提交 667f0063 编写于 作者: D David S. Miller

Merge branch 'local-checksum-offload'

Edward Cree says:

====================
Local Checksum Offload

Re-tested VxLAN; everything else is unchanged from v4.

Changes from v4:
 * Rebased series to fix conflicts with vxlan/vxlan6 merge.

Changes from v3:
 * Fixed inverted checksum values introduced in v3.
 * Don't mangle zero checksums in GRE.
 * Clear skb->encapsulation in iptunnel_handle_offloads when not using
   CHECKSUM_PARTIAL, lest drivers incorrectly interpret that as a request
   for inner checksum offload.

Changes from v2:
 * Added support for IPv4 GRE.
 * Split out 'always set up for checksum offload' into its own patch.
 * Removed csum_help from iptunnel_handle_offloads.
 * Rewrote LCO callers to only fold once.
 * Simplified nocheck handling.

Changes from v1:
 * Enabled support in more encapsulation protocols.
   I think it now covers everything except GRE.
 * Wrote up some documentation covering TX checksum offload, LCO and RCO.
====================
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
...@@ -44,6 +44,8 @@ can.txt ...@@ -44,6 +44,8 @@ can.txt
- documentation on CAN protocol family. - documentation on CAN protocol family.
cdc_mbim.txt cdc_mbim.txt
- 3G/LTE USB modem (Mobile Broadband Interface Model) - 3G/LTE USB modem (Mobile Broadband Interface Model)
checksum-offloads.txt
- Explanation of checksum offloads; LCO, RCO
cops.txt cops.txt
- info on the COPS LocalTalk Linux driver - info on the COPS LocalTalk Linux driver
cs89x0.txt cs89x0.txt
......
Checksum Offloads in the Linux Networking Stack
Introduction
============
This document describes a set of techniques in the Linux networking stack
to take advantage of checksum offload capabilities of various NICs.
The following technologies are described:
* TX Checksum Offload
* LCO: Local Checksum Offload
* RCO: Remote Checksum Offload
Things that should be documented here but aren't yet:
* RX Checksum Offload
* CHECKSUM_UNNECESSARY conversion
TX Checksum Offload
===================
The interface for offloading a transmit checksum to a device is explained
in detail in comments near the top of include/linux/skbuff.h.
In brief, it allows to request the device fill in a single ones-complement
checksum defined by the sk_buff fields skb->csum_start and
skb->csum_offset. The device should compute the 16-bit ones-complement
checksum (i.e. the 'IP-style' checksum) from csum_start to the end of the
packet, and fill in the result at (csum_start + csum_offset).
Because csum_offset cannot be negative, this ensures that the previous
value of the checksum field is included in the checksum computation, thus
it can be used to supply any needed corrections to the checksum (such as
the sum of the pseudo-header for UDP or TCP).
This interface only allows a single checksum to be offloaded. Where
encapsulation is used, the packet may have multiple checksum fields in
different header layers, and the rest will have to be handled by another
mechanism such as LCO or RCO.
No offloading of the IP header checksum is performed; it is always done in
software. This is OK because when we build the IP header, we obviously
have it in cache, so summing it isn't expensive. It's also rather short.
The requirements for GSO are more complicated, because when segmenting an
encapsulated packet both the inner and outer checksums may need to be
edited or recomputed for each resulting segment. See the skbuff.h comment
(section 'E') for more details.
A driver declares its offload capabilities in netdev->hw_features; see
Documentation/networking/netdev-features for more. Note that a device
which only advertises NETIF_F_IP[V6]_CSUM must still obey the csum_start
and csum_offset given in the SKB; if it tries to deduce these itself in
hardware (as some NICs do) the driver should check that the values in the
SKB match those which the hardware will deduce, and if not, fall back to
checksumming in software instead (with skb_checksum_help or one of the
skb_csum_off_chk* functions as mentioned in include/linux/skbuff.h). This
is a pain, but that's what you get when hardware tries to be clever.
The stack should, for the most part, assume that checksum offload is
supported by the underlying device. The only place that should check is
validate_xmit_skb(), and the functions it calls directly or indirectly.
