提交 626f090c 编写于 作者: Y Yacine Belkadi 提交者: Greg Kroah-Hartman

usb: fix some scripts/kernel-doc warnings

When building the htmldocs (in verbose mode), scripts/kernel-doc reports the
following type of warnings:

Warning(drivers/usb/core/usb.c:76): No description found for return value of
'usb_find_alt_setting'

Fix them by:
- adding some missing descriptions of return values
- using "Return" sections for those descriptions
Signed-off-by: NYacine Belkadi <yacine.belkadi.1@gmail.com>
Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
上级 6b0a1cf7
......@@ -43,10 +43,11 @@ static const size_t pool_max[HCD_BUFFER_POOLS] = {
*
* Call this as part of initializing a host controller that uses the dma
* memory allocators. It initializes some pools of dma-coherent memory that
* will be shared by all drivers using that controller, or returns a negative
* errno value on error.
* will be shared by all drivers using that controller.
*
* Call hcd_buffer_destroy() to clean up after using those pools.
*
* Return: 0 if successful. A negative errno value otherwise.
*/
int hcd_buffer_create(struct usb_hcd *hcd)
{
......
......@@ -117,6 +117,8 @@ static DRIVER_ATTR(new_id, S_IRUGO | S_IWUSR, show_dynids, store_new_id);
* @count: input size
*
* Removes a dynamic usb device ID from this driver.
*
* Return: @count on success. A negative error code otherwise.
*/
static ssize_t
store_remove_id(struct device_driver *driver, const char *buf, size_t count)
......@@ -457,6 +459,8 @@ static int usb_unbind_interface(struct device *dev)
* Callers must own the device lock, so driver probe() entries don't need
* extra locking, but other call contexts may need to explicitly claim that
* lock.
*
* Return: 0 on success.
*/
int usb_driver_claim_interface(struct usb_driver *driver,
struct usb_interface *iface, void *priv)
......@@ -658,6 +662,8 @@ EXPORT_SYMBOL_GPL(usb_match_one_id);
* These device tables are exported with MODULE_DEVICE_TABLE, through
* modutils, to support the driver loading functionality of USB hotplugging.
*
* Return: The first matching usb_device_id, or %NULL.
*
* What Matches:
*
* The "match_flags" element in a usb_device_id controls which
......@@ -823,7 +829,8 @@ static int usb_uevent(struct device *dev, struct kobj_uevent_env *env)
* Registers a USB device driver with the USB core. The list of
* unattached devices will be rescanned whenever a new driver is
* added, allowing the new driver to attach to any recognized devices.
* Returns a negative error code on failure and 0 on success.
*
* Return: A negative error code on failure and 0 on success.
*/
int usb_register_device_driver(struct usb_device_driver *new_udriver,
struct module *owner)
......@@ -879,7 +886,8 @@ EXPORT_SYMBOL_GPL(usb_deregister_device_driver);
* Registers a USB interface driver with the USB core. The list of
* unattached interfaces will be rescanned whenever a new driver is
* added, allowing the new driver to attach to any recognized interfaces.
* Returns a negative error code on failure and 0 on success.
*
* Return: A negative error code on failure and 0 on success.
*
* NOTE: if you want your driver to use the USB major number, you must call
* usb_register_dev() to enable that functionality. This function no longer
......@@ -1213,6 +1221,8 @@ static int usb_resume_interface(struct usb_device *udev,
* unpredictable times.
*
* This routine can run only in process context.
*
* Return: 0 if the suspend succeeded.
*/
static int usb_suspend_both(struct usb_device *udev, pm_message_t msg)
{
......@@ -1294,6 +1304,8 @@ static int usb_suspend_both(struct usb_device *udev, pm_message_t msg)
* unpredictable times.
*
* This routine can run only in process context.
*
* Return: 0 on success.
*/
static int usb_resume_both(struct usb_device *udev, pm_message_t msg)
{
......@@ -1491,6 +1503,8 @@ void usb_autosuspend_device(struct usb_device *udev)
* The caller must hold @udev's device lock.
*
* This routine can run only in process context.
*
* Return: 0 on success. A negative error code otherwise.
*/
int usb_autoresume_device(struct usb_device *udev)
{
......@@ -1600,6 +1614,8 @@ EXPORT_SYMBOL_GPL(usb_autopm_put_interface_no_suspend);
* However if the autoresume fails then the counter is re-decremented.
*
* This routine can run only in process context.
