提交 3c28c9cc 编写于 作者: L Linus Torvalds

Merge tag 'md/4.5' of git://neil.brown.name/md

Pull md updates from Neil Brown:
 "Mostly clustered-raid1 and raid5 journal updates.  one Y2038 fix and
  other minor stuff.

  One patch removes me from the MAINTAINERS file and adds a record of my
  md maintainership to Credits"

Many thanks to Neil, who has been around for a _looong_ time.

* tag 'md/4.5' of git://neil.brown.name/md: (26 commits)
  md/raid: only permit hot-add of compatible integrity profiles
  Remove myself as MD Maintainer, and add to Credits.
  raid5-cache: handle journal hotadd in quiesce
  MD: add journal with array suspended
  md: set MD_HAS_JOURNAL in correct places
  md: Remove 'ready' field from mddev.
  md: remove unnecesary md_new_event_inintr
  raid5: allow r5l_io_unit allocations to fail
  raid5-cache: use a mempool for the metadata block
  raid5-cache: use a bio_set
  raid5-cache: add journal hot add/remove support
  drivers: md: use ktime_get_real_seconds()
  md: avoid warning for 32-bit sector_t
  raid5-cache: free meta_page earlier
  raid5-cache: simplify r5l_move_io_unit_list
  md: update comment for md_allow_write
  md-cluster: update comments for MD_CLUSTER_SEND_LOCKED_ALREADY
  md-cluster: Protect communication with mutexes
  md-cluster: Defer MD reloading to mddev->thread
  md-cluster: update the documentation
  ...
......@@ -534,6 +534,7 @@ N: NeilBrown
E: neil@brown.name
P: 4096R/566281B9 1BC6 29EB D390 D870 7B5F 497A 39EC 9EDD 5662 81B9
D: NFSD Maintainer 2000-2007
D: MD Maintainer 2001-2016
N: Zach Brown
E: zab@zabbo.net
......
......@@ -3,7 +3,7 @@ The cluster MD is a shared-device RAID for a cluster.
1. On-disk format
Separate write-intent-bitmap are used for each cluster node.
Separate write-intent-bitmaps are used for each cluster node.
The bitmaps record all writes that may have been started on that node,
and may not yet have finished. The on-disk layout is:
......@@ -14,117 +14,161 @@ and may not yet have finished. The on-disk layout is:
| bm super[2] + bits | bm bits [2, contd] | bm super[3] + bits |
| bm bits [3, contd] | | |
During "normal" functioning we assume the filesystem ensures that only one
node writes to any given block at a time, so a write
request will
During "normal" functioning we assume the filesystem ensures that only
one node writes to any given block at a time, so a write request will
- set the appropriate bit (if not already set)
- commit the write to all mirrors
- schedule the bit to be cleared after a timeout.
Reads are just handled normally. It is up to the filesystem to
ensure one node doesn't read from a location where another node (or the same
Reads are just handled normally. It is up to the filesystem to ensure
one node doesn't read from a location where another node (or the same
node) is writing.
2. DLM Locks for management
There are two locks for managing the device:
There are three groups of locks for managing the device:
2.1 Bitmap lock resource (bm_lockres)
The bm_lockres protects individual node bitmaps. They are named in the
form bitmap001 for node 1, bitmap002 for node and so on. When a node
joins the cluster, it acquires the lock in PW mode and it stays so
during the lifetime the node is part of the cluster. The lock resource
number is based on the slot number returned by the DLM subsystem. Since
DLM starts node count from one and bitmap slots start from zero, one is
subtracted from the DLM slot number to arrive at the bitmap slot number.
The bm_lockres protects individual node bitmaps. They are named in
the form bitmap000 for node 1, bitmap001 for node 2 and so on. When a
node joins the cluster, it acquires the lock in PW mode and it stays
so during the lifetime the node is part of the cluster. The lock
resource number is based on the slot number returned by the DLM
subsystem. Since DLM starts node count from one and bitmap slots
start from zero, one is subtracted from the DLM slot number to arrive
at the bitmap slot number.
The LVB of the bitmap lock for a particular node records the range
of sectors that are being re-synced by that node. No other
node may write to those sectors. This is used when a new nodes
joins the cluster.
2.2 Message passing locks
Each node has to communicate with other nodes when starting or ending
resync, and for metadata superblock updates. This communication is
managed through three locks: "token", "message", and "ack", together
with the Lock Value Block (LVB) of one of the "message" lock.
2.3 new-device management
A single lock: "no-new-dev" is used to co-ordinate the addition of
new devices - this must be synchronized across the array.
Normally all nodes hold a concurrent-read lock on this device.
3. Communication
Each node has to communicate with other nodes when starting or ending
resync, and metadata superblock updates.
Messages can be broadcast to all nodes, and the sender waits for all
other nodes to acknowledge the message before proceeding. Only one
message can be processed at a time.
3.1 Message Types
There are 3 types, of messages which are passed
There are six types of messages which are passed:
3.1.1 METADATA_UPDATED: informs other nodes that the metadata has been
updated, and the node must re-read the md superblock. This is performed
synchronously.
3.1.1 METADATA_UPDATED: informs other nodes that the metadata has
been updated, and the node must re-read the md superblock. This is
performed synchronously. It is primarily used to signal device
failure.
3.1.2 RESYNC: informs other nodes that a resync is initiated or ended
so that each node may suspend or resume the region.
3.1.2 RESYNCING: informs other nodes that a resync is initiated or
ended so that each node may suspend or resume the region. Each
RESYNCING message identifies a range of the devices that the
sending node is about to resync. This over-rides any pervious
notification from that node: only one ranged can be resynced at a
time per-node.
3.1.3 NEWDISK: informs other nodes that a device is being added to
the array. Message contains an identifier for that device. See
below for further details.
3.1.4 REMOVE: A failed or spare device is being removed from the
array. The slot-number of the device is included in the message.
3.1.5 RE_ADD: A failed device is being re-activated - the assumption
is that it has been determined to be working again.
3.1.6 BITMAP_NEEDS_SYNC: if a node is stopped locally but the bitmap
isn't clean, then another node is informed to take the ownership of
resync.
3.2 Communication mechanism
The DLM LVB is used to communicate within nodes of the cluster. There
are three resources used for the purpose:
3.2.1 Token: The resource which protects the entire communication
3.2.1 token: The resource which protects the entire communication
system. The node having the token resource is allowed to
communicate.
3.2.2 Message: The lock resource which carries the data to
3.2.2 message: The lock resource which carries the data to
communicate.
3.2.3 Ack: The resource, acquiring which means the message has been
3.2.3 ack: The resource, acquiring which means the message has been
acknowledged by all nodes in the cluster. The BAST of the resource
is used to inform the receive node that a node wants to communicate.
is used to inform the receiving node that a node wants to
communicate.
The algorithm is:
1. receive status
1. receive status - all nodes have concurrent-reader lock on "ack".
sender receiver receiver
ACK:CR ACK:CR ACK:CR
sender receiver receiver
"ack":CR "ack":CR "ack":CR
2. sender get EX of TOKEN
sender get EX of MESSAGE
2. sender get EX on "token"
sender get EX on "message"
sender receiver receiver
TOKEN:EX ACK:CR ACK:CR
MESSAGE:EX
ACK:CR
"token":EX "ack":CR "ack":CR
"message":EX
"ack":CR
Sender checks that it still needs to send a message. Messages received
or other events that happened while waiting for the TOKEN may have made
this message inappropriate or redundant.