That function compares the offload features requested by the SKB (which
may include other offloads besides TX Checksum Offload) and, if they are
not supported or enabled on the device (determined by netdev->features),
performs the corresponding offload in software. In the case of TX
Checksum Offload, that means calling skb_checksum_help(skb).
LCO: Local Checksum Offload
===========================
LCO is a technique for efficiently computing the outer checksum of an
encapsulated datagram when the inner checksum is due to be offloaded.
The ones-complement sum of a correctly checksummed TCP or UDP packet is
equal to the sum of the pseudo header, because everything else gets
'cancelled out' by the checksum field. This is because the sum was
complemented before being written to the checksum field.
More generally, this holds in any case where the 'IP-style' ones complement
checksum is used, and thus any checksum that TX Checksum Offload supports.
That is, if we have set up TX Checksum Offload with a start/offset pair, we
know that _after the device has filled in that checksum_, the ones
complement sum from csum_start to the end of the packet will be equal to
_whatever value we put in the checksum field beforehand_. This allows us
to compute the outer checksum without looking at the payload: we simply
stop summing when we get to csum_start, then add the 16-bit word at
(csum_start + csum_offset).
Then, when the true inner checksum is filled in (either by hardware or by
skb_checksum_help()), the outer checksum will become correct by virtue of
the arithmetic.
LCO is performed by the stack when constructing an outer UDP header for an
encapsulation such as VXLAN or GENEVE, in udp_set_csum(). Similarly for
the IPv6 equivalents, in udp6_set_csum().
It is also performed when constructing an IPv4 GRE header, in
net/ipv4/ip_gre.c:build_header(). It is *not* currently performed when
constructing an IPv6 GRE header; the GRE checksum is computed over the
whole packet in net/ipv6/ip6_gre.c:ip6gre_xmit2(), but it should be
possible to use LCO here as IPv6 GRE still uses an IP-style checksum.
All of the LCO implementations use a helper function lco_csum(), in
include/linux/skbuff.h.
LCO can safely be used for nested encapsulations; in this case, the outer
encapsulation layer will sum over both its own header and the 'middle'
header. This does mean that the 'middle' header will get summed multiple
times, but there doesn't seem to be a way to avoid that without incurring
bigger costs (e.g. in SKB bloat).
RCO: Remote Checksum Offload
============================
RCO is a technique for eliding the inner checksum of an encapsulated
datagram, allowing the outer checksum to be offloaded. It does, however,
involve a change to the encapsulation protocols, which the receiver must
also support. For this reason, it is disabled by default.
RCO is detailed in the following Internet-Drafts:
https://tools.ietf.org/html/draft-herbert-remotecsumoffload-00
https://tools.ietf.org/html/draft-herbert-vxlan-rco-00
In Linux, RCO is implemented individually in each encapsulation protocol,
and most tunnel types have flags controlling its use. For instance, VXLAN
has the flag VXLAN_F_REMCSUM_TX (per struct vxlan_rdst) to indicate that
RCO should be used when transmitting to a given remote destination.
...@@ -1702,10 +1702,8 @@ static int vxlan_build_skb(struct sk_buff *skb, struct dst_entry *dst, ...@@ -1702,10 +1702,8 @@ static int vxlan_build_skb(struct sk_buff *skb, struct dst_entry *dst,
if (csum_start <= VXLAN_MAX_REMCSUM_START && if (csum_start <= VXLAN_MAX_REMCSUM_START &&
!(csum_start & VXLAN_RCO_SHIFT_MASK) && !(csum_start & VXLAN_RCO_SHIFT_MASK) &&
(skb->csum_offset == offsetof(struct udphdr, check) || (skb->csum_offset == offsetof(struct udphdr, check) ||
skb->csum_offset == offsetof(struct tcphdr, check))) { skb->csum_offset == offsetof(struct tcphdr, check)))
udp_sum = false;
type |= SKB_GSO_TUNNEL_REMCSUM; type |= SKB_GSO_TUNNEL_REMCSUM;
}
} }
min_headroom = LL_RESERVED_SPACE(dst->dev) + dst->header_len min_headroom = LL_RESERVED_SPACE(dst->dev) + dst->header_len
...@@ -1723,7 +1721,7 @@ static int vxlan_build_skb(struct sk_buff *skb, struct dst_entry *dst, ...@@ -1723,7 +1721,7 @@ static int vxlan_build_skb(struct sk_buff *skb, struct dst_entry *dst,
if (WARN_ON(!skb)) if (WARN_ON(!skb))
return -ENOMEM; return -ENOMEM;
skb = iptunnel_handle_offloads(skb, udp_sum, type); skb = iptunnel_handle_offloads(skb, type);
if (IS_ERR(skb)) if (IS_ERR(skb))
return PTR_ERR(skb); return PTR_ERR(skb);
......