*
* Return: 0 on success.
*/
int usb_autopm_get_interface(struct usb_interface *intf)
{
......@@ -1633,6 +1649,8 @@ EXPORT_SYMBOL_GPL(usb_autopm_get_interface);
* resumed.
*
* This routine can run in atomic context.
*
* Return: 0 on success. A negative error code otherwise.
*/
int usb_autopm_get_interface_async(struct usb_interface *intf)
{
......
......@@ -153,7 +153,7 @@ void usb_major_cleanup(void)
* usb_deregister_dev() must be called when the driver is done with
* the minor numbers given out by this function.
*
* Returns -EINVAL if something bad happens with trying to register a
* Return: -EINVAL if something bad happens with trying to register a
* device, and 0 on success.
*/
int usb_register_dev(struct usb_interface *intf,
......
......@@ -171,6 +171,8 @@ static void ehci_wait_for_companions(struct pci_dev *pdev, struct usb_hcd *hcd,
* through the hotplug entry's driver_data.
*
* Store this function in the HCD's struct pci_driver as probe().
*
* Return: 0 if successful.
*/
int usb_hcd_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
......
......@@ -378,9 +378,10 @@ MODULE_PARM_DESC(authorized_default,
* @buf: Buffer for USB string descriptor (header + UTF-16LE)
* @len: Length (in bytes; may be odd) of descriptor buffer.
*
* The return value is the number of bytes filled in: 2 + 2*strlen(s) or
* buflen, whichever is less.
* Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
* whichever is less.
*
* Note:
* USB String descriptors can contain at most 126 characters; input
* strings longer than that are truncated.
*/
......@@ -416,7 +417,8 @@ ascii2desc(char const *s, u8 *buf, unsigned len)
*
* Produces either a manufacturer, product or serial number string for the
* virtual root hub device.
* Returns the number of bytes filled in: the length of the descriptor or
*
* Return: The number of bytes filled in: the length of the descriptor or
* of the provided buffer, whichever is less.
*/
static unsigned
......@@ -938,6 +940,8 @@ static void usb_bus_init (struct usb_bus *bus)
*
* Assigns a bus number, and links the controller into usbcore data
* structures so that it can be seen by scanning the bus list.
*
* Return: 0 if successful. A negative error code otherwise.
*/
static int usb_register_bus(struct usb_bus *bus)
{
......@@ -1002,6 +1006,8 @@ static void usb_deregister_bus (struct usb_bus *bus)
* the device properly in the device tree and then calls usb_new_device()
* to register the usb device. It also assigns the root hub's USB address
* (always 1).
*
* Return: 0 if successful. A negative error code otherwise.
*/
static int register_root_hub(struct usb_hcd *hcd)
{
......@@ -1108,7 +1114,9 @@ EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
* @isoc: true for isochronous transactions, false for interrupt ones
* @bytecount: how many bytes in the transaction.
*
* Returns approximate bus time in nanoseconds for a periodic transaction.
* Return: Approximate bus time in nanoseconds for a periodic transaction.
*
* Note:
* See USB 2.0 spec section 5.11.3; only periodic transfers need to be
* scheduled in software, this function is only used for such scheduling.
*/
......@@ -1166,7 +1174,7 @@ EXPORT_SYMBOL_GPL(usb_calc_bus_time);
* be disabled. The actions carried out here are required for URB
* submission, as well as for endpoint shutdown and for usb_kill_urb.
*
* Returns 0 for no error, otherwise a negative error code (in which case
* Return: 0 for no error, otherwise a negative error code (in which case
* the enqueue() method must fail). If no error occurs but enqueue() fails
* anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
* the private spinlock and returning.
......@@ -1221,7 +1229,7 @@ EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
* be disabled. The actions carried out here are required for making
* sure than an unlink is valid.
*
* Returns 0 for no error, otherwise a negative error code (in which case
* Return: 0 for no error, otherwise a negative error code (in which case
* the dequeue() method must fail). The possible error codes are:
*
* -EIDRM: @urb was not submitted or has already completed.
......@@ -1784,7 +1792,7 @@ void usb_hcd_flush_endpoint(struct usb_device *udev,
* pass in the current alternate interface setting in cur_alt,
* and pass in the new alternate interface setting in new_alt.
*
* Returns an error if the requested bandwidth change exceeds the
* Return: An error if the requested bandwidth change exceeds the
* bus bandwidth or host controller internal resources.
