提交 c11baa02 编写于 作者: T Tom Lendacky 提交者: Herbert Xu

crypto: ccp - Move HMAC calculation down to ccp ops file

Move the support to perform an HMAC calculation into
the CCP operations file.  This eliminates the need to
perform a synchronous SHA operation used to calculate
the HMAC.
Signed-off-by: NTom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
上级 d81ed653
...@@ -24,75 +24,10 @@ ...@@ -24,75 +24,10 @@
#include "ccp-crypto.h" #include "ccp-crypto.h"
struct ccp_sha_result {
struct completion completion;
int err;
};
static void ccp_sync_hash_complete(struct crypto_async_request *req, int err)
{
struct ccp_sha_result *result = req->data;
if (err == -EINPROGRESS)
return;
result->err = err;
complete(&result->completion);
}
static int ccp_sync_hash(struct crypto_ahash *tfm, u8 *buf,
struct scatterlist *sg, unsigned int len)
{
struct ccp_sha_result result;
struct ahash_request *req;
int ret;
init_completion(&result.completion);
req = ahash_request_alloc(tfm, GFP_KERNEL);
if (!req)
return -ENOMEM;
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
ccp_sync_hash_complete, &result);
ahash_request_set_crypt(req, sg, buf, len);
ret = crypto_ahash_digest(req);
if ((ret == -EINPROGRESS) || (ret == -EBUSY)) {
ret = wait_for_completion_interruptible(&result.completion);
if (!ret)
ret = result.err;
}
ahash_request_free(req);
return ret;
}
static int ccp_sha_finish_hmac(struct crypto_async_request *async_req)
{
struct ahash_request *req = ahash_request_cast(async_req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
struct scatterlist sg[2];
unsigned int block_size =
crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
unsigned int digest_size = crypto_ahash_digestsize(tfm);
sg_init_table(sg, ARRAY_SIZE(sg));
sg_set_buf(&sg[0], ctx->u.sha.opad, block_size);
sg_set_buf(&sg[1], rctx->ctx, digest_size);
return ccp_sync_hash(ctx->u.sha.hmac_tfm, req->result, sg,
block_size + digest_size);
}
static int ccp_sha_complete(struct crypto_async_request *async_req, int ret) static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
{ {
struct ahash_request *req = ahash_request_cast(async_req); struct ahash_request *req = ahash_request_cast(async_req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
unsigned int digest_size = crypto_ahash_digestsize(tfm); unsigned int digest_size = crypto_ahash_digestsize(tfm);
...@@ -112,10 +47,6 @@ static int ccp_sha_complete(struct crypto_async_request *async_req, int ret) ...@@ -112,10 +47,6 @@ static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
if (req->result) if (req->result)
memcpy(req->result, rctx->ctx, digest_size); memcpy(req->result, rctx->ctx, digest_size);
/* If we're doing an HMAC, we need to perform that on the final op */
if (rctx->final && ctx->u.sha.key_len)
ret = ccp_sha_finish_hmac(async_req);
e_free: e_free:
sg_free_table(&rctx->data_sg); sg_free_table(&rctx->data_sg);
...@@ -126,6 +57,7 @@ static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes, ...@@ -126,6 +57,7 @@ static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
unsigned int final) unsigned int final)
{ {
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
struct scatterlist *sg; struct scatterlist *sg;
unsigned int block_size = unsigned int block_size =
...@@ -196,6 +128,11 @@ static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes, ...@@ -196,6 +128,11 @@ static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