Sender checks that it still needs to send a message. Messages
received or other events that happened while waiting for the
"token" may have made this message inappropriate or redundant.
3. sender write LVB.
sender down-convert MESSAGE from EX to CW
sender try to get EX of ACK
[ wait until all receiver has *processed* the MESSAGE ]
3. sender writes LVB.
sender down-convert "message" from EX to CW
sender try to get EX of "ack"
[ wait until all receivers have *processed* the "message" ]
[ triggered by bast of ACK ]
receiver get CR of MESSAGE
[ triggered by bast of "ack" ]
receiver get CR on "message"
receiver read LVB
receiver processes the message
[ wait finish ]
receiver release ACK
sender receiver receiver
TOKEN:EX MESSAGE:CR MESSAGE:CR
MESSAGE:CR
ACK:EX
4. triggered by grant of EX on ACK (indicating all receivers have processed
message)
sender down-convert ACK from EX to CR
sender release MESSAGE
sender release TOKEN
receiver upconvert to PR of MESSAGE
receiver get CR of ACK
receiver release MESSAGE
receiver releases "ack"
receiver tries to get PR on "message"
sender receiver receiver
"token":EX "message":CR "message":CR
"message":CW
"ack":EX
4. triggered by grant of EX on "ack" (indicating all receivers
have processed message)
sender down-converts "ack" from EX to CR
sender releases "message"
sender releases "token"
receiver upconvert to PR on "message"
receiver get CR of "ack"
receiver release "message"
sender receiver receiver
ACK:CR ACK:CR ACK:CR
"ack":CR "ack":CR "ack":CR
4. Handling Failures
4.1 Node Failure
When a node fails, the DLM informs the cluster with the slot. The node
starts a cluster recovery thread. The cluster recovery thread:
When a node fails, the DLM informs the cluster with the slot
number. The node starts a cluster recovery thread. The cluster
recovery thread:
- acquires the bitmap<number> lock of the failed node
- opens the bitmap
- reads the bitmap of the failed node
......@@ -132,45 +176,143 @@ The algorithm is:
- cleans the bitmap of the failed node
- releases bitmap<number> lock of the failed node
- initiates resync of the bitmap on the current node
md_check_recovery is invoked within recover_bitmaps,
then md_check_recovery -> metadata_update_start/finish,
it will lock the communication by lock_comm.
Which means when one node is resyncing it blocks all
other nodes from writing anywhere on the array.
The resync process, is the regular md resync. However, in a clustered
The resync process is the regular md resync. However, in a clustered
environment when a resync is performed, it needs to tell other nodes
of the areas which are suspended. Before a resync starts, the node
send out RESYNC_START with the (lo,hi) range of the area which needs
to be suspended. Each node maintains a suspend_list, which contains
the list of ranges which are currently suspended. On receiving
RESYNC_START, the node adds the range to the suspend_list. Similarly,
when the node performing resync finishes, it send RESYNC_FINISHED
to other nodes and other nodes remove the corresponding entry from
the suspend_list.
send out RESYNCING with the (lo,hi) range of the area which needs to
be suspended. Each node maintains a suspend_list, which contains the
list of ranges which are currently suspended. On receiving RESYNCING,
the node adds the range to the suspend_list. Similarly, when the node
performing resync finishes, it sends RESYNCING with an empty range to
other nodes and other nodes remove the corresponding entry from the
suspend_list.
A helper function, should_suspend() can be used to check if a particular
I/O range should be suspended or not.
A helper function, ->area_resyncing() can be used to check if a
particular I/O range should be suspended or not.
4.2 Device Failure
Device failures are handled and communicated with the metadata update
routine.
routine. When a node detects a device failure it does not allow
any further writes to that device until the failure has been
acknowledged by all other nodes.
5. Adding a new Device
For adding a new device, it is necessary that all nodes "see" the new device
to be added. For this, the following algorithm is used:
For adding a new device, it is necessary that all nodes "see" the new
device to be added. For this, the following algorithm is used:
1. Node 1 issues mdadm --manage /dev/mdX --add /dev/sdYY which issues
ioctl(ADD_NEW_DISC with disc.state set to MD_DISK_CLUSTER_ADD)
2. Node 1 sends NEWDISK with uuid and slot number
ioctl(ADD_NEW_DISK with disc.state set to MD_DISK_CLUSTER_ADD)
2. Node 1 sends a NEWDISK message with uuid and slot number
3. Other nodes issue kobject_uevent_env with uuid and slot number
(Steps 4,5 could be a udev rule)
4. In userspace, the node searches for the disk, perhaps
using blkid -t SUB_UUID=""
5. Other nodes issue either of the following depending on whether the disk
was found:
5. Other nodes issue either of the following depending on whether
the disk was found:
ioctl(ADD_NEW_DISK with disc.state set to MD_DISK_CANDIDATE and
disc.number set to slot number)
disc.number set to slot number)
ioctl(CLUSTERED_DISK_NACK)
6. Other nodes drop lock on no-new-devs (CR) if device is found
7. Node 1 attempts EX lock on no-new-devs
8. If node 1 gets the lock, it sends METADATA_UPDATED after unmarking the disk
as SpareLocal
9. If not (get no-new-dev lock), it fails the operation and sends METADATA_UPDATED
10. Other nodes get the information whether a disk is added or not
by the following METADATA_UPDATED.
6. Other nodes drop lock on "no-new-devs" (CR) if device is found
7. Node 1 attempts EX lock on "no-new-dev"
8. If node 1 gets the lock, it sends METADATA_UPDATED after
unmarking the disk as SpareLocal
9. If not (get "no-new-dev" lock), it fails the operation and sends
METADATA_UPDATED.
10. Other nodes get the information whether a disk is added or not
by the following METADATA_UPDATED.
6. Module interface.
There are 17 call-backs which the md core can make to the cluster
module. Understanding these can give a good overview of the whole
process.
6.1 join(nodes) and leave()
These are called when an array is started with a clustered bitmap,
and when the array is stopped. join() ensures the cluster is
available and initializes the various resources.
Only the first 'nodes' nodes in the cluster can use the array.
6.2 slot_number()
Reports the slot number advised by the cluster infrastructure.
Range is from 0 to nodes-1.
6.3 resync_info_update()
This updates the resync range that is stored in the bitmap lock.
The starting point is updated as the resync progresses. The
end point is always the end of the array.
It does *not* send a RESYNCING message.
6.4 resync_start(), resync_finish()
These are called when resync/recovery/reshape starts or stops.
They update the resyncing range in the bitmap lock and also
send a RESYNCING message. resync_start reports the whole
array as resyncing, resync_finish reports none of it.
resync_finish() also sends a BITMAP_NEEDS_SYNC message which
allows some other node to take over.
6.5 metadata_update_start(), metadata_update_finish(),
metadata_update_cancel().
metadata_update_start is used to get exclusive access to
the metadata. If a change is still needed once that access is
gained, metadata_update_finish() will send a METADATA_UPDATE
message to all other nodes, otherwise metadata_update_cancel()
can be used to release the lock.
6.6 area_resyncing()
This combines two elements of functionality.
