提交 50204c6f 编写于 作者: D Denys Vlasenko 提交者: Oleg Nesterov

uprobes/x86: Simplify rip-relative handling

It is possible to replace rip-relative addressing mode with addressing
mode of the same length: (reg+disp32). This eliminates the need to fix
up immediate and correct for changing instruction length.

And we can kill arch_uprobe->def.riprel_target.
Signed-off-by: NDenys Vlasenko <dvlasenk@redhat.com>
Reviewed-by: NJim Keniston <jkenisto@us.ibm.com>
Signed-off-by: NOleg Nesterov <oleg@redhat.com>
上级 29dedee0
...@@ -50,9 +50,6 @@ struct arch_uprobe { ...@@ -50,9 +50,6 @@ struct arch_uprobe {
u8 opc1; u8 opc1;
} branch; } branch;
struct { struct {
#ifdef CONFIG_X86_64
long riprel_target;
#endif
u8 fixups; u8 fixups;
u8 ilen; u8 ilen;
} def; } def;
......
...@@ -251,9 +251,9 @@ static inline bool is_64bit_mm(struct mm_struct *mm) ...@@ -251,9 +251,9 @@ static inline bool is_64bit_mm(struct mm_struct *mm)
* If arch_uprobe->insn doesn't use rip-relative addressing, return * If arch_uprobe->insn doesn't use rip-relative addressing, return
* immediately. Otherwise, rewrite the instruction so that it accesses * immediately. Otherwise, rewrite the instruction so that it accesses
* its memory operand indirectly through a scratch register. Set * its memory operand indirectly through a scratch register. Set
* def->fixups and def->riprel_target accordingly. (The contents of the * def->fixups accordingly. (The contents of the scratch register
* scratch register will be saved before we single-step the modified * will be saved before we single-step the modified instruction,
* instruction, and restored afterward). * and restored afterward).
* *
* We do this because a rip-relative instruction can access only a * We do this because a rip-relative instruction can access only a
* relatively small area (+/- 2 GB from the instruction), and the XOL * relatively small area (+/- 2 GB from the instruction), and the XOL
...@@ -264,9 +264,12 @@ static inline bool is_64bit_mm(struct mm_struct *mm) ...@@ -264,9 +264,12 @@ static inline bool is_64bit_mm(struct mm_struct *mm)
* *
* Some useful facts about rip-relative instructions: * Some useful facts about rip-relative instructions:
* *
* - There's always a modrm byte. * - There's always a modrm byte with bit layout "00 reg 101".
* - There's never a SIB byte. * - There's never a SIB byte.
* - The displacement is always 4 bytes. * - The displacement is always 4 bytes.
* - REX.B=1 bit in REX prefix, which normally extends r/m field,
* has no effect on rip-relative mode. It doesn't make modrm byte
* with r/m=101 refer to register 1101 = R13.
*/ */
static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn) static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
{ {
...@@ -293,9 +296,8 @@ static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn) ...@@ -293,9 +296,8 @@ static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
*/ */
cursor = auprobe->insn + insn_offset_modrm(insn); cursor = auprobe->insn + insn_offset_modrm(insn);
/* /*
* Convert from rip-relative addressing to indirect addressing * Convert from rip-relative addressing
* via a scratch register. Change the r/m field from 0x5 (%rip) * to register-relative addressing via a scratch register.
* to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
*/ */
reg = MODRM_REG(insn); reg = MODRM_REG(insn);
if (reg == 0) { if (reg == 0) {
...@@ -307,22 +309,21 @@ static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn) ...@@ -307,22 +309,21 @@ static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
* #1) for the scratch register. * #1) for the scratch register.
*/ */
auprobe->def.fixups |= UPROBE_FIX_RIP_CX; auprobe->def.fixups |= UPROBE_FIX_RIP_CX;
/* Change modrm from 00 000 101 to 00 000 001. */ /*
*cursor = 0x1; * Change modrm from "00 000 101" to "10 000 001". Example:
* 89 05 disp32 mov %eax,disp32(%rip) becomes
* 89 81 disp32 mov %eax,disp32(%rcx)
*/
*cursor = 0x81;
} else { } else {
/* Use %rax (register #0) for the scratch register. */ /* Use %rax (register #0) for the scratch register. */
auprobe->def.fixups |= UPROBE_FIX_RIP_AX; auprobe->def.fixups |= UPROBE_FIX_RIP_AX;
/* Change modrm from 00 xxx 101 to 00 xxx 000 */ /*
*cursor = (reg << 3); * Change modrm from "00 reg 101" to "10 reg 000". Example:
