{
unsigned long pdr2 = __raw_readl(MX35_CCM_PDR2);
unsigned long div1, div2, rate;
if (pdr2 & (1 << 6))
rate = get_rate_arm();
else
rate = get_rate_ppll();
switch (clk->id) {
default:
case 0:
div1 = pdr2 & 0x3f;
div2 = (pdr2 >> 24) & 0x7;
break;
case 1:
div1 = (pdr2 >> 8) & 0x3f;
div2 = (pdr2 >> 27) & 0x7;
break;
}
return rate / ((div1 + 1) * (div2 + 1));
}
static unsigned long get_rate_csi(struct clk *clk)
{
unsigned long pdr2 = __raw_readl(MX35_CCM_PDR2);
unsigned long rate;
if (pdr2 & (1 << 7))
rate = get_rate_arm();
else
rate = get_rate_ppll();
return rate / (((pdr2 >> 16) & 0x3f) + 1);
}
static unsigned long get_rate_otg(struct clk *clk)
{
unsigned long pdr4 = __raw_readl(MX35_CCM_PDR4);
unsigned long rate;
if (pdr4 & (1 << 9))
rate = get_rate_arm();
else
rate = get_rate_ppll();
return rate / (((pdr4 >> 22) & 0x3f) + 1);
}
static unsigned long get_rate_ipg_per(struct clk *clk)
{
unsigned long pdr0 = __raw_readl(MXC_CCM_PDR0);
unsigned long pdr4 = __raw_readl(MX35_CCM_PDR4);
unsigned long div;
if (pdr0 & (1 << 26)) {
div = (pdr4 >> 16) & 0x3f;
return get_rate_arm() / (div + 1);
} else {
div = (pdr0 >> 12) & 0x7;
return get_rate_ahb(NULL) / (div + 1);
}
}
static unsigned long get_rate_hsp(struct clk *clk)
{
unsigned long hsp_podf = (__raw_readl(MXC_CCM_PDR0) >> 20) & 0x03;
unsigned long fref = get_rate_mpll();
if (fref > 400 * 1000 * 1000) {
switch (hsp_podf) {
case 0:
return fref >> 2;
case 1:
return fref >> 3;
case 2:
return fref / 3;
}
} else {
switch (hsp_podf) {
case 0:
case 2:
return fref / 3;
case 1:
return fref / 6;
}
}
return 0;
}
static int clk_cgr_enable(struct clk *clk)
{
u32 reg;
reg = __raw_readl(clk->enable_reg);
reg |= 3 << clk->enable_shift;
__raw_writel(reg, clk->enable_reg);
return 0;
}
static void clk_cgr_disable(struct clk *clk)
{
u32 reg;
reg = __raw_readl(clk->enable_reg);
reg &= ~(3 << clk->enable_shift);
__raw_writel(reg, clk->enable_reg);
}
#define DEFINE_CLOCK(name, i, er, es, gr, sr) \
static struct clk name = { \
.id = i, \
.enable_reg = er, \
.enable_shift = es, \
.get_rate = gr, \
.set_rate = sr, \
.enable = clk_cgr_enable, \
.disable = clk_cgr_disable, \
}
DEFINE_CLOCK(asrc_clk, 0, MX35_CCM_CGR0, 0, NULL, NULL);
DEFINE_CLOCK(pata_clk, 0, MX35_CCM_CGR0, 2, get_rate_ipg, NULL);
/* DEFINE_CLOCK(audmux_clk, 0, MX35_CCM_CGR0, 4, NULL, NULL); */
DEFINE_CLOCK(can1_clk, 0, MX35_CCM_CGR0, 6, get_rate_ipg, NULL);
DEFINE_CLOCK(can2_clk, 1, MX35_CCM_CGR0, 8, get_rate_ipg, NULL);