Firstly, it will check if any node is currently resyncing
anything in a given range of sectors. If any resync is found,
then the caller will avoid writing or read-balancing in that
range.
Secondly, while node recovery is happening it reports that
all areas are resyncing for READ requests. This avoids races
between the cluster-filesystem and the cluster-RAID handling
a node failure.
6.7 add_new_disk_start(), add_new_disk_finish(), new_disk_ack()
These are used to manage the new-disk protocol described above.
When a new device is added, add_new_disk_start() is called before
it is bound to the array and, if that succeeds, add_new_disk_finish()
is called the device is fully added.
When a device is added in acknowledgement to a previous
request, or when the device is declared "unavailable",
new_disk_ack() is called.
6.8 remove_disk()
This is called when a spare or failed device is removed from
the array. It causes a REMOVE message to be send to other nodes.
6.9 gather_bitmaps()
This sends a RE_ADD message to all other nodes and then
gathers bitmap information from all bitmaps. This combined
bitmap is then used to recovery the re-added device.
6.10 lock_all_bitmaps() and unlock_all_bitmaps()
These are called when change bitmap to none. If a node plans
to clear the cluster raid's bitmap, it need to make sure no other
nodes are using the raid which is achieved by lock all bitmap
locks within the cluster, and also those locks are unlocked
accordingly.
......@@ -9999,7 +9999,6 @@ S: Supported
F: drivers/media/pci/solo6x10/
SOFTWARE RAID (Multiple Disks) SUPPORT
M: Neil Brown <neilb@suse.com>
L: linux-raid@vger.kernel.org
S: Supported
F: drivers/md/
......
......@@ -48,13 +48,29 @@ struct resync_info {
#define MD_CLUSTER_SUSPEND_READ_BALANCING 2
#define MD_CLUSTER_BEGIN_JOIN_CLUSTER 3
/* Lock the send communication. This is done through
* bit manipulation as opposed to a mutex in order to
* accomodate lock and hold. See next comment.
*/
#define MD_CLUSTER_SEND_LOCK 4
/* If cluster operations (such as adding a disk) must lock the
* communication channel, so as to perform extra operations
* (update metadata) and no other operation is allowed on the
* MD. Token needs to be locked and held until the operation
* completes witha md_update_sb(), which would eventually release
* the lock.
*/
#define MD_CLUSTER_SEND_LOCKED_ALREADY 5
struct md_cluster_info {
/* dlm lock space and resources for clustered raid. */
dlm_lockspace_t *lockspace;
int slot_number;
struct completion completion;
struct mutex recv_mutex;
struct dlm_lock_resource *bitmap_lockres;
struct dlm_lock_resource **other_bitmap_lockres;
struct dlm_lock_resource *resync_lockres;
struct list_head suspend_list;
spinlock_t suspend_lock;
......@@ -67,6 +83,7 @@ struct md_cluster_info {
struct dlm_lock_resource *no_new_dev_lockres;
struct md_thread *recv_thread;
struct completion newdisk_completion;
wait_queue_head_t wait;
unsigned long state;
};
......@@ -431,8 +448,10 @@ static void process_add_new_disk(struct mddev *mddev, struct cluster_msg *cmsg)
static void process_metadata_update(struct mddev *mddev, struct cluster_msg *msg)
{
struct md_cluster_info *cinfo = mddev->cluster_info;
md_reload_sb(mddev, le32_to_cpu(msg->raid_slot));
mddev->good_device_nr = le32_to_cpu(msg->raid_slot);
set_bit(MD_RELOAD_SB, &mddev->flags);
dlm_lock_sync(cinfo->no_new_dev_lockres, DLM_LOCK_CR);
md_wakeup_thread(mddev->thread);
}
static void process_remove_disk(struct mddev *mddev, struct cluster_msg *msg)
......@@ -440,8 +459,11 @@ static void process_remove_disk(struct mddev *mddev, struct cluster_msg *msg)
struct md_rdev *rdev = md_find_rdev_nr_rcu(mddev,
le32_to_cpu(msg->raid_slot));
if (rdev)
md_kick_rdev_from_array(rdev);
if (rdev) {
set_bit(ClusterRemove, &rdev->flags);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
}
else
pr_warn("%s: %d Could not find disk(%d) to REMOVE\n",
__func__, __LINE__, le32_to_cpu(msg->raid_slot));
......@@ -502,9 +524,11 @@ static void recv_daemon(struct md_thread *thread)
struct cluster_msg msg;
int ret;
mutex_lock(&cinfo->recv_mutex);
/*get CR on Message*/
if (dlm_lock_sync(message_lockres, DLM_LOCK_CR)) {
pr_err("md/raid1:failed to get CR on MESSAGE\n");
mutex_unlock(&cinfo->recv_mutex);
return;
}
......@@ -528,33 +552,45 @@ static void recv_daemon(struct md_thread *thread)
ret = dlm_unlock_sync(message_lockres);
if (unlikely(ret != 0))
pr_info("unlock msg failed return %d\n", ret);
mutex_unlock(&cinfo->recv_mutex);
}
/* lock_comm()
/* lock_token()
* Takes the lock on the TOKEN lock resource so no other
* node can communicate while the operation is underway.
* If called again, and the TOKEN lock is alread in EX mode
* return success. However, care must be taken that unlock_comm()
* is called only once.
*/
static int lock_comm(struct md_cluster_info *cinfo)
static int lock_token(struct md_cluster_info *cinfo)
{
int error;
if (cinfo->token_lockres->mode == DLM_LOCK_EX)
return 0;
error = dlm_lock_sync(cinfo->token_lockres, DLM_LOCK_EX);
if (error)
pr_err("md-cluster(%s:%d): failed to get EX on TOKEN (%d)\n",
__func__, __LINE__, error);
/* Lock the receive sequence */
mutex_lock(&cinfo->recv_mutex);
return error;
}
/* lock_comm()
* Sets the MD_CLUSTER_SEND_LOCK bit to lock the send channel.
*/
static int lock_comm(struct md_cluster_info *cinfo)
{
wait_event(cinfo->wait,
!test_and_set_bit(MD_CLUSTER_SEND_LOCK, &cinfo->state));
return lock_token(cinfo);
}
static void unlock_comm(struct md_cluster_info *cinfo)
{
WARN_ON(cinfo->token_lockres->mode != DLM_LOCK_EX);
mutex_unlock(&cinfo->recv_mutex);
dlm_unlock_sync(cinfo->token_lockres);
clear_bit(MD_CLUSTER_SEND_LOCK, &cinfo->state);
wake_up(&cinfo->wait);
}
/* __sendmsg()
......@@ -707,6 +743,8 @@ static int join(struct mddev *mddev, int nodes)
spin_lock_init(&cinfo->suspend_lock);
init_completion(&cinfo->completion);
set_bit(MD_CLUSTER_BEGIN_JOIN_CLUSTER, &cinfo->state);
init_waitqueue_head(&cinfo->wait);
mutex_init(&cinfo->recv_mutex);
mddev->cluster_info = cinfo;
......@@ -800,6 +838,7 @@ static void resync_bitmap(struct mddev *mddev)
__func__, __LINE__, err);
}
static void unlock_all_bitmaps(struct mddev *mddev);
static int leave(struct mddev *mddev)
{
struct md_cluster_info *cinfo = mddev->cluster_info;
......@@ -820,6 +859,7 @@ static int leave(struct mddev *mddev)
lockres_free(cinfo->ack_lockres);
lockres_free(cinfo->no_new_dev_lockres);
lockres_free(cinfo->bitmap_lockres);
unlock_all_bitmaps(mddev);
dlm_release_lockspace(cinfo->lockspace, 2);
return 0;
}
......@@ -835,9 +875,25 @@ static int slot_number(struct mddev *mddev)
return cinfo->slot_number - 1;
}
/*
* Check if the communication is already locked, else lock the communication
* channel.
