提交 c5cf6359 编写于 作者: M Manfred Spraul 提交者: Linus Torvalds

ipc/sem.c: update description of the implementation

ipc/sem.c begins with a 15 year old description about bugs in the initial
implementation in Linux-1.0.  The patch replaces that with a top level
description of the current code.

A TODO could be derived from this text:

The opengroup man page for semop() does not mandate FIFO.  Thus there is
no need for a semaphore array list of pending operations.

If

- this list is removed
- the per-semaphore array spinlock is removed (possible if there is no
  list to protect)
- sem_otime is moved into the semaphores and calculated on demand during
  semctl()

then the array would be read-mostly - which would significantly improve
scaling for applications that use semaphore arrays with lots of entries.

The price would be expensive semctl() calls:

	for(i=0;i<sma->sem_nsems;i++) spin_lock(sma->sem_lock);
	<do stuff>
	for(i=0;i<sma->sem_nsems;i++) spin_unlock(sma->sem_lock);

I'm not sure if the complexity is worth the effort, thus here is the
documentation of the current behavior first.
Signed-off-by: NManfred Spraul <manfred@colorfullife.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Zach Brown <zach.brown@oracle.com>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
上级 31a7c474
......@@ -3,56 +3,6 @@
* Copyright (C) 1992 Krishna Balasubramanian
* Copyright (C) 1995 Eric Schenk, Bruno Haible
*
* IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
* This code underwent a massive rewrite in order to solve some problems
* with the original code. In particular the original code failed to
* wake up processes that were waiting for semval to go to 0 if the
* value went to 0 and was then incremented rapidly enough. In solving
* this problem I have also modified the implementation so that it
* processes pending operations in a FIFO manner, thus give a guarantee
* that processes waiting for a lock on the semaphore won't starve
* unless another locking process fails to unlock.
* In addition the following two changes in behavior have been introduced:
* - The original implementation of semop returned the value
* last semaphore element examined on success. This does not
* match the manual page specifications, and effectively
* allows the user to read the semaphore even if they do not
* have read permissions. The implementation now returns 0
* on success as stated in the manual page.
* - There is some confusion over whether the set of undo adjustments
* to be performed at exit should be done in an atomic manner.
* That is, if we are attempting to decrement the semval should we queue
* up and wait until we can do so legally?
* The original implementation attempted to do this.
* The current implementation does not do so. This is because I don't
* think it is the right thing (TM) to do, and because I couldn't
* see a clean way to get the old behavior with the new design.
* The POSIX standard and SVID should be consulted to determine
* what behavior is mandated.
*
* Further notes on refinement (Christoph Rohland, December 1998):
* - The POSIX standard says, that the undo adjustments simply should
* redo. So the current implementation is o.K.
* - The previous code had two flaws:
* 1) It actively gave the semaphore to the next waiting process
* sleeping on the semaphore. Since this process did not have the
* cpu this led to many unnecessary context switches and bad
* performance. Now we only check which process should be able to
* get the semaphore and if this process wants to reduce some
* semaphore value we simply wake it up without doing the
* operation. So it has to try to get it later. Thus e.g. the
* running process may reacquire the semaphore during the current
* time slice. If it only waits for zero or increases the semaphore,
* we do the operation in advance and wake it up.
* 2) It did not wake up all zero waiting processes. We try to do
* better but only get the semops right which only wait for zero or
* increase. If there are decrement operations in the operations
* array we do the same as before.
*
* With the incarnation of O(1) scheduler, it becomes unnecessary to perform
* check/retry algorithm for waking up blocked processes as the new scheduler
* is better at handling thread switch than the old one.
*
* /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
*
* SMP-threaded, sysctl's added
......@@ -61,6 +11,8 @@
* (c) 2001 Red Hat Inc
* Lockless wakeup
* (c) 2003 Manfred Spraul <manfred@colorfullife.com>
* Further wakeup optimizations, documentation
* (c) 2010 Manfred Spraul <manfred@colorfullife.com>
*
* support for audit of ipc object properties and permission changes
* Dustin Kirkland <dustin.kirkland@us.ibm.com>
......@@ -68,6 +20,57 @@
* namespaces support
* OpenVZ, SWsoft Inc.
* Pavel Emelianov <xemul@openvz.org>
*
* Implementation notes: (May 2010)
* This file implements System V semaphores.
*
* User space visible behavior:
* - FIFO ordering for semop() operations (just FIFO, not starvation
* protection)
* - multiple semaphore operations that alter the same semaphore in
* one semop() are handled.
* - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
* SETALL calls.
* - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
* - undo adjustments at process exit are limited to 0..SEMVMX.
* - namespace are supported.
* - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
* to /proc/sys/kernel/sem.
* - statistics about the usage are reported in /proc/sysvipc/sem.
*
* Internals:
* - scalability:
* - all global variables are read-mostly.
* - semop() calls and semctl(RMID) are synchronized by RCU.
* - most operations do write operations (actually: spin_lock calls) to
* the per-semaphore array structure.
* Thus: Perfect SMP scaling between independent semaphore arrays.
* If multiple semaphores in one array are used, then cache line
* trashing on the semaphore array spinlock will limit the scaling.
* - semncnt and semzcnt are calculated on demand in count_semncnt() and
* count_semzcnt()
* - the task that performs a successful semop() scans the list of all
* sleeping tasks and completes any pending operations that can be fulfilled.
* Semaphores are actively given to waiting tasks (necessary for FIFO).
* (see update_queue())
* - To improve the scalability, the actual wake-up calls are performed after
* dropping all locks. (see wake_up_sem_queue_prepare(),
* wake_up_sem_queue_do())
* - All work is done by the waker, the woken up task does not have to do
* anything - not even acquiring a lock or dropping a refcount.
* - A woken up task may not even touch the semaphore array anymore, it may
* have been destroyed already by a semctl(RMID).
* - The synchronizations between wake-ups due to a timeout/signal and a
* wake-up due to a completed semaphore operation is achieved by using an
* intermediate state (IN_WAKEUP).
* - UNDO values are stored in an array (one per process and per
* semaphore array, lazily allocated). For backwards compatibility, multiple
* modes for the UNDO variables are supported (per process, per thread)
* (see copy_semundo, CLONE_SYSVSEM)
* - There are two lists of the pending operations: a per-array list
* and per-semaphore list (stored in the array). This allows to achieve FIFO
* ordering without always scanning all pending operations.
* The worst-case behavior is nevertheless O(N^2) for N wakeups.
*/
#include <linux/slab.h>
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册