*/
int usb_hcd_alloc_bandwidth(struct usb_device *udev,
......@@ -1954,9 +1962,12 @@ void usb_hcd_reset_endpoint(struct usb_device *udev,
* @num_streams: number of streams to allocate.
* @mem_flags: flags hcd should use to allocate memory.
*
* Sets up a group of bulk endpoints to have num_streams stream IDs available.
* Sets up a group of bulk endpoints to have @num_streams stream IDs available.
* Drivers may queue multiple transfers to different stream IDs, which may
* complete in a different order than they were queued.
*
* Return: On success, the number of allocated streams. On failure, a negative
* error code.
*/
int usb_alloc_streams(struct usb_interface *interface,
struct usb_host_endpoint **eps, unsigned int num_eps,
......@@ -2201,6 +2212,8 @@ EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
* khubd identifying and possibly configuring the device.
* This is needed by OTG controller drivers, where it helps meet
* HNP protocol timing requirements for starting a port reset.
*
* Return: 0 if successful.
*/
int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
{
......@@ -2235,6 +2248,8 @@ EXPORT_SYMBOL_GPL(usb_bus_start_enum);
*
* If the controller isn't HALTed, calls the driver's irq handler.
* Checks whether the controller is now dead.
*
* Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
*/
irqreturn_t usb_hcd_irq (int irq, void *__hcd)
{
......@@ -2320,7 +2335,8 @@ EXPORT_SYMBOL_GPL (usb_hc_died);
* HC driver's private data. Initialize the generic members of the
* hcd structure.
*
* If memory is unavailable, returns NULL.
* Return: On success, a pointer to the created and initialized HCD structure.
* On failure (e.g. if memory is unavailable), %NULL.
*/
struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
struct device *dev, const char *bus_name,
......@@ -2384,7 +2400,8 @@ EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
* HC driver's private data. Initialize the generic members of the
* hcd structure.
*
* If memory is unavailable, returns NULL.
* Return: On success, a pointer to the created and initialized HCD
* structure. On failure (e.g. if memory is unavailable), %NULL.
*/
struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
struct device *dev, const char *bus_name)
......
......@@ -734,6 +734,8 @@ static void hub_tt_work(struct work_struct *work)
*
* call this function to control port's power via setting or
* clearing the port's PORT_POWER feature.
*
* Return: 0 if successful. A negative error code otherwise.
*/
int usb_hub_set_port_power(struct usb_device *hdev, struct usb_hub *hub,
int port1, bool set)
......@@ -762,6 +764,8 @@ int usb_hub_set_port_power(struct usb_device *hdev, struct usb_hub *hub,
*
* It may not be possible for that hub to handle additional full (or low)
* speed transactions until that state is fully cleared out.
*
* Return: 0 if successful. A negative error code otherwise.
*/
int usb_hub_clear_tt_buffer(struct urb *urb)
{
......@@ -964,6 +968,8 @@ static void hub_port_logical_disconnect(struct usb_hub *hub, int port1)
* see that the device has been disconnected. When the device is
* physically unplugged and something is plugged in, the events will
* be received and processed normally.
*
* Return: 0 if successful. A negative error code otherwise.
*/
int usb_remove_device(struct usb_device *udev)
{
......@@ -2115,6 +2121,8 @@ static inline void announce_device(struct usb_device *udev) { }
* @udev: newly addressed device (in ADDRESS state)
*
* Finish enumeration for On-The-Go devices
*
* Return: 0 if successful. A negative error code otherwise.
*/
static int usb_enumerate_device_otg(struct usb_device *udev)
{
......@@ -2197,6 +2205,8 @@ static int usb_enumerate_device_otg(struct usb_device *udev)
* If the device is WUSB and not authorized, we don't attempt to read
* the string descriptors, as they will be errored out by the device
* until it has been authorized.
*
* Return: 0 if successful. A negative error code otherwise.
*/
static int usb_enumerate_device(struct usb_device *udev)
{
......@@ -2277,13 +2287,14 @@ static void set_usb_port_removable(struct usb_device *udev)
* udev has already been installed, but udev is not yet visible through
* sysfs or other filesystem code.
*
* It will return if the device is configured properly or not. Zero if
* the interface was registered with the driver core; else a negative
* errno value.
*
* This call is synchronous, and may not be used in an interrupt context.
*
* Only the hub driver or root-hub registrar should ever call this.
*
* Return: Whether the device is configured properly or not. Zero if the
* interface was registered with the driver core; else a negative errno
* value.