} * 89 1d disp32 mov %edx,disp32(%rip) becomes
* 89 98 disp32 mov %edx,disp32(%rax)
/* Target address = address of next instruction + (signed) offset */ */
auprobe->def.riprel_target = (long)insn->length + insn->displacement.value; *cursor = (reg << 3) | 0x80;
/* Displacement field is gone; slide immediate field (if any) over. */
if (insn->immediate.nbytes) {
cursor++;
memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes);
} }
} }
...@@ -343,26 +344,17 @@ static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) ...@@ -343,26 +344,17 @@ static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
unsigned long *sr = scratch_reg(auprobe, regs); unsigned long *sr = scratch_reg(auprobe, regs);
utask->autask.saved_scratch_register = *sr; utask->autask.saved_scratch_register = *sr;
*sr = utask->vaddr + auprobe->def.riprel_target; *sr = utask->vaddr + auprobe->def.ilen;
} }
} }
static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
long *correction)
{ {
if (auprobe->def.fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) { if (auprobe->def.fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) {
struct uprobe_task *utask = current->utask; struct uprobe_task *utask = current->utask;
unsigned long *sr = scratch_reg(auprobe, regs); unsigned long *sr = scratch_reg(auprobe, regs);
*sr = utask->autask.saved_scratch_register; *sr = utask->autask.saved_scratch_register;
/*
* The original instruction includes a displacement, and so
* is 4 bytes longer than what we've just single-stepped.
* Caller may need to apply other fixups to handle stuff
* like "jmpq *...(%rip)" and "callq *...(%rip)".
*/
if (correction)
*correction += 4;
} }
} }
#else /* 32-bit: */ #else /* 32-bit: */
...@@ -379,8 +371,7 @@ static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn) ...@@ -379,8 +371,7 @@ static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{ {
} }
static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
long *correction)
{ {
} }
#endif /* CONFIG_X86_64 */ #endif /* CONFIG_X86_64 */
...@@ -417,10 +408,10 @@ static int push_ret_address(struct pt_regs *regs, unsigned long ip) ...@@ -417,10 +408,10 @@ static int push_ret_address(struct pt_regs *regs, unsigned long ip)
static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs) static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{ {
struct uprobe_task *utask = current->utask; struct uprobe_task *utask = current->utask;
long correction = (long)(utask->vaddr - utask->xol_vaddr);
riprel_post_xol(auprobe, regs, &correction); riprel_post_xol(auprobe, regs);
if (auprobe->def.fixups & UPROBE_FIX_IP) { if (auprobe->def.fixups & UPROBE_FIX_IP) {
long correction = utask->vaddr - utask->xol_vaddr;
regs->ip += correction; regs->ip += correction;
} else if (auprobe->def.fixups & UPROBE_FIX_CALL) { } else if (auprobe->def.fixups & UPROBE_FIX_CALL) {
regs->sp += sizeof_long(); regs->sp += sizeof_long();
...@@ -436,7 +427,7 @@ static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs ...@@ -436,7 +427,7 @@ static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs
static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs) static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{ {
riprel_post_xol(auprobe, regs, NULL); riprel_post_xol(auprobe, regs);
} }
static struct uprobe_xol_ops default_xol_ops = { static struct uprobe_xol_ops default_xol_ops = {
...@@ -732,11 +723,9 @@ bool arch_uprobe_xol_was_trapped(struct task_struct *t) ...@@ -732,11 +723,9 @@ bool arch_uprobe_xol_was_trapped(struct task_struct *t)
* *
* If the original instruction was a rip-relative instruction such as * If the original instruction was a rip-relative instruction such as
* "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
* instruction using a scratch register -- e.g., "movl %edx,(%rax)". * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rax)".
* We need to restore the contents of the scratch register and adjust * We need to restore the contents of the scratch register
* the ip, keeping in mind that the instruction we executed is 4 bytes * (FIX_RIP_AX or FIX_RIP_CX).
* shorter than the original instruction (since we squeezed out the offset
* field). (FIX_RIP_AX or FIX_RIP_CX)
*/ */
int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{ {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册