rctx->cmd.u.sha.ctx_len = sizeof(rctx->ctx); rctx->cmd.u.sha.ctx_len = sizeof(rctx->ctx);
rctx->cmd.u.sha.src = sg; rctx->cmd.u.sha.src = sg;
rctx->cmd.u.sha.src_len = rctx->hash_cnt; rctx->cmd.u.sha.src_len = rctx->hash_cnt;
rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
&ctx->u.sha.opad_sg : NULL;
rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
ctx->u.sha.opad_count : 0;
rctx->cmd.u.sha.first = rctx->first;
rctx->cmd.u.sha.final = rctx->final; rctx->cmd.u.sha.final = rctx->final;
rctx->cmd.u.sha.msg_bits = rctx->msg_bits; rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
...@@ -218,7 +155,6 @@ static int ccp_sha_init(struct ahash_request *req) ...@@ -218,7 +155,6 @@ static int ccp_sha_init(struct ahash_request *req)
memset(rctx, 0, sizeof(*rctx)); memset(rctx, 0, sizeof(*rctx));
memcpy(rctx->ctx, alg->init, sizeof(rctx->ctx));
rctx->type = alg->type; rctx->type = alg->type;
rctx->first = 1; rctx->first = 1;
...@@ -261,10 +197,13 @@ static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key, ...@@ -261,10 +197,13 @@ static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int key_len) unsigned int key_len)
{ {
struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
struct scatterlist sg; struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
unsigned int block_size = struct {
crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); struct shash_desc sdesc;
unsigned int digest_size = crypto_ahash_digestsize(tfm); char ctx[crypto_shash_descsize(shash)];
} desc;
unsigned int block_size = crypto_shash_blocksize(shash);
unsigned int digest_size = crypto_shash_digestsize(shash);
int i, ret; int i, ret;
/* Set to zero until complete */ /* Set to zero until complete */
...@@ -277,8 +216,12 @@ static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key, ...@@ -277,8 +216,12 @@ static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
if (key_len > block_size) { if (key_len > block_size) {
/* Must hash the input key */ /* Must hash the input key */
sg_init_one(&sg, key, key_len); desc.sdesc.tfm = shash;
ret = ccp_sync_hash(tfm, ctx->u.sha.key, &sg, key_len); desc.sdesc.flags = crypto_ahash_get_flags(tfm) &
CRYPTO_TFM_REQ_MAY_SLEEP;
ret = crypto_shash_digest(&desc.sdesc, key, key_len,
ctx->u.sha.key);
if (ret) { if (ret) {
crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL; return -EINVAL;
...@@ -293,6 +236,9 @@ static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key, ...@@ -293,6 +236,9 @@ static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c; ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c;
} }
sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
ctx->u.sha.opad_count = block_size;
ctx->u.sha.key_len = key_len; ctx->u.sha.key_len = key_len;
return 0; return 0;
...@@ -319,10 +265,9 @@ static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm) ...@@ -319,10 +265,9 @@ static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
{ {
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm); struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
struct crypto_ahash *hmac_tfm; struct crypto_shash *hmac_tfm;
hmac_tfm = crypto_alloc_ahash(alg->child_alg, hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
CRYPTO_ALG_TYPE_AHASH, 0);
if (IS_ERR(hmac_tfm)) { if (IS_ERR(hmac_tfm)) {
pr_warn("could not load driver %s need for HMAC support\n", pr_warn("could not load driver %s need for HMAC support\n",
alg->child_alg); alg->child_alg);