...@@ -3702,5 +3702,31 @@ static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) ...@@ -3702,5 +3702,31 @@ static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
return hdr_len + skb_gso_transport_seglen(skb); return hdr_len + skb_gso_transport_seglen(skb);
} }
/* Local Checksum Offload.
* Compute outer checksum based on the assumption that the
* inner checksum will be offloaded later.
* See Documentation/networking/checksum-offloads.txt for
* explanation of how this works.
* Fill in outer checksum adjustment (e.g. with sum of outer
* pseudo-header) before calling.
* Also ensure that inner checksum is in linear data area.
*/
static inline __wsum lco_csum(struct sk_buff *skb)
{
char *inner_csum_field;
__wsum csum;
/* Start with complement of inner checksum adjustment */
inner_csum_field = skb->data + skb_checksum_start_offset(skb) +
skb->csum_offset;
csum = ~csum_unfold(*(__force __sum16 *)inner_csum_field);
/* Add in checksum of our headers (incl. outer checksum
* adjustment filled in by caller)
*/
csum = skb_checksum(skb, 0, skb_checksum_start_offset(skb), csum);
/* The result is the checksum from skb->data to end of packet */
return csum;
}
#endif /* __KERNEL__ */ #endif /* __KERNEL__ */
#endif /* _LINUX_SKBUFF_H */ #endif /* _LINUX_SKBUFF_H */
...@@ -279,8 +279,7 @@ void iptunnel_xmit(struct sock *sk, struct rtable *rt, struct sk_buff *skb, ...@@ -279,8 +279,7 @@ void iptunnel_xmit(struct sock *sk, struct rtable *rt, struct sk_buff *skb,
struct metadata_dst *iptunnel_metadata_reply(struct metadata_dst *md, struct metadata_dst *iptunnel_metadata_reply(struct metadata_dst *md,
gfp_t flags); gfp_t flags);
struct sk_buff *iptunnel_handle_offloads(struct sk_buff *skb, bool gre_csum, struct sk_buff *iptunnel_handle_offloads(struct sk_buff *skb, int gso_type_mask);
int gso_type_mask);
static inline void iptunnel_xmit_stats(struct net_device *dev, int pkt_len) static inline void iptunnel_xmit_stats(struct net_device *dev, int pkt_len)
{ {
......
...@@ -103,7 +103,7 @@ static inline struct sk_buff *udp_tunnel_handle_offloads(struct sk_buff *skb, ...@@ -103,7 +103,7 @@ static inline struct sk_buff *udp_tunnel_handle_offloads(struct sk_buff *skb,
{ {
int type = udp_csum ? SKB_GSO_UDP_TUNNEL_CSUM : SKB_GSO_UDP_TUNNEL; int type = udp_csum ? SKB_GSO_UDP_TUNNEL_CSUM : SKB_GSO_UDP_TUNNEL;
return iptunnel_handle_offloads(skb, udp_csum, type); return iptunnel_handle_offloads(skb, type);
} }
static inline void udp_tunnel_gro_complete(struct sk_buff *skb, int nhoff) static inline void udp_tunnel_gro_complete(struct sk_buff *skb, int nhoff)
......