*
*/
int usb_new_device(struct usb_device *udev)
{
......@@ -2391,6 +2402,8 @@ int usb_new_device(struct usb_device *udev)
*
* We share a lock (that we have) with device_del(), so we need to
* defer its call.
*
* Return: 0.
*/
int usb_deauthorize_device(struct usb_device *usb_dev)
{
......@@ -5025,10 +5038,11 @@ static int descriptors_changed(struct usb_device *udev,
* re-connected. All drivers will be unbound, and the device will be
* re-enumerated and probed all over again.
*
* Returns 0 if the reset succeeded, -ENODEV if the device has been
* Return: 0 if the reset succeeded, -ENODEV if the device has been
* flagged for logical disconnection, or some other negative error code
* if the reset wasn't even attempted.
*
* Note:
* The caller must own the device lock. For example, it's safe to use
* this from a driver probe() routine after downloading new firmware.
* For calls that might not occur during probe(), drivers should lock
......@@ -5184,8 +5198,9 @@ static int usb_reset_and_verify_device(struct usb_device *udev)
* method), performs the port reset, and then lets the drivers know that
* the reset is over (using their post_reset method).
*
* Return value is the same as for usb_reset_and_verify_device().
* Return: The same as for usb_reset_and_verify_device().
*
* Note:
* The caller must own the device lock. For example, it's safe to use
* this from a driver probe() routine after downloading new firmware.
* For calls that might not occur during probe(), drivers should lock
......@@ -5323,7 +5338,7 @@ EXPORT_SYMBOL_GPL(usb_queue_reset_device);
* USB drivers call this function to get hub's child device
* pointer.
*
* Return NULL if input param is invalid and
* Return: %NULL if input param is invalid and
* child's usb_device pointer if non-NULL.
*/
struct usb_device *usb_hub_find_child(struct usb_device *hdev,
......@@ -5357,8 +5372,8 @@ void usb_set_hub_port_connect_type(struct usb_device *hdev, int port1,
* @hdev: USB device belonging to the usb hub
* @port1: port num of the port
*
* Return connect type of the port and if input params are
* invalid, return USB_PORT_CONNECT_TYPE_UNKNOWN.
* Return: The connect type of the port if successful. Or
* USB_PORT_CONNECT_TYPE_UNKNOWN if input params are invalid.
*/
enum usb_port_connect_type
usb_get_hub_port_connect_type(struct usb_device *hdev, int port1)
......@@ -5418,8 +5433,8 @@ void usb_hub_adjust_deviceremovable(struct usb_device *hdev,
* @hdev: USB device belonging to the usb hub
* @port1: port num of the port
*
* Return port's acpi handle if successful, NULL if params are
* invaild.
* Return: Port's acpi handle if successful, %NULL if params are
* invalid.
*/
acpi_handle usb_get_hub_port_acpi_handle(struct usb_device *hdev,
int port1)
......
......@@ -119,15 +119,15 @@ static int usb_internal_control_msg(struct usb_device *usb_dev,
* This function sends a simple control message to a specified endpoint and
* waits for the message to complete, or timeout.
*
* If successful, it returns the number of bytes transferred, otherwise a
* negative error number.
*
* Don't use this function from within an interrupt context, like a bottom half
* handler. If you need an asynchronous message, or need to send a message
* from within interrupt context, use usb_submit_urb().
* If a thread in your driver uses this call, make sure your disconnect()
* method can wait for it to complete. Since you don't have a handle on the
* URB used, you can't cancel the request.
*
* Return: If successful, the number of bytes transferred. Otherwise, a negative
* error number.
*/
int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
__u8 requesttype, __u16 value, __u16 index, void *data,
......@@ -170,15 +170,16 @@ EXPORT_SYMBOL_GPL(usb_control_msg);
* This function sends a simple interrupt message to a specified endpoint and
* waits for the message to complete, or timeout.
*
* If successful, it returns 0, otherwise a negative error number. The number
* of actual bytes transferred will be stored in the actual_length paramater.
*
* Don't use this function from within an interrupt context, like a bottom half
* handler. If you need an asynchronous message, or need to send a message
* from within interrupt context, use usb_submit_urb() If a thread in your
* driver uses this call, make sure your disconnect() method can wait for it to
* complete. Since you don't have a handle on the URB used, you can't cancel
* the request.
*
* Return:
* If successful, 0. Otherwise a negative error number. The number of actual
* bytes transferred will be stored in the @actual_length paramater.