...@@ -339,35 +284,14 @@ static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm) ...@@ -339,35 +284,14 @@ static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
if (ctx->u.sha.hmac_tfm) if (ctx->u.sha.hmac_tfm)
crypto_free_ahash(ctx->u.sha.hmac_tfm); crypto_free_shash(ctx->u.sha.hmac_tfm);
ccp_sha_cra_exit(tfm); ccp_sha_cra_exit(tfm);
} }
static const __be32 sha1_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
cpu_to_be32(SHA1_H4), 0, 0, 0,
};
static const __be32 sha224_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
};
static const __be32 sha256_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
};
struct ccp_sha_def { struct ccp_sha_def {
const char *name; const char *name;
const char *drv_name; const char *drv_name;
const __be32 *init;
enum ccp_sha_type type; enum ccp_sha_type type;
u32 digest_size; u32 digest_size;
u32 block_size; u32 block_size;
...@@ -377,7 +301,6 @@ static struct ccp_sha_def sha_algs[] = { ...@@ -377,7 +301,6 @@ static struct ccp_sha_def sha_algs[] = {
{ {
.name = "sha1", .name = "sha1",
.drv_name = "sha1-ccp", .drv_name = "sha1-ccp",
.init = sha1_init,
.type = CCP_SHA_TYPE_1, .type = CCP_SHA_TYPE_1,
.digest_size = SHA1_DIGEST_SIZE, .digest_size = SHA1_DIGEST_SIZE,
.block_size = SHA1_BLOCK_SIZE, .block_size = SHA1_BLOCK_SIZE,
...@@ -385,7 +308,6 @@ static struct ccp_sha_def sha_algs[] = { ...@@ -385,7 +308,6 @@ static struct ccp_sha_def sha_algs[] = {
{ {
.name = "sha224", .name = "sha224",
.drv_name = "sha224-ccp", .drv_name = "sha224-ccp",
.init = sha224_init,
.type = CCP_SHA_TYPE_224, .type = CCP_SHA_TYPE_224,
.digest_size = SHA224_DIGEST_SIZE, .digest_size = SHA224_DIGEST_SIZE,
.block_size = SHA224_BLOCK_SIZE, .block_size = SHA224_BLOCK_SIZE,
...@@ -393,7 +315,6 @@ static struct ccp_sha_def sha_algs[] = { ...@@ -393,7 +315,6 @@ static struct ccp_sha_def sha_algs[] = {
{ {
.name = "sha256", .name = "sha256",
.drv_name = "sha256-ccp", .drv_name = "sha256-ccp",
.init = sha256_init,
.type = CCP_SHA_TYPE_256, .type = CCP_SHA_TYPE_256,
.digest_size = SHA256_DIGEST_SIZE, .digest_size = SHA256_DIGEST_SIZE,
.block_size = SHA256_BLOCK_SIZE, .block_size = SHA256_BLOCK_SIZE,
...@@ -460,7 +381,6 @@ static int ccp_register_sha_alg(struct list_head *head, ...@@ -460,7 +381,6 @@ static int ccp_register_sha_alg(struct list_head *head,
INIT_LIST_HEAD(&ccp_alg->entry); INIT_LIST_HEAD(&ccp_alg->entry);
ccp_alg->init = def->init;
ccp_alg->type = def->type; ccp_alg->type = def->type;
alg = &ccp_alg->alg; alg = &ccp_alg->alg;
......
...@@ -137,11 +137,14 @@ struct ccp_aes_cmac_req_ctx { ...@@ -137,11 +137,14 @@ struct ccp_aes_cmac_req_ctx {
#define MAX_SHA_BLOCK_SIZE SHA256_BLOCK_SIZE #define MAX_SHA_BLOCK_SIZE SHA256_BLOCK_SIZE
struct ccp_sha_ctx { struct ccp_sha_ctx {
struct scatterlist opad_sg;
unsigned int opad_count;
unsigned int key_len; unsigned int key_len;
u8 key[MAX_SHA_BLOCK_SIZE]; u8 key[MAX_SHA_BLOCK_SIZE];
u8 ipad[MAX_SHA_BLOCK_SIZE]; u8 ipad[MAX_SHA_BLOCK_SIZE];
u8 opad[MAX_SHA_BLOCK_SIZE]; u8 opad[MAX_SHA_BLOCK_SIZE];
struct crypto_ahash *hmac_tfm; struct crypto_shash *hmac_tfm;
}; };
struct ccp_sha_req_ctx { struct ccp_sha_req_ctx {
...@@ -167,9 +170,6 @@ struct ccp_sha_req_ctx { ...@@ -167,9 +170,6 @@ struct ccp_sha_req_ctx {
unsigned int buf_count; unsigned int buf_count;
u8 buf[MAX_SHA_BLOCK_SIZE]; u8 buf[MAX_SHA_BLOCK_SIZE];
/* HMAC support field */
struct scatterlist pad_sg;
/* CCP driver command */ /* CCP driver command */
struct ccp_cmd cmd; struct ccp_cmd cmd;
}; };
......