...@@ -774,7 +774,6 @@ static void fou_build_udp(struct sk_buff *skb, struct ip_tunnel_encap *e, ...@@ -774,7 +774,6 @@ static void fou_build_udp(struct sk_buff *skb, struct ip_tunnel_encap *e,
uh->dest = e->dport; uh->dest = e->dport;
uh->source = sport; uh->source = sport;
uh->len = htons(skb->len); uh->len = htons(skb->len);
uh->check = 0;
udp_set_csum(!(e->flags & TUNNEL_ENCAP_FLAG_CSUM), skb, udp_set_csum(!(e->flags & TUNNEL_ENCAP_FLAG_CSUM), skb,
fl4->saddr, fl4->daddr, skb->len); fl4->saddr, fl4->daddr, skb->len);
...@@ -784,11 +783,11 @@ static void fou_build_udp(struct sk_buff *skb, struct ip_tunnel_encap *e, ...@@ -784,11 +783,11 @@ static void fou_build_udp(struct sk_buff *skb, struct ip_tunnel_encap *e,
int fou_build_header(struct sk_buff *skb, struct ip_tunnel_encap *e, int fou_build_header(struct sk_buff *skb, struct ip_tunnel_encap *e,
u8 *protocol, struct flowi4 *fl4) u8 *protocol, struct flowi4 *fl4)
{ {
bool csum = !!(e->flags & TUNNEL_ENCAP_FLAG_CSUM); int type = e->flags & TUNNEL_ENCAP_FLAG_CSUM ? SKB_GSO_UDP_TUNNEL_CSUM :
int type = csum ? SKB_GSO_UDP_TUNNEL_CSUM : SKB_GSO_UDP_TUNNEL; SKB_GSO_UDP_TUNNEL;
__be16 sport; __be16 sport;
skb = iptunnel_handle_offloads(skb, csum, type); skb = iptunnel_handle_offloads(skb, type);
if (IS_ERR(skb)) if (IS_ERR(skb))
return PTR_ERR(skb); return PTR_ERR(skb);
...@@ -804,8 +803,8 @@ EXPORT_SYMBOL(fou_build_header); ...@@ -804,8 +803,8 @@ EXPORT_SYMBOL(fou_build_header);
int gue_build_header(struct sk_buff *skb, struct ip_tunnel_encap *e, int gue_build_header(struct sk_buff *skb, struct ip_tunnel_encap *e,
u8 *protocol, struct flowi4 *fl4) u8 *protocol, struct flowi4 *fl4)
{ {
bool csum = !!(e->flags & TUNNEL_ENCAP_FLAG_CSUM); int type = e->flags & TUNNEL_ENCAP_FLAG_CSUM ? SKB_GSO_UDP_TUNNEL_CSUM :
int type = csum ? SKB_GSO_UDP_TUNNEL_CSUM : SKB_GSO_UDP_TUNNEL; SKB_GSO_UDP_TUNNEL;
struct guehdr *guehdr; struct guehdr *guehdr;
size_t hdrlen, optlen = 0; size_t hdrlen, optlen = 0;
__be16 sport; __be16 sport;
...@@ -814,7 +813,6 @@ int gue_build_header(struct sk_buff *skb, struct ip_tunnel_encap *e, ...@@ -814,7 +813,6 @@ int gue_build_header(struct sk_buff *skb, struct ip_tunnel_encap *e,
if ((e->flags & TUNNEL_ENCAP_FLAG_REMCSUM) && if ((e->flags & TUNNEL_ENCAP_FLAG_REMCSUM) &&
skb->ip_summed == CHECKSUM_PARTIAL) { skb->ip_summed == CHECKSUM_PARTIAL) {
csum = false;
optlen += GUE_PLEN_REMCSUM; optlen += GUE_PLEN_REMCSUM;
type |= SKB_GSO_TUNNEL_REMCSUM; type |= SKB_GSO_TUNNEL_REMCSUM;
need_priv = true; need_priv = true;
...@@ -822,7 +820,7 @@ int gue_build_header(struct sk_buff *skb, struct ip_tunnel_encap *e, ...@@ -822,7 +820,7 @@ int gue_build_header(struct sk_buff *skb, struct ip_tunnel_encap *e,
optlen += need_priv ? GUE_LEN_PRIV : 0; optlen += need_priv ? GUE_LEN_PRIV : 0;
skb = iptunnel_handle_offloads(skb, csum, type); skb = iptunnel_handle_offloads(skb, type);
if (IS_ERR(skb)) if (IS_ERR(skb))
return PTR_ERR(skb); return PTR_ERR(skb);
......