* If it is already locked, token is in EX mode, and hence lock_token()
* should not be called.
*/
static int metadata_update_start(struct mddev *mddev)
{
return lock_comm(mddev->cluster_info);
struct md_cluster_info *cinfo = mddev->cluster_info;
wait_event(cinfo->wait,
!test_and_set_bit(MD_CLUSTER_SEND_LOCK, &cinfo->state) ||
test_and_clear_bit(MD_CLUSTER_SEND_LOCKED_ALREADY, &cinfo->state));
/* If token is already locked, return 0 */
if (cinfo->token_lockres->mode == DLM_LOCK_EX)
return 0;
return lock_token(cinfo);
}
static int metadata_update_finish(struct mddev *mddev)
......@@ -862,6 +918,7 @@ static int metadata_update_finish(struct mddev *mddev)
ret = __sendmsg(cinfo, &cmsg);
} else
pr_warn("md-cluster: No good device id found to send\n");
clear_bit(MD_CLUSTER_SEND_LOCKED_ALREADY, &cinfo->state);
unlock_comm(cinfo);
return ret;
}
......@@ -869,6 +926,7 @@ static int metadata_update_finish(struct mddev *mddev)
static void metadata_update_cancel(struct mddev *mddev)
{
struct md_cluster_info *cinfo = mddev->cluster_info;
clear_bit(MD_CLUSTER_SEND_LOCKED_ALREADY, &cinfo->state);
unlock_comm(cinfo);
}
......@@ -882,8 +940,16 @@ static int resync_start(struct mddev *mddev)
static int resync_info_update(struct mddev *mddev, sector_t lo, sector_t hi)
{
struct md_cluster_info *cinfo = mddev->cluster_info;
struct resync_info ri;
struct cluster_msg cmsg = {0};
/* do not send zero again, if we have sent before */
if (hi == 0) {
memcpy(&ri, cinfo->bitmap_lockres->lksb.sb_lvbptr, sizeof(struct resync_info));
if (le64_to_cpu(ri.hi) == 0)
return 0;
}
add_resync_info(cinfo->bitmap_lockres, lo, hi);
/* Re-acquire the lock to refresh LVB */
dlm_lock_sync(cinfo->bitmap_lockres, DLM_LOCK_PW);
......@@ -954,14 +1020,30 @@ static int add_new_disk(struct mddev *mddev, struct md_rdev *rdev)
ret = -ENOENT;
if (ret)
unlock_comm(cinfo);
else
else {
dlm_lock_sync(cinfo->no_new_dev_lockres, DLM_LOCK_CR);
/* Since MD_CHANGE_DEVS will be set in add_bound_rdev which
* will run soon after add_new_disk, the below path will be
* invoked:
* md_wakeup_thread(mddev->thread)
* -> conf->thread (raid1d)
* -> md_check_recovery -> md_update_sb
* -> metadata_update_start/finish
* MD_CLUSTER_SEND_LOCKED_ALREADY will be cleared eventually.
*
* For other failure cases, metadata_update_cancel and
* add_new_disk_cancel also clear below bit as well.
* */
set_bit(MD_CLUSTER_SEND_LOCKED_ALREADY, &cinfo->state);
wake_up(&cinfo->wait);
}
return ret;
}
static void add_new_disk_cancel(struct mddev *mddev)
{
struct md_cluster_info *cinfo = mddev->cluster_info;
clear_bit(MD_CLUSTER_SEND_LOCKED_ALREADY, &cinfo->state);
unlock_comm(cinfo);
}
......@@ -986,7 +1068,59 @@ static int remove_disk(struct mddev *mddev, struct md_rdev *rdev)
struct md_cluster_info *cinfo = mddev->cluster_info;
cmsg.type = cpu_to_le32(REMOVE);
cmsg.raid_slot = cpu_to_le32(rdev->desc_nr);
return __sendmsg(cinfo, &cmsg);
return sendmsg(cinfo, &cmsg);
}
static int lock_all_bitmaps(struct mddev *mddev)
{
int slot, my_slot, ret, held = 1, i = 0;
char str[64];
struct md_cluster_info *cinfo = mddev->cluster_info;
cinfo->other_bitmap_lockres = kzalloc((mddev->bitmap_info.nodes - 1) *
sizeof(struct dlm_lock_resource *),
GFP_KERNEL);
if (!cinfo->other_bitmap_lockres) {
pr_err("md: can't alloc mem for other bitmap locks\n");
return 0;
}
my_slot = slot_number(mddev);
for (slot = 0; slot < mddev->bitmap_info.nodes; slot++) {
if (slot == my_slot)
continue;
memset(str, '\0', 64);
snprintf(str, 64, "bitmap%04d", slot);
cinfo->other_bitmap_lockres[i] = lockres_init(mddev, str, NULL, 1);
if (!cinfo->other_bitmap_lockres[i])
return -ENOMEM;
cinfo->other_bitmap_lockres[i]->flags |= DLM_LKF_NOQUEUE;
ret = dlm_lock_sync(cinfo->other_bitmap_lockres[i], DLM_LOCK_PW);
if (ret)
held = -1;
i++;
}
return held;
}
static void unlock_all_bitmaps(struct mddev *mddev)
{
struct md_cluster_info *cinfo = mddev->cluster_info;
int i;
/* release other node's bitmap lock if they are existed */
if (cinfo->other_bitmap_lockres) {
for (i = 0; i < mddev->bitmap_info.nodes - 1; i++) {
if (cinfo->other_bitmap_lockres[i]) {
dlm_unlock_sync(cinfo->other_bitmap_lockres[i]);
lockres_free(cinfo->other_bitmap_lockres[i]);
}
}
kfree(cinfo->other_bitmap_lockres);
}
}
static int gather_bitmaps(struct md_rdev *rdev)
......@@ -1034,6 +1168,8 @@ static struct md_cluster_operations cluster_ops = {
.new_disk_ack = new_disk_ack,
.remove_disk = remove_disk,
.gather_bitmaps = gather_bitmaps,
.lock_all_bitmaps = lock_all_bitmaps,
.unlock_all_bitmaps = unlock_all_bitmaps,
};
static int __init cluster_init(void)
......
......@@ -24,6 +24,8 @@ struct md_cluster_operations {
int (*new_disk_ack)(struct mddev *mddev, bool ack);
int (*remove_disk)(struct mddev *mddev, struct md_rdev *rdev);
int (*gather_bitmaps)(struct md_rdev *rdev);
int (*lock_all_bitmaps)(struct mddev *mddev);
void (*unlock_all_bitmaps)(struct mddev *mddev);
};
#endif /* _MD_CLUSTER_H */
......@@ -206,15 +206,6 @@ void md_new_event(struct mddev *mddev)
}
EXPORT_SYMBOL_GPL(md_new_event);
/* Alternate version that can be called from interrupts
* when calling sysfs_notify isn't needed.