...@@ -23,6 +23,7 @@ ...@@ -23,6 +23,7 @@
#include <linux/ccp.h> #include <linux/ccp.h>
#include <linux/scatterlist.h> #include <linux/scatterlist.h>
#include <crypto/scatterwalk.h> #include <crypto/scatterwalk.h>
#include <crypto/sha.h>
#include "ccp-dev.h" #include "ccp-dev.h"
...@@ -132,6 +133,27 @@ struct ccp_op { ...@@ -132,6 +133,27 @@ struct ccp_op {
} u; } u;
}; };
/* SHA initial context values */
static const __be32 ccp_sha1_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
cpu_to_be32(SHA1_H4), 0, 0, 0,
};
static const __be32 ccp_sha224_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
};
static const __be32 ccp_sha256_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
};
/* The CCP cannot perform zero-length sha operations so the caller /* The CCP cannot perform zero-length sha operations so the caller
* is required to buffer data for the final operation. However, a * is required to buffer data for the final operation. However, a
* sha operation for a message with a total length of zero is valid * sha operation for a message with a total length of zero is valid
...@@ -1411,7 +1433,27 @@ static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) ...@@ -1411,7 +1433,27 @@ static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
if (ret) if (ret)
return ret; return ret;
ccp_set_dm_area(&ctx, 0, sha->ctx, 0, sha->ctx_len); if (sha->first) {
const __be32 *init;
switch (sha->type) {
case CCP_SHA_TYPE_1:
init = ccp_sha1_init;
break;
case CCP_SHA_TYPE_224:
init = ccp_sha224_init;
break;
case CCP_SHA_TYPE_256:
init = ccp_sha256_init;
break;
default:
ret = -EINVAL;
goto e_ctx;
}
memcpy(ctx.address, init, CCP_SHA_CTXSIZE);
} else
ccp_set_dm_area(&ctx, 0, sha->ctx, 0, sha->ctx_len);
ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx, ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
CCP_PASSTHRU_BYTESWAP_256BIT); CCP_PASSTHRU_BYTESWAP_256BIT);
if (ret) { if (ret) {
...@@ -1451,6 +1493,66 @@ static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) ...@@ -1451,6 +1493,66 @@ static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
ccp_get_dm_area(&ctx, 0, sha->ctx, 0, sha->ctx_len); ccp_get_dm_area(&ctx, 0, sha->ctx, 0, sha->ctx_len);
if (sha->final && sha->opad) {
/* HMAC operation, recursively perform final SHA */
struct ccp_cmd hmac_cmd;
struct scatterlist sg;
u64 block_size, digest_size;
u8 *hmac_buf;
switch (sha->type) {
case CCP_SHA_TYPE_1:
block_size = SHA1_BLOCK_SIZE;
digest_size = SHA1_DIGEST_SIZE;
break;
case CCP_SHA_TYPE_224:
block_size = SHA224_BLOCK_SIZE;
digest_size = SHA224_DIGEST_SIZE;
break;
case CCP_SHA_TYPE_256:
block_size = SHA256_BLOCK_SIZE;
digest_size = SHA256_DIGEST_SIZE;
break;
default:
ret = -EINVAL;
goto e_data;
}
if (sha->opad_len != block_size) {
ret = -EINVAL;
goto e_data;
}
hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
if (!hmac_buf) {
ret = -ENOMEM;
goto e_data;
}
sg_init_one(&sg, hmac_buf, block_size + digest_size);
scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
memcpy(hmac_buf + block_size, ctx.address, digest_size);
memset(&hmac_cmd, 0, sizeof(hmac_cmd));
hmac_cmd.engine = CCP_ENGINE_SHA;
hmac_cmd.u.sha.type = sha->type;
hmac_cmd.u.sha.ctx = sha->ctx;
hmac_cmd.u.sha.ctx_len = sha->ctx_len;
hmac_cmd.u.sha.src = &sg;
hmac_cmd.u.sha.src_len = block_size + digest_size;
hmac_cmd.u.sha.opad = NULL;
hmac_cmd.u.sha.opad_len = 0;
hmac_cmd.u.sha.first = 1;
hmac_cmd.u.sha.final = 1;
hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
if (ret)
cmd->engine_error = hmac_cmd.engine_error;
kfree(hmac_buf);
}
e_data: e_data:
ccp_free_data(&src, cmd_q); ccp_free_data(&src, cmd_q);
......
...@@ -232,6 +232,9 @@ enum ccp_sha_type { ...@@ -232,6 +232,9 @@ enum ccp_sha_type {
* @ctx_len: length in bytes of hash value * @ctx_len: length in bytes of hash value
* @src: data to be used for this operation * @src: data to be used for this operation
* @src_len: length in bytes of data used for this operation * @src_len: length in bytes of data used for this operation
* @opad: data to be used for final HMAC operation
* @opad_len: length in bytes of data used for final HMAC operation
* @first: indicates first SHA operation
* @final: indicates final SHA operation * @final: indicates final SHA operation
* @msg_bits: total length of the message in bits used in final SHA operation * @msg_bits: total length of the message in bits used in final SHA operation
* *
...@@ -251,6 +254,10 @@ struct ccp_sha_engine { ...@@ -251,6 +254,10 @@ struct ccp_sha_engine {
struct scatterlist *src; struct scatterlist *src;
u64 src_len; /* In bytes */ u64 src_len; /* In bytes */
struct scatterlist *opad;
u32 opad_len; /* In bytes */
u32 first; /* Indicates first sha cmd */
u32 final; /* Indicates final sha cmd */ u32 final; /* Indicates final sha cmd */
u64 msg_bits; /* Message length in bits required for u64 msg_bits; /* Message length in bits required for
* final sha cmd */ * final sha cmd */
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册