...@@ -440,6 +440,17 @@ static int gre_rcv(struct sk_buff *skb) ...@@ -440,6 +440,17 @@ static int gre_rcv(struct sk_buff *skb)
return 0; return 0;
} }
static __sum16 gre_checksum(struct sk_buff *skb)
{
__wsum csum;
if (skb->ip_summed == CHECKSUM_PARTIAL)
csum = lco_csum(skb);
else
csum = skb_checksum(skb, 0, skb->len, 0);
return csum_fold(csum);
}
static void build_header(struct sk_buff *skb, int hdr_len, __be16 flags, static void build_header(struct sk_buff *skb, int hdr_len, __be16 flags,
__be16 proto, __be32 key, __be32 seq) __be16 proto, __be32 key, __be32 seq)
{ {
...@@ -467,8 +478,7 @@ static void build_header(struct sk_buff *skb, int hdr_len, __be16 flags, ...@@ -467,8 +478,7 @@ static void build_header(struct sk_buff *skb, int hdr_len, __be16 flags,
!(skb_shinfo(skb)->gso_type & !(skb_shinfo(skb)->gso_type &
(SKB_GSO_GRE | SKB_GSO_GRE_CSUM))) { (SKB_GSO_GRE | SKB_GSO_GRE_CSUM))) {
*ptr = 0; *ptr = 0;
*(__sum16 *)ptr = csum_fold(skb_checksum(skb, 0, *(__sum16 *)ptr = gre_checksum(skb);
skb->len, 0));
} }
} }
} }
...@@ -493,8 +503,7 @@ static void __gre_xmit(struct sk_buff *skb, struct net_device *dev, ...@@ -493,8 +503,7 @@ static void __gre_xmit(struct sk_buff *skb, struct net_device *dev,
static struct sk_buff *gre_handle_offloads(struct sk_buff *skb, static struct sk_buff *gre_handle_offloads(struct sk_buff *skb,
bool csum) bool csum)
{ {
return iptunnel_handle_offloads(skb, csum, return iptunnel_handle_offloads(skb, csum ? SKB_GSO_GRE_CSUM : SKB_GSO_GRE);
csum ? SKB_GSO_GRE_CSUM : SKB_GSO_GRE);
} }
static struct rtable *gre_get_rt(struct sk_buff *skb, static struct rtable *gre_get_rt(struct sk_buff *skb,
......
...@@ -148,7 +148,6 @@ struct metadata_dst *iptunnel_metadata_reply(struct metadata_dst *md, ...@@ -148,7 +148,6 @@ struct metadata_dst *iptunnel_metadata_reply(struct metadata_dst *md,
EXPORT_SYMBOL_GPL(iptunnel_metadata_reply); EXPORT_SYMBOL_GPL(iptunnel_metadata_reply);
struct sk_buff *iptunnel_handle_offloads(struct sk_buff *skb, struct sk_buff *iptunnel_handle_offloads(struct sk_buff *skb,
bool csum_help,
int gso_type_mask) int gso_type_mask)
{ {
int err; int err;
...@@ -166,20 +165,15 @@ struct sk_buff *iptunnel_handle_offloads(struct sk_buff *skb, ...@@ -166,20 +165,15 @@ struct sk_buff *iptunnel_handle_offloads(struct sk_buff *skb,
return skb; return skb;
} }
/* If packet is not gso and we are resolving any partial checksum, if (skb->ip_summed != CHECKSUM_PARTIAL) {
* clear encapsulation flag. This allows setting CHECKSUM_PARTIAL
* on the outer header without confusing devices that implement
* NETIF_F_IP_CSUM with encapsulation.