*/
static void md_new_event_inintr(struct mddev *mddev)
{
atomic_inc(&md_event_count);
wake_up(&md_event_waiters);
}
/*
* Enables to iterate over all existing md arrays
* all_mddevs_lock protects this list.
......@@ -260,8 +251,7 @@ static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
blk_queue_split(q, &bio, q->bio_split);
if (mddev == NULL || mddev->pers == NULL
|| !mddev->ready) {
if (mddev == NULL || mddev->pers == NULL) {
bio_io_error(bio);
return BLK_QC_T_NONE;
}
......@@ -1026,8 +1016,9 @@ static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor
* (not needed for Linear and RAID0 as metadata doesn't
* record this size)
*/
if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
rdev->sectors = (2ULL << 32) - 2;
if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
sb->level >= 1)
rdev->sectors = (sector_t)(2ULL << 32) - 2;
if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
/* "this cannot possibly happen" ... */
......@@ -1199,13 +1190,13 @@ static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
memcpy(&sb->set_uuid3, mddev->uuid+12,4);
sb->ctime = mddev->ctime;
sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
sb->level = mddev->level;
sb->size = mddev->dev_sectors / 2;
sb->raid_disks = mddev->raid_disks;
sb->md_minor = mddev->md_minor;
sb->not_persistent = 0;
sb->utime = mddev->utime;
sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
sb->state = 0;
sb->events_hi = (mddev->events>>32);
sb->events_lo = (u32)mddev->events;
......@@ -1320,8 +1311,9 @@ super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
/* Limit to 4TB as metadata cannot record more than that.
* 4TB == 2^32 KB, or 2*2^32 sectors.
*/
if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
num_sectors = (2ULL << 32) - 2;
if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
rdev->mddev->level >= 1)
num_sectors = (sector_t)(2ULL << 32) - 2;
md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
rdev->sb_page);
md_super_wait(rdev->mddev);
......@@ -1542,8 +1534,8 @@ static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
mddev->patch_version = 0;
mddev->external = 0;
mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
mddev->ctime = le64_to_cpu(sb->ctime);
mddev->utime = le64_to_cpu(sb->utime);
mddev->level = le32_to_cpu(sb->level);
mddev->clevel[0] = 0;
mddev->layout = le32_to_cpu(sb->layout);
......@@ -1602,6 +1594,11 @@ static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
mddev->new_chunk_sectors = mddev->chunk_sectors;
}
if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) {
set_bit(MD_HAS_JOURNAL, &mddev->flags);
if (mddev->recovery_cp == MaxSector)
set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
}
} else if (mddev->pers == NULL) {
/* Insist of good event counter while assembling, except for
* spares (which don't need an event count) */
......@@ -1648,8 +1645,6 @@ static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
}
set_bit(Journal, &rdev->flags);
rdev->journal_tail = le64_to_cpu(sb->journal_tail);
if (mddev->recovery_cp == MaxSector)
set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
rdev->raid_disk = 0;
break;
default:
......@@ -1669,8 +1664,6 @@ static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
set_bit(WriteMostly, &rdev->flags);
if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
set_bit(Replacement, &rdev->flags);
if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
set_bit(MD_HAS_JOURNAL, &mddev->flags);
} else /* MULTIPATH are always insync */
set_bit(In_sync, &rdev->flags);
......@@ -2014,28 +2007,32 @@ int md_integrity_register(struct mddev *mddev)
}
EXPORT_SYMBOL(md_integrity_register);
/* Disable data integrity if non-capable/non-matching disk is being added */
void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
/*
* Attempt to add an rdev, but only if it is consistent with the current
* integrity profile
*/
int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
{
struct blk_integrity *bi_rdev;
struct blk_integrity *bi_mddev;
char name[BDEVNAME_SIZE];
if (!mddev->gendisk)
return;
return 0;
bi_rdev = bdev_get_integrity(rdev->bdev);
bi_mddev = blk_get_integrity(mddev->gendisk);
if (!bi_mddev) /* nothing to do */
return;
if (rdev->raid_disk < 0) /* skip spares */
return;
if (bi_rdev && blk_integrity_compare(mddev->gendisk,
rdev->bdev->bd_disk) >= 0)
return;
WARN_ON_ONCE(!mddev->suspended);
printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
blk_integrity_unregister(mddev->gendisk);
return 0;
if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
printk(KERN_NOTICE "%s: incompatible integrity profile for %s\n",
mdname(mddev), bdevname(rdev->bdev, name));
return -ENXIO;
}
return 0;
}
EXPORT_SYMBOL(md_integrity_add_rdev);
......@@ -2050,8 +2047,9 @@ static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
return -EEXIST;
/* make sure rdev->sectors exceeds mddev->dev_sectors */
if (rdev->sectors && (mddev->dev_sectors == 0 ||
rdev->sectors < mddev->dev_sectors)) {
if (!test_bit(Journal, &rdev->flags) &&
rdev->sectors &&
(mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
if (mddev->pers) {
/* Cannot change size, so fail
* If mddev->level <= 0, then we don't care
......@@ -2082,7 +2080,8 @@ static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
}
}
rcu_read_unlock();
if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
if (!test_bit(Journal, &rdev->flags) &&
mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
mdname(mddev), mddev->max_disks);
return -EBUSY;
......@@ -2331,7 +2330,7 @@ void md_update_sb(struct mddev *mddev, int force_change)
spin_lock(&mddev->lock);
mddev->utime = get_seconds();
mddev->utime = ktime_get_real_seconds();
if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
force_change = 1;
......@@ -2457,15 +2456,20 @@ static int add_bound_rdev(struct md_rdev *rdev)
{
struct mddev *mddev = rdev->mddev;
int err = 0;
bool add_journal = test_bit(Journal, &rdev->flags);
if (!mddev->pers->hot_remove_disk) {
if (!mddev->pers->hot_remove_disk || add_journal) {
/* If there is hot_add_disk but no hot_remove_disk
* then added disks for geometry changes,
* and should be added immediately.
*/
super_types[mddev->major_version].