*/
int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
void *data, int len, int *actual_length, int timeout)
......@@ -203,9 +204,6 @@ EXPORT_SYMBOL_GPL(usb_interrupt_msg);
* This function sends a simple bulk message to a specified endpoint
* and waits for the message to complete, or timeout.
*
* If successful, it returns 0, otherwise a negative error number. The number
* of actual bytes transferred will be stored in the actual_length paramater.
*
* Don't use this function from within an interrupt context, like a bottom half
* handler. If you need an asynchronous message, or need to send a message
* from within interrupt context, use usb_submit_urb() If a thread in your
......@@ -217,6 +215,11 @@ EXPORT_SYMBOL_GPL(usb_interrupt_msg);
* users are forced to abuse this routine by using it to submit URBs for
* interrupt endpoints. We will take the liberty of creating an interrupt URB
* (with the default interval) if the target is an interrupt endpoint.
*
* Return:
* If successful, 0. Otherwise a negative error number. The number of actual
* bytes transferred will be stored in the @actual_length paramater.
*
*/
int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
void *data, int len, int *actual_length, int timeout)
......@@ -341,9 +344,9 @@ static void sg_complete(struct urb *urb)
* send every byte identified in the list.
* @mem_flags: SLAB_* flags affecting memory allocations in this call
*
* Returns zero for success, else a negative errno value. This initializes a
* scatter/gather request, allocating resources such as I/O mappings and urb
* memory (except maybe memory used by USB controller drivers).
* This initializes a scatter/gather request, allocating resources such as
* I/O mappings and urb memory (except maybe memory used by USB controller
* drivers).
*
* The request must be issued using usb_sg_wait(), which waits for the I/O to
* complete (or to be canceled) and then cleans up all resources allocated by
......@@ -351,6 +354,8 @@ static void sg_complete(struct urb *urb)
*
* The request may be canceled with usb_sg_cancel(), either before or after
* usb_sg_wait() is called.
*
* Return: Zero for success, else a negative errno value.
*/
int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
unsigned pipe, unsigned period, struct scatterlist *sg,
......@@ -623,7 +628,7 @@ EXPORT_SYMBOL_GPL(usb_sg_cancel);
*
* This call is synchronous, and may not be used in an interrupt context.
*
* Returns the number of bytes received on success, or else the status code
* Return: The number of bytes received on success, or else the status code
* returned by the underlying usb_control_msg() call.
*/
int usb_get_descriptor(struct usb_device *dev, unsigned char type,
......@@ -671,7 +676,7 @@ EXPORT_SYMBOL_GPL(usb_get_descriptor);
*
* This call is synchronous, and may not be used in an interrupt context.
*
* Returns the number of bytes received on success, or else the status code
* Return: The number of bytes received on success, or else the status code
* returned by the underlying usb_control_msg() call.
*/
static int usb_get_string(struct usb_device *dev, unsigned short langid,
......@@ -805,7 +810,7 @@ static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
*
* This call is synchronous, and may not be used in an interrupt context.
*
* Returns length of the string (>= 0) or usb_control_msg status (< 0).
* Return: length of the string (>= 0) or usb_control_msg status (< 0).
*/
int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
{
......@@ -853,8 +858,8 @@ EXPORT_SYMBOL_GPL(usb_string);
* @udev: the device whose string descriptor is being read
* @index: the descriptor index
*
* Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
* or NULL if the index is 0 or the string could not be read.
* Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
* or %NULL if the index is 0 or the string could not be read.
*/
char *usb_cache_string(struct usb_device *udev, int index)
{
......@@ -894,7 +899,7 @@ char *usb_cache_string(struct usb_device *udev, int index)
*
* This call is synchronous, and may not be used in an interrupt context.
*
* Returns the number of bytes received on success, or else the status code
* Return: The number of bytes received on success, or else the status code
* returned by the underlying usb_control_msg() call.
*/
int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
......@@ -980,7 +985,7 @@ EXPORT_SYMBOL_GPL(usb_get_status);
*
* This call is synchronous, and may not be used in an interrupt context.
*
* Returns zero on success, or else the status code returned by the
* Return: Zero on success, or else the status code returned by the
* underlying usb_control_msg() call.
*/
int usb_clear_halt(struct usb_device *dev, int pipe)
......@@ -1277,7 +1282,7 @@ void usb_enable_interface(struct usb_device *dev,
* endpoints in that interface; all such urbs must first be completed
* (perhaps forced by unlinking).