*/
if (csum_help)
skb->encapsulation = 0;
if (skb->ip_summed == CHECKSUM_PARTIAL && csum_help) {
err = skb_checksum_help(skb);
if (unlikely(err))
goto error;
} else if (skb->ip_summed != CHECKSUM_PARTIAL)
skb->ip_summed = CHECKSUM_NONE; skb->ip_summed = CHECKSUM_NONE;
/* We clear encapsulation here to prevent badly-written
* drivers potentially deciding to offload an inner checksum
* if we set CHECKSUM_PARTIAL on the outer header.
* This should go away when the drivers are all fixed.
*/
skb->encapsulation = 0;
}
return skb; return skb;
error: error:
......
...@@ -219,7 +219,7 @@ static netdev_tx_t ipip_tunnel_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -219,7 +219,7 @@ static netdev_tx_t ipip_tunnel_xmit(struct sk_buff *skb, struct net_device *dev)
if (unlikely(skb->protocol != htons(ETH_P_IP))) if (unlikely(skb->protocol != htons(ETH_P_IP)))
goto tx_error; goto tx_error;
skb = iptunnel_handle_offloads(skb, false, SKB_GSO_IPIP); skb = iptunnel_handle_offloads(skb, SKB_GSO_IPIP);
if (IS_ERR(skb)) if (IS_ERR(skb))
goto out; goto out;
......
...@@ -848,32 +848,20 @@ void udp_set_csum(bool nocheck, struct sk_buff *skb, ...@@ -848,32 +848,20 @@ void udp_set_csum(bool nocheck, struct sk_buff *skb,
{ {
struct udphdr *uh = udp_hdr(skb); struct udphdr *uh = udp_hdr(skb);
if (nocheck) if (nocheck) {
uh->check = 0; uh->check = 0;
else if (skb_is_gso(skb)) } else if (skb_is_gso(skb)) {
uh->check = ~udp_v4_check(len, saddr, daddr, 0); uh->check = ~udp_v4_check(len, saddr, daddr, 0);
else if (skb_dst(skb) && skb_dst(skb)->dev && } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
(skb_dst(skb)->dev->features & uh->check = 0;
(NETIF_F_IP_CSUM | NETIF_F_HW_CSUM))) { uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
if (uh->check == 0)
BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL); uh->check = CSUM_MANGLED_0;
} else {
skb->ip_summed = CHECKSUM_PARTIAL; skb->ip_summed = CHECKSUM_PARTIAL;
skb->csum_start = skb_transport_header(skb) - skb->head; skb->csum_start = skb_transport_header(skb) - skb->head;
skb->csum_offset = offsetof(struct udphdr, check); skb->csum_offset = offsetof(struct udphdr, check);
uh->check = ~udp_v4_check(len, saddr, daddr, 0); uh->check = ~udp_v4_check(len, saddr, daddr, 0);
} else {
__wsum csum;
BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
uh->check = 0;
csum = skb_checksum(skb, 0, len, 0);
uh->check = udp_v4_check(len, saddr, daddr, csum);
if (uh->check == 0)
uh->check = CSUM_MANGLED_0;
skb->ip_summed = CHECKSUM_UNNECESSARY;
} }
} }
EXPORT_SYMBOL(udp_set_csum); EXPORT_SYMBOL(udp_set_csum);
......