validate_super(mddev, rdev);
if (add_journal)
mddev_suspend(mddev);
err = mddev->pers->hot_add_disk(mddev, rdev);
if (add_journal)
mddev_resume(mddev);
if (err) {
unbind_rdev_from_array(rdev);
export_rdev(rdev);
......@@ -5299,7 +5303,6 @@ int md_run(struct mddev *mddev)
smp_wmb();
spin_lock(&mddev->lock);
mddev->pers = pers;
mddev->ready = 1;
spin_unlock(&mddev->lock);
rdev_for_each(rdev, mddev)
if (rdev->raid_disk >= 0)
......@@ -5499,7 +5502,6 @@ static void __md_stop(struct mddev *mddev)
/* Ensure ->event_work is done */
flush_workqueue(md_misc_wq);
spin_lock(&mddev->lock);
mddev->ready = 0;
mddev->pers = NULL;
spin_unlock(&mddev->lock);
pers->free(mddev, mddev->private);
......@@ -5837,7 +5839,7 @@ static int get_array_info(struct mddev *mddev, void __user *arg)
info.major_version = mddev->major_version;
info.minor_version = mddev->minor_version;
info.patch_version = MD_PATCHLEVEL_VERSION;
info.ctime = mddev->ctime;
info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
info.level = mddev->level;
info.size = mddev->dev_sectors / 2;
if (info.size != mddev->dev_sectors / 2) /* overflow */
......@@ -5847,7 +5849,7 @@ static int get_array_info(struct mddev *mddev, void __user *arg)
info.md_minor = mddev->md_minor;
info.not_persistent= !mddev->persistent;
info.utime = mddev->utime;
info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
info.state = 0;
if (mddev->in_sync)
info.state = (1<<MD_SB_CLEAN);
......@@ -6038,8 +6040,23 @@ static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
else
clear_bit(WriteMostly, &rdev->flags);
if (info->state & (1<<MD_DISK_JOURNAL))
if (info->state & (1<<MD_DISK_JOURNAL)) {
struct md_rdev *rdev2;
bool has_journal = false;
/* make sure no existing journal disk */
rdev_for_each(rdev2, mddev) {
if (test_bit(Journal, &rdev2->flags)) {
has_journal = true;
break;
}
}
if (has_journal) {
export_rdev(rdev);
return -EBUSY;
}
set_bit(Journal, &rdev->flags);
}
/*
* check whether the device shows up in other nodes
*/
......@@ -6130,15 +6147,11 @@ static int hot_remove_disk(struct mddev *mddev, dev_t dev)
{
char b[BDEVNAME_SIZE];
struct md_rdev *rdev;
int ret = -1;
rdev = find_rdev(mddev, dev);
if (!rdev)
return -ENXIO;
if (mddev_is_clustered(mddev))
ret = md_cluster_ops->metadata_update_start(mddev);
if (rdev->raid_disk < 0)
goto kick_rdev;
......@@ -6149,7 +6162,7 @@ static int hot_remove_disk(struct mddev *mddev, dev_t dev)
goto busy;
kick_rdev:
if (mddev_is_clustered(mddev) && ret == 0)
if (mddev_is_clustered(mddev))
md_cluster_ops->remove_disk(mddev, rdev);
md_kick_rdev_from_array(rdev);
......@@ -6158,9 +6171,6 @@ static int hot_remove_disk(struct mddev *mddev, dev_t dev)
return 0;
busy:
if (mddev_is_clustered(mddev) && ret == 0)
md_cluster_ops->metadata_update_cancel(mddev);
printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
bdevname(rdev->bdev,b), mdname(mddev));
return -EBUSY;
......@@ -6354,13 +6364,13 @@ static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
/* ensure mddev_put doesn't delete this now that there
* is some minimal configuration.
*/
mddev->ctime = get_seconds();
mddev->ctime = ktime_get_real_seconds();
return 0;
}
mddev->major_version = MD_MAJOR_VERSION;
mddev->minor_version = MD_MINOR_VERSION;
mddev->patch_version = MD_PATCHLEVEL_VERSION;
mddev->ctime = get_seconds();
mddev->ctime = ktime_get_real_seconds();
mddev->level = info->level;
mddev->clevel[0] = 0;
......@@ -6602,6 +6612,19 @@ static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
rv = -EINVAL;
goto err;
}
if (mddev->bitmap_info.nodes) {
/* hold PW on all the bitmap lock */
if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
printk("md: can't change bitmap to none since the"
" array is in use by more than one node\n");
rv = -EPERM;
md_cluster_ops->unlock_all_bitmaps(mddev);
goto err;
}
mddev->bitmap_info.nodes = 0;
md_cluster_ops->leave(mddev);
}
mddev->pers->quiesce(mddev, 1);
bitmap_destroy(mddev);
mddev->pers->quiesce(mddev, 0);
......@@ -7180,7 +7203,7 @@ void md_error(struct mddev *mddev, struct md_rdev *rdev)
md_wakeup_thread(mddev->thread);
if (mddev->event_work.func)
queue_work(md_misc_wq, &mddev->event_work);
md_new_event_inintr(mddev);
md_new_event(mddev);
}
EXPORT_SYMBOL(md_error);
......@@ -7704,7 +7727,7 @@ EXPORT_SYMBOL(md_write_end);
* attempting a GFP_KERNEL allocation while holding the mddev lock.
* Must be called with mddev_lock held.
*
* In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
* In the ->external case MD_CHANGE_PENDING can not be cleared until mddev->lock
* is dropped, so return -EAGAIN after notifying userspace.
*/
int md_allow_write(struct mddev *mddev)
......@@ -8169,19 +8192,20 @@ static int remove_and_add_spares(struct mddev *mddev,
continue;
if (test_bit(Faulty, &rdev->flags))
continue;
if (test_bit(Journal, &rdev->flags))
continue;
if (mddev->ro &&
! (rdev->saved_raid_disk >= 0 &&
!test_bit(Bitmap_sync, &rdev->flags)))
continue;
if (!test_bit(Journal, &rdev->flags)) {
if (mddev->ro &&
! (rdev->saved_raid_disk >= 0 &&
!test_bit(Bitmap_sync, &rdev->flags)))
continue;
rdev->recovery_offset = 0;
rdev->recovery_offset = 0;
}
if (mddev->pers->
hot_add_disk(mddev, rdev) == 0) {
if (sysfs_link_rdev(mddev, rdev))
/* failure here is OK */;
spares++;
if (!test_bit(Journal, &rdev->flags))
spares++;
md_new_event(mddev);
set_bit(MD_CHANGE_DEVS, &mddev->flags);
}
......@@ -8276,6 +8300,7 @@ void md_check_recovery(struct mddev *mddev)
(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
test_bit(MD_RELOAD_SB, &mddev->flags) ||
(mddev->external == 0 && mddev->safemode == 1) ||
(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
&& !mddev->in_sync && mddev->recovery_cp == MaxSector)
......@@ -8314,6 +8339,21 @@ void md_check_recovery(struct mddev *mddev)
goto unlock;
}
if (mddev_is_clustered(mddev)) {
struct md_rdev *rdev;
/* kick the device if another node issued a
* remove disk.
*/
rdev_for_each(rdev, mddev) {
if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
rdev->raid_disk < 0)
md_kick_rdev_from_array(rdev);
}
if (test_and_clear_bit(MD_RELOAD_SB, &mddev->flags))
md_reload_sb(mddev, mddev->good_device_nr);
}
if (!mddev->external) {
int did_change = 0;
spin_lock(&mddev->lock);
......@@ -8635,7 +8675,6 @@ static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
ret = remove_and_add_spares(mddev, rdev2);
pr_info("Activated spare: %s\n",
bdevname(rdev2->bdev,b));
continue;
}
/* device faulty
* We just want to do the minimum to mark the disk
......
......@@ -162,6 +162,7 @@ enum flag_bits {
* Usually, this device should be faster
* than other devices in the array
*/
ClusterRemove,
};
static inline int is_badblock(struct md_rdev *rdev, sector_t s, int sectors,
......@@ -200,6 +201,9 @@ struct mddev {
*/
#define MD_JOURNAL_CLEAN 5 /* A raid with journal is already clean */
#define MD_HAS_JOURNAL 6 /* The raid array has journal feature set */
#define MD_RELOAD_SB 7 /* Reload the superblock because another node
* updated it.