DEFINE_CLOCK(cspi1_clk, 0, MX35_CCM_CGR0, 10, get_rate_ipg, NULL);
DEFINE_CLOCK(cspi2_clk, 1, MX35_CCM_CGR0, 12, get_rate_ipg, NULL);
DEFINE_CLOCK(ect_clk, 0, MX35_CCM_CGR0, 14, get_rate_ipg, NULL);
DEFINE_CLOCK(edio_clk, 0, MX35_CCM_CGR0, 16, NULL, NULL);
DEFINE_CLOCK(emi_clk, 0, MX35_CCM_CGR0, 18, get_rate_ipg, NULL);
DEFINE_CLOCK(epit1_clk, 0, MX35_CCM_CGR0, 20, get_rate_ipg, NULL);
DEFINE_CLOCK(epit2_clk, 1, MX35_CCM_CGR0, 22, get_rate_ipg, NULL);
DEFINE_CLOCK(esai_clk, 0, MX35_CCM_CGR0, 24, NULL, NULL);
DEFINE_CLOCK(esdhc1_clk, 0, MX35_CCM_CGR0, 26, get_rate_sdhc, NULL);
DEFINE_CLOCK(esdhc2_clk, 1, MX35_CCM_CGR0, 28, get_rate_sdhc, NULL);
DEFINE_CLOCK(esdhc3_clk, 2, MX35_CCM_CGR0, 30, get_rate_sdhc, NULL);
DEFINE_CLOCK(fec_clk, 0, MX35_CCM_CGR1, 0, get_rate_ipg, NULL);
DEFINE_CLOCK(gpio1_clk, 0, MX35_CCM_CGR1, 2, NULL, NULL);
DEFINE_CLOCK(gpio2_clk, 1, MX35_CCM_CGR1, 4, NULL, NULL);
DEFINE_CLOCK(gpio3_clk, 2, MX35_CCM_CGR1, 6, NULL, NULL);
DEFINE_CLOCK(gpt_clk, 0, MX35_CCM_CGR1, 8, get_rate_ipg, NULL);
DEFINE_CLOCK(i2c1_clk, 0, MX35_CCM_CGR1, 10, get_rate_ipg_per, NULL);
DEFINE_CLOCK(i2c2_clk, 1, MX35_CCM_CGR1, 12, get_rate_ipg_per, NULL);
DEFINE_CLOCK(i2c3_clk, 2, MX35_CCM_CGR1, 14, get_rate_ipg_per, NULL);
DEFINE_CLOCK(iomuxc_clk, 0, MX35_CCM_CGR1, 16, NULL, NULL);
DEFINE_CLOCK(ipu_clk, 0, MX35_CCM_CGR1, 18, get_rate_hsp, NULL);
DEFINE_CLOCK(kpp_clk, 0, MX35_CCM_CGR1, 20, get_rate_ipg, NULL);
DEFINE_CLOCK(mlb_clk, 0, MX35_CCM_CGR1, 22, get_rate_ahb, NULL);
DEFINE_CLOCK(mshc_clk, 0, MX35_CCM_CGR1, 24, get_rate_mshc, NULL);
DEFINE_CLOCK(owire_clk, 0, MX35_CCM_CGR1, 26, get_rate_ipg_per, NULL);
DEFINE_CLOCK(pwm_clk, 0, MX35_CCM_CGR1, 28, get_rate_ipg_per, NULL);
DEFINE_CLOCK(rngc_clk, 0, MX35_CCM_CGR1, 30, get_rate_ipg, NULL);
DEFINE_CLOCK(rtc_clk, 0, MX35_CCM_CGR2, 0, get_rate_ipg, NULL);
DEFINE_CLOCK(rtic_clk, 0, MX35_CCM_CGR2, 2, get_rate_ahb, NULL);
DEFINE_CLOCK(scc_clk, 0, MX35_CCM_CGR2, 4, get_rate_ipg, NULL);
DEFINE_CLOCK(sdma_clk, 0, MX35_CCM_CGR2, 6, NULL, NULL);
DEFINE_CLOCK(spba_clk, 0, MX35_CCM_CGR2, 8, get_rate_ipg, NULL);
DEFINE_CLOCK(spdif_clk, 0, MX35_CCM_CGR2, 10, NULL, NULL);
DEFINE_CLOCK(ssi1_clk, 0, MX35_CCM_CGR2, 12, get_rate_ssi, NULL);
DEFINE_CLOCK(ssi2_clk, 1, MX35_CCM_CGR2, 14, get_rate_ssi, NULL);
DEFINE_CLOCK(uart1_clk, 0, MX35_CCM_CGR2, 16, get_rate_uart, NULL);
DEFINE_CLOCK(uart2_clk, 1, MX35_CCM_CGR2, 18, get_rate_uart, NULL);
DEFINE_CLOCK(uart3_clk, 2, MX35_CCM_CGR2, 20, get_rate_uart, NULL);