*
* Returns zero on success, or else the status code returned by the
* Return: Zero on success, or else the status code returned by the
* underlying usb_control_msg() call.
*/
int usb_set_interface(struct usb_device *dev, int interface, int alternate)
......@@ -1431,7 +1436,7 @@ EXPORT_SYMBOL_GPL(usb_set_interface);
*
* The caller must own the device lock.
*
* Returns zero on success, else a negative error code.
* Return: Zero on success, else a negative error code.
*/
int usb_reset_configuration(struct usb_device *dev)
{
......@@ -1973,7 +1978,7 @@ static void cancel_async_set_config(struct usb_device *udev)
* routine gets around the normal restrictions by using a work thread to
* submit the change-config request.
*
* Returns 0 if the request was successfully queued, error code otherwise.
* Return: 0 if the request was successfully queued, error code otherwise.
* The caller has no way to know whether the queued request will eventually
* succeed.
*/
......
......@@ -55,12 +55,12 @@ EXPORT_SYMBOL_GPL(usb_init_urb);
* Creates an urb for the USB driver to use, initializes a few internal
* structures, incrementes the usage counter, and returns a pointer to it.
*
* If no memory is available, NULL is returned.
*
* If the driver want to use this urb for interrupt, control, or bulk
* endpoints, pass '0' as the number of iso packets.
*
* The driver must call usb_free_urb() when it is finished with the urb.
*
* Return: A pointer to the new urb, or %NULL if no memory is available.
*/
struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
{
......@@ -103,7 +103,7 @@ EXPORT_SYMBOL_GPL(usb_free_urb);
* host controller driver. This allows proper reference counting to happen
* for urbs.
*
* A pointer to the urb with the incremented reference counter is returned.
* Return: A pointer to the urb with the incremented reference counter.
*/
struct urb *usb_get_urb(struct urb *urb)
{
......@@ -200,13 +200,12 @@ EXPORT_SYMBOL_GPL(usb_unanchor_urb);
* the particular kind of transfer, although they will not initialize
* any transfer flags.
*
* Successful submissions return 0; otherwise this routine returns a
* negative error number. If the submission is successful, the complete()
* callback from the URB will be called exactly once, when the USB core and
* Host Controller Driver (HCD) are finished with the URB. When the completion
* function is called, control of the URB is returned to the device
* driver which issued the request. The completion handler may then
* immediately free or reuse that URB.
* If the submission is successful, the complete() callback from the URB
* will be called exactly once, when the USB core and Host Controller Driver
* (HCD) are finished with the URB. When the completion function is called,
* control of the URB is returned to the device driver which issued the
* request. The completion handler may then immediately free or reuse that
* URB.
*
* With few exceptions, USB device drivers should never access URB fields
* provided by usbcore or the HCD until its complete() is called.
......@@ -241,6 +240,9 @@ EXPORT_SYMBOL_GPL(usb_unanchor_urb);
* that are standardized in the USB 2.0 specification. For bulk
* endpoints, a synchronous usb_bulk_msg() call is available.
*
* Return:
* 0 on successful submissions. A negative error number otherwise.
*
* Request Queuing:
*
* URBs may be submitted to endpoints before previous ones complete, to
......@@ -572,6 +574,9 @@ EXPORT_SYMBOL_GPL(usb_submit_urb);
* particular, when a driver calls this routine, it must insure that the
* completion handler cannot deallocate the URB.
*
* Return: -EINPROGRESS on success. See description for other values on
* failure.
*
* Unlinking and Endpoint Queues:
*
* [The behaviors and guarantees described below do not apply to virtual
......@@ -846,6 +851,8 @@ EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
*
* Call this is you want to be sure all an anchor's
* URBs have finished
*
* Return: Non-zero if the anchor became unused. Zero on timeout.
*/
int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
unsigned int timeout)
......@@ -859,8 +866,11 @@ EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
* usb_get_from_anchor - get an anchor's oldest urb
* @anchor: the anchor whose urb you want
*
* this will take the oldest urb from an anchor,
* This will take the oldest urb from an anchor,
* unanchor and return it
*
* Return: The oldest urb from @anchor, or %NULL if @anchor has no
* urbs associated with it.
*/
struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
{
......@@ -909,7 +919,7 @@ EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
* usb_anchor_empty - is an anchor empty
* @anchor: the anchor you want to query
*
* returns 1 if the anchor has no urbs associated with it
* Return: 1 if the anchor has no urbs associated with it.