*/
int suspended;
atomic_t active_io;
......@@ -208,8 +212,6 @@ struct mddev {
* are happening, so run/
* takeover/stop are not safe
*/
int ready; /* See when safe to pass
* IO requests down */
struct gendisk *gendisk;
struct kobject kobj;
......@@ -226,7 +228,7 @@ struct mddev {
* managed externally */
char metadata_type[17]; /* externally set*/
int chunk_sectors;
time_t ctime, utime;
time64_t ctime, utime;
int level, layout;
char clevel[16];
int raid_disks;
......@@ -430,6 +432,7 @@ struct mddev {
struct work_struct event_work; /* used by dm to report failure event */
void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
struct md_cluster_info *cluster_info;
unsigned int good_device_nr; /* good device num within cluster raid */
};
static inline int __must_check mddev_lock(struct mddev *mddev)
......@@ -623,7 +626,7 @@ extern void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev);
extern void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors);
extern int md_check_no_bitmap(struct mddev *mddev);
extern int md_integrity_register(struct mddev *mddev);
extern void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev);
extern int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev);
extern int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale);
extern void mddev_init(struct mddev *mddev);
......
......@@ -257,6 +257,9 @@ static int multipath_add_disk(struct mddev *mddev, struct md_rdev *rdev)
disk_stack_limits(mddev->gendisk, rdev->bdev,
rdev->data_offset << 9);
err = md_integrity_add_rdev(rdev, mddev);
if (err)
break;
spin_lock_irq(&conf->device_lock);
mddev->degraded--;
rdev->raid_disk = path;
......@@ -264,9 +267,6 @@ static int multipath_add_disk(struct mddev *mddev, struct md_rdev *rdev)
spin_unlock_irq(&conf->device_lock);
rcu_assign_pointer(p->rdev, rdev);
err = 0;
mddev_suspend(mddev);
md_integrity_add_rdev(rdev, mddev);
mddev_resume(mddev);
break;
}
......
......@@ -1589,6 +1589,9 @@ static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
if (mddev->recovery_disabled == conf->recovery_disabled)
return -EBUSY;
if (md_integrity_add_rdev(rdev, mddev))
return -ENXIO;
if (rdev->raid_disk >= 0)
first = last = rdev->raid_disk;
......@@ -1632,9 +1635,6 @@ static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
break;
}
}
mddev_suspend(mddev);
md_integrity_add_rdev(rdev, mddev);
mddev_resume(mddev);
if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
print_conf(conf);
......
......@@ -1698,6 +1698,9 @@ static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
return -EINVAL;
if (md_integrity_add_rdev(rdev, mddev))
return -ENXIO;
if (rdev->raid_disk >= 0)
first = last = rdev->raid_disk;
......@@ -1739,9 +1742,6 @@ static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
rcu_assign_pointer(p->rdev, rdev);
break;
}
mddev_suspend(mddev);
md_integrity_add_rdev(rdev, mddev);
mddev_resume(mddev);
if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
......
......@@ -34,6 +34,12 @@
#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
/*
* We only need 2 bios per I/O unit to make progress, but ensure we
* have a few more available to not get too tight.
*/
#define R5L_POOL_SIZE 4
struct r5l_log {
struct md_rdev *rdev;
......@@ -69,7 +75,12 @@ struct r5l_log {
struct list_head finished_ios; /* io_units which settle down in log disk */
struct bio flush_bio;
struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */
struct kmem_cache *io_kc;
mempool_t *io_pool;
struct bio_set *bs;
mempool_t *meta_pool;
struct md_thread *reclaim_thread;
unsigned long reclaim_target; /* number of space that need to be
......@@ -150,27 +161,6 @@ static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
return log->device_size > used_size + size;
}
static void r5l_free_io_unit(struct r5l_log *log, struct r5l_io_unit *io)
{
__free_page(io->meta_page);
kmem_cache_free(log->io_kc, io);
}
static void r5l_move_io_unit_list(struct list_head *from, struct list_head *to,
enum r5l_io_unit_state state)
{
struct r5l_io_unit *io;
while (!list_empty(from)) {
io = list_first_entry(from, struct r5l_io_unit, log_sibling);
/* don't change list order */
if (io->state >= state)
list_move_tail(&io->log_sibling, to);
else
break;
}
}
static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
enum r5l_io_unit_state state)
{
......@@ -206,6 +196,20 @@ static void r5l_log_run_stripes(struct r5l_log *log)
}
}
static void r5l_move_to_end_ios(struct r5l_log *log)
{
struct r5l_io_unit *io, *next;
assert_spin_locked(&log->io_list_lock);
list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
/* don't change list order */
if (io->state < IO_UNIT_IO_END)
break;
list_move_tail(&io->log_sibling, &log->io_end_ios);
}
}
static void r5l_log_endio(struct bio *bio)
{
struct r5l_io_unit *io = bio->bi_private;
......@@ -216,12 +220,12 @@ static void r5l_log_endio(struct bio *bio)
md_error(log->rdev->mddev, log->rdev);
bio_put(bio);
mempool_free(io->meta_page, log->meta_pool);
spin_lock_irqsave(&log->io_list_lock, flags);
__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
if (log->need_cache_flush)
r5l_move_io_unit_list(&log->running_ios, &log->io_end_ios,
IO_UNIT_IO_END);
r5l_move_to_end_ios(log);
else
r5l_log_run_stripes(log);
spin_unlock_irqrestore(&log->io_list_lock, flags);
......@@ -255,7 +259,7 @@ static void r5l_submit_current_io(struct r5l_log *log)
static struct bio *r5l_bio_alloc(struct r5l_log *log)
{
struct bio *bio = bio_kmalloc(GFP_NOIO | __GFP_NOFAIL, BIO_MAX_PAGES);
struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
bio->bi_rw = WRITE;
bio->bi_bdev = log->rdev->bdev;
......@@ -286,15 +290,19 @@ static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
struct r5l_io_unit *io;
struct r5l_meta_block *block;
/* We can't handle memory allocate failure so far */
io = kmem_cache_zalloc(log->io_kc, GFP_NOIO | __GFP_NOFAIL);
io = mempool_alloc(log->io_pool, GFP_ATOMIC);
if (!io)
return NULL;
memset(io, 0, sizeof(*io));
io->log = log;
INIT_LIST_HEAD(&io->log_sibling);
INIT_LIST_HEAD(&io->stripe_list);
io->state = IO_UNIT_RUNNING;
io->meta_page = alloc_page(GFP_NOIO | __GFP_NOFAIL | __GFP_ZERO);
io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
block = page_address(io->meta_page);
clear_page(block);
block->magic = cpu_to_le32(R5LOG_MAGIC);
block->version = R5LOG_VERSION;
block->seq = cpu_to_le64(log->seq);
......@@ -324,8 +332,12 @@ static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
log->current_io->meta_offset + payload_size > PAGE_SIZE)
r5l_submit_current_io(log);
if (!log->current_io)
if (!log->current_io) {
log->current_io = r5l_new_meta(log);
if (!log->current_io)
return -ENOMEM;
}
return 0;
}
......@@ -370,11 +382,12 @@ static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
r5_reserve_log_entry(log, io);
}
static void r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
int data_pages, int parity_pages)
{
int i;
int meta_size;