DEFINE_CLOCK(usbotg_clk, 0, MX35_CCM_CGR2, 22, get_rate_otg, NULL);
DEFINE_CLOCK(wdog_clk, 0, MX35_CCM_CGR2, 24, NULL, NULL);
DEFINE_CLOCK(max_clk, 0, MX35_CCM_CGR2, 26, NULL, NULL);
DEFINE_CLOCK(audmux_clk, 0, MX35_CCM_CGR2, 30, NULL, NULL);
DEFINE_CLOCK(csi_clk, 0, MX35_CCM_CGR3, 0, get_rate_csi, NULL);
DEFINE_CLOCK(iim_clk, 0, MX35_CCM_CGR3, 2, NULL, NULL);
DEFINE_CLOCK(gpu2d_clk, 0, MX35_CCM_CGR3, 4, NULL, NULL);
DEFINE_CLOCK(usbahb_clk, 0, 0, 0, get_rate_ahb, NULL);
static int clk_dummy_enable(struct clk *clk)
{
return 0;
}
static void clk_dummy_disable(struct clk *clk)
{
}
static unsigned long get_rate_nfc(struct clk *clk)
{
unsigned long div1;
div1 = (__raw_readl(MX35_CCM_PDR4) >> 28) + 1;
return get_rate_ahb(NULL) / div1;
}
/* NAND Controller: It seems it can't be disabled */
static struct clk nfc_clk = {
.id = 0,
.enable_reg = 0,
.enable_shift = 0,
.get_rate = get_rate_nfc,
.set_rate = NULL, /* set_rate_nfc, */
.enable = clk_dummy_enable,
.disable = clk_dummy_disable
};
#define _REGISTER_CLOCK(d, n, c) \
{ \
.dev_id = d, \
.con_id = n, \
.clk = &c, \
},
static struct clk_lookup lookups[] = {
_REGISTER_CLOCK(NULL, "asrc", asrc_clk)
_REGISTER_CLOCK("pata_imx", NULL, pata_clk)
_REGISTER_CLOCK("flexcan.0", NULL, can1_clk)
_REGISTER_CLOCK("flexcan.1", NULL, can2_clk)
_REGISTER_CLOCK("imx35-cspi.0", NULL, cspi1_clk)
_REGISTER_CLOCK("imx35-cspi.1", NULL, cspi2_clk)
_REGISTER_CLOCK(NULL, "ect", ect_clk)
_REGISTER_CLOCK(NULL, "edio", edio_clk)
_REGISTER_CLOCK(NULL, "emi", emi_clk)
_REGISTER_CLOCK("imx-epit.0", NULL, epit1_clk)
_REGISTER_CLOCK("imx-epit.1", NULL, epit2_clk)
_REGISTER_CLOCK(NULL, "esai", esai_clk)
_REGISTER_CLOCK("sdhci-esdhc-imx35.0", NULL, esdhc1_clk)
_REGISTER_CLOCK("sdhci-esdhc-imx35.1", NULL, esdhc2_clk)
_REGISTER_CLOCK("sdhci-esdhc-imx35.2", NULL, esdhc3_clk)
/* i.mx35 has the i.mx27 type fec */
_REGISTER_CLOCK("imx27-fec.0", NULL, fec_clk)
_REGISTER_CLOCK(NULL, "gpio", gpio1_clk)
_REGISTER_CLOCK(NULL, "gpio", gpio2_clk)
_REGISTER_CLOCK(NULL, "gpio", gpio3_clk)
_REGISTER_CLOCK("gpt.0", NULL, gpt_clk)
_REGISTER_CLOCK("imx-i2c.0", NULL, i2c1_clk)
_REGISTER_CLOCK("imx-i2c.1", NULL, i2c2_clk)
_REGISTER_CLOCK("imx-i2c.2", NULL, i2c3_clk)
_REGISTER_CLOCK(NULL, "iomuxc", iomuxc_clk)
_REGISTER_CLOCK("ipu-core", NULL, ipu_clk)
_REGISTER_CLOCK("mx3_sdc_fb", NULL, ipu_clk)
_REGISTER_CLOCK(NULL, "kpp", kpp_clk)
_REGISTER_CLOCK(NULL, "mlb", mlb_clk)