*/
int usb_anchor_empty(struct usb_anchor *anchor)
{
......
......@@ -68,6 +68,8 @@ MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
* @alt_num: alternate interface setting number to search for.
*
* Search the configuration's interface cache for the given alt setting.
*
* Return: The alternate setting, if found. %NULL otherwise.
*/
struct usb_host_interface *usb_find_alt_setting(
struct usb_host_config *config,
......@@ -103,8 +105,7 @@ EXPORT_SYMBOL_GPL(usb_find_alt_setting);
* @ifnum: the desired interface
*
* This walks the device descriptor for the currently active configuration
* and returns a pointer to the interface with that particular interface
* number, or null.
* to find the interface object with the particular interface number.
*
* Note that configuration descriptors are not required to assign interface
* numbers sequentially, so that it would be incorrect to assume that
......@@ -115,6 +116,9 @@ EXPORT_SYMBOL_GPL(usb_find_alt_setting);
*
* Don't call this function unless you are bound to one of the interfaces
* on this device or you have locked the device!
*
* Return: A pointer to the interface that has @ifnum as interface number,
* if found. %NULL otherwise.
*/
struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
unsigned ifnum)
......@@ -139,8 +143,7 @@ EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
* @altnum: the desired alternate setting number
*
* This searches the altsetting array of the specified interface for
* an entry with the correct bAlternateSetting value and returns a pointer
* to that entry, or null.
* an entry with the correct bAlternateSetting value.
*
* Note that altsettings need not be stored sequentially by number, so
* it would be incorrect to assume that the first altsetting entry in
......@@ -149,6 +152,9 @@ EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
*
* Don't call this function unless you are bound to the intf interface
* or you have locked the device!
*
* Return: A pointer to the entry of the altsetting array of @intf that
* has @altnum as the alternate setting number. %NULL if not found.
*/
struct usb_host_interface *usb_altnum_to_altsetting(
const struct usb_interface *intf,
......@@ -191,6 +197,8 @@ static int __find_interface(struct device *dev, void *data)
* This walks the bus device list and returns a pointer to the interface
* with the matching minor and driver. Note, this only works for devices
* that share the USB major number.
*
* Return: A pointer to the interface with the matching major and @minor.
*/
struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
{
......@@ -390,6 +398,9 @@ static unsigned usb_bus_is_wusb(struct usb_bus *bus)
* controllers) should ever call this.
*
* This call may not be used in a non-sleeping context.
*
* Return: On success, a pointer to the allocated usb device. %NULL on
* failure.
*/
struct usb_device *usb_alloc_dev(struct usb_device *parent,
struct usb_bus *bus, unsigned port1)
......@@ -501,7 +512,7 @@ struct usb_device *usb_alloc_dev(struct usb_device *parent,
* their probe() methods, when they bind to an interface, and release
* them by calling usb_put_dev(), in their disconnect() methods.
*
* A pointer to the device with the incremented reference counter is returned.
* Return: A pointer to the device with the incremented reference counter.
*/
struct usb_device *usb_get_dev(struct usb_device *dev)
{
......@@ -535,8 +546,7 @@ EXPORT_SYMBOL_GPL(usb_put_dev);
* their probe() methods, when they bind to an interface, and release
* them by calling usb_put_intf(), in their disconnect() methods.
*
* A pointer to the interface with the incremented reference counter is
* returned.
* Return: A pointer to the interface with the incremented reference counter.
*/
struct usb_interface *usb_get_intf(struct usb_interface *intf)
{
......@@ -589,7 +599,7 @@ EXPORT_SYMBOL_GPL(usb_put_intf);
* disconnect; in some drivers (such as usb-storage) the disconnect()
* or suspend() method will block waiting for a device reset to complete.
*
* Returns a negative error code for failure, otherwise 0.
* Return: A negative error code for failure, otherwise 0.
*/
int usb_lock_device_for_reset(struct usb_device *udev,
const struct usb_interface *iface)
......@@ -628,14 +638,15 @@ EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
* usb_get_current_frame_number - return current bus frame number
* @dev: the device whose bus is being queried
*
* Returns the current frame number for the USB host controller
* used with the given USB device. This can be used when scheduling
* Return: The current frame number for the USB host controller used
* with the given USB device. This can be used when scheduling
* isochronous requests.
*
* Note that different kinds of host controller have different
* "scheduling horizons". While one type might support scheduling only
* 32 frames into the future, others could support scheduling up to
* 1024 frames into the future.