int ret;
struct r5l_io_unit *io;
meta_size =
......@@ -383,7 +396,10 @@ static void r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
sizeof(struct r5l_payload_data_parity) +
sizeof(__le32) * parity_pages;
r5l_get_meta(log, meta_size);
ret = r5l_get_meta(log, meta_size);
if (ret)
return ret;
io = log->current_io;
for (i = 0; i < sh->disks; i++) {
......@@ -413,6 +429,8 @@ static void r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
list_add_tail(&sh->log_list, &io->stripe_list);
atomic_inc(&io->pending_stripe);
sh->log_io = io;
return 0;
}
static void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
......@@ -427,6 +445,7 @@ int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
int meta_size;
int reserve;
int i;
int ret = 0;
if (!log)
return -EAGAIN;
......@@ -475,17 +494,22 @@ int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
mutex_lock(&log->io_mutex);
/* meta + data */
reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
if (r5l_has_free_space(log, reserve))
r5l_log_stripe(log, sh, data_pages, parity_pages);
else {
if (!r5l_has_free_space(log, reserve)) {
spin_lock(&log->no_space_stripes_lock);
list_add_tail(&sh->log_list, &log->no_space_stripes);
spin_unlock(&log->no_space_stripes_lock);
r5l_wake_reclaim(log, reserve);
} else {
ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
if (ret) {
spin_lock_irq(&log->io_list_lock);
list_add_tail(&sh->log_list, &log->no_mem_stripes);
spin_unlock_irq(&log->io_list_lock);
}
}
mutex_unlock(&log->io_mutex);
mutex_unlock(&log->io_mutex);
return 0;
}
......@@ -538,6 +562,21 @@ static sector_t r5l_reclaimable_space(struct r5l_log *log)
log->next_checkpoint);
}
static void r5l_run_no_mem_stripe(struct r5l_log *log)
{
struct stripe_head *sh;
assert_spin_locked(&log->io_list_lock);
if (!list_empty(&log->no_mem_stripes)) {
sh = list_first_entry(&log->no_mem_stripes,
struct stripe_head, log_list);
list_del_init(&sh->log_list);
set_bit(STRIPE_HANDLE, &sh->state);
raid5_release_stripe(sh);
}
}
static bool r5l_complete_finished_ios(struct r5l_log *log)
{
struct r5l_io_unit *io, *next;
......@@ -554,7 +593,8 @@ static bool r5l_complete_finished_ios(struct r5l_log *log)
log->next_cp_seq = io->seq;
list_del(&io->log_sibling);
r5l_free_io_unit(log, io);
mempool_free(io, log->io_pool);
r5l_run_no_mem_stripe(log);
found = true;
}
......@@ -787,6 +827,13 @@ void r5l_quiesce(struct r5l_log *log, int state)
return;
if (state == 0) {
log->in_teardown = 0;
/*
* This is a special case for hotadd. In suspend, the array has
* no journal. In resume, journal is initialized as well as the
* reclaim thread.
*/
if (log->reclaim_thread)
return;
log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
log->rdev->mddev, "reclaim");
} else if (state == 1) {
......@@ -806,10 +853,18 @@ void r5l_quiesce(struct r5l_log *log, int state)
bool r5l_log_disk_error(struct r5conf *conf)
{
struct r5l_log *log;
bool ret;
/* don't allow write if journal disk is missing */
if (!conf->log)
return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
return test_bit(Faulty, &conf->log->rdev->flags);
rcu_read_lock();
log = rcu_dereference(conf->log);
if (!log)
ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
else
ret = test_bit(Faulty, &log->rdev->flags);
rcu_read_unlock();
return ret;
}
struct r5l_recovery_ctx {
......@@ -1160,23 +1215,45 @@ int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
if (!log->io_kc)
goto io_kc;
log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
if (!log->io_pool)
goto io_pool;
log->bs = bioset_create(R5L_POOL_SIZE, 0);
if (!log->bs)
goto io_bs;
log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
if (!log->meta_pool)
goto out_mempool;
log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
log->rdev->mddev, "reclaim");
if (!log->reclaim_thread)
goto reclaim_thread;
init_waitqueue_head(&log->iounit_wait);
INIT_LIST_HEAD(&log->no_mem_stripes);
INIT_LIST_HEAD(&log->no_space_stripes);
spin_lock_init(&log->no_space_stripes_lock);
if (r5l_load_log(log))
goto error;
conf->log = log;
rcu_assign_pointer(conf->log, log);
set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
return 0;
error:
md_unregister_thread(&log->reclaim_thread);
reclaim_thread:
mempool_destroy(log->meta_pool);
out_mempool:
bioset_free(log->bs);
io_bs:
mempool_destroy(log->io_pool);
io_pool:
kmem_cache_destroy(log->io_kc);
io_kc:
kfree(log);
......@@ -1186,6 +1263,9 @@ int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
void r5l_exit_log(struct r5l_log *log)
{
md_unregister_thread(&log->reclaim_thread);
mempool_destroy(log->meta_pool);
bioset_free(log->bs);
mempool_destroy(log->io_pool);
kmem_cache_destroy(log->io_kc);
kfree(log);
}
......@@ -772,8 +772,6 @@ static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh
int hash;
int dd_idx;
if (!stripe_can_batch(sh))
return;
/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
tmp_sec = sh->sector;
if (!sector_div(tmp_sec, conf->chunk_sectors))
......@@ -7141,14 +7139,19 @@ static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
struct disk_info *p = conf->disks + number;
print_raid5_conf(conf);
if (test_bit(Journal, &rdev->flags)) {
if (test_bit(Journal, &rdev->flags) && conf->log) {
struct r5l_log *log;
/*
* journal disk is not removable, but we need give a chance to
* update superblock of other disks. Otherwise journal disk
* will be considered as 'fresh'
* we can't wait pending write here, as this is called in
* raid5d, wait will deadlock.
*/
set_bit(MD_CHANGE_DEVS, &mddev->flags);
return -EINVAL;
if (atomic_read(&mddev->writes_pending))
return -EBUSY;
log = conf->log;
conf->log = NULL;
synchronize_rcu();
r5l_exit_log(log);
return 0;
}
if (rdev == p->rdev)
rdevp = &p->rdev;
......@@ -7212,8 +7215,21 @@ static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
int first = 0;
int last = conf->raid_disks - 1;
if (test_bit(Journal, &rdev->flags))
return -EINVAL;
if (test_bit(Journal, &rdev->flags)) {
char b[BDEVNAME_SIZE];
if (conf->log)
return -EBUSY;
rdev->raid_disk = 0;
/*
* The array is in readonly mode if journal is missing, so no
* write requests running. We should be safe
*/
r5l_init_log(conf, rdev);
printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
mdname(mddev), bdevname(rdev->bdev, b));
return 0;
}
if (mddev->recovery_disabled == conf->recovery_disabled)
return -EBUSY;
......
......@@ -80,7 +80,7 @@ typedef struct mdu_array_info_s {
int major_version;
int minor_version;
int patch_version;
int ctime;
unsigned int ctime;
int level;
int size;
int nr_disks;
......@@ -91,7 +91,7 @@ typedef struct mdu_array_info_s {
/*
* Generic state information
*/
int utime; /* 0 Superblock update time */
unsigned int utime; /* 0 Superblock update time */
int state; /* 1 State bits (clean, ...) */
int active_disks; /* 2 Number of currently active disks */
int working_disks; /* 3 Number of working disks */
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册