_REGISTER_CLOCK(NULL, "mshc", mshc_clk)
_REGISTER_CLOCK("mxc_w1", NULL, owire_clk)
_REGISTER_CLOCK(NULL, "pwm", pwm_clk)
_REGISTER_CLOCK(NULL, "rngc", rngc_clk)
_REGISTER_CLOCK(NULL, "rtc", rtc_clk)
_REGISTER_CLOCK(NULL, "rtic", rtic_clk)
_REGISTER_CLOCK(NULL, "scc", scc_clk)
_REGISTER_CLOCK("imx35-sdma", NULL, sdma_clk)
_REGISTER_CLOCK(NULL, "spba", spba_clk)
_REGISTER_CLOCK(NULL, "spdif", spdif_clk)
_REGISTER_CLOCK("imx-ssi.0", NULL, ssi1_clk)
_REGISTER_CLOCK("imx-ssi.1", NULL, ssi2_clk)
/* i.mx35 has the i.mx21 type uart */
_REGISTER_CLOCK("imx21-uart.0", NULL, uart1_clk)
_REGISTER_CLOCK("imx21-uart.1", NULL, uart2_clk)
_REGISTER_CLOCK("imx21-uart.2", NULL, uart3_clk)
_REGISTER_CLOCK("mxc-ehci.0", "usb", usbotg_clk)
_REGISTER_CLOCK("mxc-ehci.1", "usb", usbotg_clk)
_REGISTER_CLOCK("mxc-ehci.2", "usb", usbotg_clk)
_REGISTER_CLOCK("fsl-usb2-udc", "usb", usbotg_clk)
_REGISTER_CLOCK("fsl-usb2-udc", "usb_ahb", usbahb_clk)
_REGISTER_CLOCK("imx2-wdt.0", NULL, wdog_clk)
_REGISTER_CLOCK(NULL, "max", max_clk)
_REGISTER_CLOCK(NULL, "audmux", audmux_clk)
_REGISTER_CLOCK("mx3-camera.0", NULL, csi_clk)
_REGISTER_CLOCK(NULL, "iim", iim_clk)
_REGISTER_CLOCK(NULL, "gpu2d", gpu2d_clk)
_REGISTER_CLOCK("mxc_nand.0", NULL, nfc_clk)
};
int __init mx35_clocks_init()
{
unsigned int cgr2 = 3 << 26;
#if defined(CONFIG_DEBUG_LL) && !defined(CONFIG_DEBUG_ICEDCC)
cgr2 |= 3 << 16;
#endif
clkdev_add_table(lookups, ARRAY_SIZE(lookups));
/* Turn off all clocks except the ones we need to survive, namely:
* EMI, GPIO1/2/3, GPT, IOMUX, MAX and eventually uart
*/
__raw_writel((3 << 18), MX35_CCM_CGR0);
__raw_writel((3 << 2) | (3 << 4) | (3 << 6) | (3 << 8) | (3 << 16),
MX35_CCM_CGR1);
__raw_writel(cgr2, MX35_CCM_CGR2);
__raw_writel(0, MX35_CCM_CGR3);
clk_enable(&iim_clk);
imx_print_silicon_rev("i.MX35", mx35_revision());
clk_disable(&iim_clk);
/*
* Check if we came up in internal boot mode. If yes, we need some
* extra clocks turned on, otherwise the MX35 boot ROM code will
* hang after a watchdog reset.
*/
if (!(__raw_readl(MX35_CCM_RCSR) & (3 << 10))) {
/* Additionally turn on UART1, SCC, and IIM clocks */
clk_enable(&iim_clk);
clk_enable(&uart1_clk);
clk_enable(&scc_clk);
}
#ifdef CONFIG_MXC_USE_EPIT
epit_timer_init(&epit1_clk,
MX35_IO_ADDRESS(MX35_EPIT1_BASE_ADDR), MX35_INT_EPIT1);
#else
mxc_timer_init(&gpt_clk,
MX35_IO_ADDRESS(MX35_GPT1_BASE_ADDR), MX35_INT_GPT);
#endif
return 0;
}
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册