...@@ -98,27 +98,16 @@ void udp6_set_csum(bool nocheck, struct sk_buff *skb, ...@@ -98,27 +98,16 @@ void udp6_set_csum(bool nocheck, struct sk_buff *skb,
uh->check = 0; uh->check = 0;
else if (skb_is_gso(skb)) else if (skb_is_gso(skb))
uh->check = ~udp_v6_check(len, saddr, daddr, 0); uh->check = ~udp_v6_check(len, saddr, daddr, 0);
else if (skb_dst(skb) && skb_dst(skb)->dev && else if (skb->ip_summed == CHECKSUM_PARTIAL) {
(skb_dst(skb)->dev->features & NETIF_F_IPV6_CSUM)) { uh->check = 0;
uh->check = udp_v6_check(len, saddr, daddr, lco_csum(skb));
BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL); if (uh->check == 0)
uh->check = CSUM_MANGLED_0;
} else {
skb->ip_summed = CHECKSUM_PARTIAL; skb->ip_summed = CHECKSUM_PARTIAL;
skb->csum_start = skb_transport_header(skb) - skb->head; skb->csum_start = skb_transport_header(skb) - skb->head;
skb->csum_offset = offsetof(struct udphdr, check); skb->csum_offset = offsetof(struct udphdr, check);
uh->check = ~udp_v6_check(len, saddr, daddr, 0); uh->check = ~udp_v6_check(len, saddr, daddr, 0);
} else {
__wsum csum;
BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
uh->check = 0;
csum = skb_checksum(skb, 0, len, 0);
uh->check = udp_v6_check(len, saddr, daddr, csum);
if (uh->check == 0)
uh->check = CSUM_MANGLED_0;
skb->ip_summed = CHECKSUM_UNNECESSARY;
} }
} }
EXPORT_SYMBOL(udp6_set_csum); EXPORT_SYMBOL(udp6_set_csum);
...@@ -911,7 +911,7 @@ static netdev_tx_t ipip6_tunnel_xmit(struct sk_buff *skb, ...@@ -911,7 +911,7 @@ static netdev_tx_t ipip6_tunnel_xmit(struct sk_buff *skb,
goto tx_error; goto tx_error;
} }
skb = iptunnel_handle_offloads(skb, false, SKB_GSO_SIT); skb = iptunnel_handle_offloads(skb, SKB_GSO_SIT);
if (IS_ERR(skb)) { if (IS_ERR(skb)) {
ip_rt_put(rt); ip_rt_put(rt);
goto out; goto out;
...@@ -1000,7 +1000,7 @@ static netdev_tx_t ipip_tunnel_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -1000,7 +1000,7 @@ static netdev_tx_t ipip_tunnel_xmit(struct sk_buff *skb, struct net_device *dev)
struct ip_tunnel *tunnel = netdev_priv(dev); struct ip_tunnel *tunnel = netdev_priv(dev);
const struct iphdr *tiph = &tunnel->parms.iph; const struct iphdr *tiph = &tunnel->parms.iph;
skb = iptunnel_handle_offloads(skb, false, SKB_GSO_IPIP); skb = iptunnel_handle_offloads(skb, SKB_GSO_IPIP);
if (IS_ERR(skb)) if (IS_ERR(skb))
goto out; goto out;
......
...@@ -1019,8 +1019,7 @@ ip_vs_tunnel_xmit(struct sk_buff *skb, struct ip_vs_conn *cp, ...@@ -1019,8 +1019,7 @@ ip_vs_tunnel_xmit(struct sk_buff *skb, struct ip_vs_conn *cp,
if (IS_ERR(skb)) if (IS_ERR(skb))
goto tx_error; goto tx_error;
skb = iptunnel_handle_offloads( skb = iptunnel_handle_offloads(skb, __tun_gso_type_mask(AF_INET, cp->af));
skb, false, __tun_gso_type_mask(AF_INET, cp->af));
if (IS_ERR(skb)) if (IS_ERR(skb))
goto tx_error; goto tx_error;
...@@ -1112,8 +1111,7 @@ ip_vs_tunnel_xmit_v6(struct sk_buff *skb, struct ip_vs_conn *cp, ...@@ -1112,8 +1111,7 @@ ip_vs_tunnel_xmit_v6(struct sk_buff *skb, struct ip_vs_conn *cp,
if (IS_ERR(skb)) if (IS_ERR(skb))
goto tx_error; goto tx_error;
skb = iptunnel_handle_offloads( skb = iptunnel_handle_offloads(skb, __tun_gso_type_mask(AF_INET6, cp->af));
skb, false, __tun_gso_type_mask(AF_INET6, cp->af));
if (IS_ERR(skb)) if (IS_ERR(skb))
goto tx_error; goto tx_error;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册