* Note: Different kinds of host controller have different "scheduling
* horizons". While one type might support scheduling only 32 frames
* into the future, others could support scheduling up to 1024 frames
* into the future.
*
*/
int usb_get_current_frame_number(struct usb_device *dev)
{
......@@ -685,11 +696,12 @@ EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
* @mem_flags: affect whether allocation may block
* @dma: used to return DMA address of buffer
*
* Return value is either null (indicating no buffer could be allocated), or
* the cpu-space pointer to a buffer that may be used to perform DMA to the
* Return: Either null (indicating no buffer could be allocated), or the
* cpu-space pointer to a buffer that may be used to perform DMA to the
* specified device. Such cpu-space buffers are returned along with the DMA
* address (through the pointer provided).
*
* Note:
* These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
* to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
* hardware during URB completion/resubmit. The implementation varies between
......@@ -735,17 +747,18 @@ EXPORT_SYMBOL_GPL(usb_free_coherent);
* usb_buffer_map - create DMA mapping(s) for an urb
* @urb: urb whose transfer_buffer/setup_packet will be mapped
*
* Return value is either null (indicating no buffer could be mapped), or
* the parameter. URB_NO_TRANSFER_DMA_MAP is
* added to urb->transfer_flags if the operation succeeds. If the device
* is connected to this system through a non-DMA controller, this operation
* always succeeds.
* URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation
* succeeds. If the device is connected to this system through a non-DMA
* controller, this operation always succeeds.
*
* This call would normally be used for an urb which is reused, perhaps
* as the target of a large periodic transfer, with usb_buffer_dmasync()
* calls to synchronize memory and dma state.
*
* Reverse the effect of this call with usb_buffer_unmap().
*
* Return: Either %NULL (indicating no buffer could be mapped), or @urb.
*
*/
#if 0
struct urb *usb_buffer_map(struct urb *urb)
......@@ -850,9 +863,10 @@ EXPORT_SYMBOL_GPL(usb_buffer_unmap);
* @sg: the scatterlist to map
* @nents: the number of entries in the scatterlist
*
* Return value is either < 0 (indicating no buffers could be mapped), or
* the number of DMA mapping array entries in the scatterlist.
* Return: Either < 0 (indicating no buffers could be mapped), or the
* number of DMA mapping array entries in the scatterlist.
*
* Note:
* The caller is responsible for placing the resulting DMA addresses from
* the scatterlist into URB transfer buffer pointers, and for setting the
* URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
......
......@@ -708,7 +708,10 @@ extern int usb_driver_claim_interface(struct usb_driver *driver,
* usb_interface_claimed - returns true iff an interface is claimed
* @iface: the interface being checked
*
* Returns true (nonzero) iff the interface is claimed, else false (zero).
* Return: %true (nonzero) iff the interface is claimed, else %false
* (zero).
*
* Note:
* Callers must own the driver model's usb bus readlock. So driver
* probe() entries don't need extra locking, but other call contexts
* may need to explicitly claim that lock.
......@@ -745,8 +748,9 @@ extern struct usb_host_interface *usb_find_alt_setting(
* @buf: where to put the string
* @size: how big is "buf"?
*
* Returns length of the string (> 0) or negative if size was too small.
* Return: Length of the string (> 0) or negative if size was too small.
*
* Note:
* This identifier is intended to be "stable", reflecting physical paths in
* hardware such as physical bus addresses for host controllers or ports on
* USB hubs. That makes it stay the same until systems are physically
......@@ -1578,7 +1582,7 @@ extern int usb_anchor_empty(struct usb_anchor *anchor);
* usb_urb_dir_in - check if an URB describes an IN transfer
* @urb: URB to be checked
*
* Returns 1 if @urb describes an IN transfer (device-to-host),
* Return: 1 if @urb describes an IN transfer (device-to-host),
* otherwise 0.
*/
static inline int usb_urb_dir_in(struct urb *urb)
......@@ -1590,7 +1594,7 @@ static inline int usb_urb_dir_in(struct urb *urb)
* usb_urb_dir_out - check if an URB describes an OUT transfer
* @urb: URB to be checked
*
* Returns 1 if @urb describes an OUT transfer (host-to-device),
* Return: 1 if @urb describes an OUT transfer (host-to-device),
* otherwise 0.
*/
static inline int usb_urb_dir_out(struct urb *urb)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册