提交 39adff5f 编写于 作者: L Linus Torvalds

Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
  time, s390: Get rid of compile warning
  dw_apb_timer: constify clocksource name
  time: Cleanup old CONFIG_GENERIC_TIME references that snuck in
  time: Change jiffies_to_clock_t() argument type to unsigned long
  alarmtimers: Fix error handling
  clocksource: Make watchdog reset lockless
  posix-cpu-timers: Cure SMP accounting oddities
  s390: Use direct ktime path for s390 clockevent device
  clockevents: Add direct ktime programming function
  clockevents: Make minimum delay adjustments configurable
  nohz: Remove "Switched to NOHz mode" debugging messages
  proc: Consider NO_HZ when printing idle and iowait times
  nohz: Make idle/iowait counter update conditional
  nohz: Fix update_ts_time_stat idle accounting
  cputime: Clean up cputime_to_usecs and usecs_to_cputime macros
  alarmtimers: Rework RTC device selection using class interface
  alarmtimers: Add try_to_cancel functionality
  alarmtimers: Add more refined alarm state tracking
  alarmtimers: Remove period from alarm structure
  alarmtimers: Remove interval cap limit hack
  ...
......@@ -346,7 +346,6 @@ config ARCH_GEMINI
config ARCH_PRIMA2
bool "CSR SiRFSoC PRIMA2 ARM Cortex A9 Platform"
select CPU_V7
select GENERIC_TIME
select NO_IOPORT
select GENERIC_CLOCKEVENTS
select CLKDEV_LOOKUP
......@@ -520,7 +519,6 @@ config ARCH_LPC32XX
select ARM_AMBA
select USB_ARCH_HAS_OHCI
select CLKDEV_LOOKUP
select GENERIC_TIME
select GENERIC_CLOCKEVENTS
help
Support for the NXP LPC32XX family of processors
......@@ -599,7 +597,6 @@ config ARCH_TEGRA
bool "NVIDIA Tegra"
select CLKDEV_LOOKUP
select CLKSRC_MMIO
select GENERIC_TIME
select GENERIC_CLOCKEVENTS
select GENERIC_GPIO
select HAVE_CLK
......@@ -914,7 +911,6 @@ config ARCH_VT8500
config ARCH_ZYNQ
bool "Xilinx Zynq ARM Cortex A9 Platform"
select CPU_V7
select GENERIC_TIME
select GENERIC_CLOCKEVENTS
select CLKDEV_LOOKUP
select ARM_GIC
......
......@@ -47,9 +47,6 @@ config GENERIC_CMOS_UPDATE
config GENERIC_HWEIGHT
def_bool y
config GENERIC_TIME
def_bool y
config GENERIC_CLOCKEVENTS
def_bool y
......
......@@ -109,10 +109,14 @@ static void fixup_clock_comparator(unsigned long long delta)
set_clock_comparator(S390_lowcore.clock_comparator);
}
static int s390_next_event(unsigned long delta,
static int s390_next_ktime(ktime_t expires,
struct clock_event_device *evt)
{
S390_lowcore.clock_comparator = get_clock() + delta;
u64 nsecs;
nsecs = ktime_to_ns(ktime_sub(expires, ktime_get_monotonic_offset()));
do_div(nsecs, 125);
S390_lowcore.clock_comparator = TOD_UNIX_EPOCH + (nsecs << 9);
set_clock_comparator(S390_lowcore.clock_comparator);
return 0;
}
......@@ -137,14 +141,15 @@ void init_cpu_timer(void)
cpu = smp_processor_id();
cd = &per_cpu(comparators, cpu);
cd->name = "comparator";
cd->features = CLOCK_EVT_FEAT_ONESHOT;
cd->features = CLOCK_EVT_FEAT_ONESHOT |
CLOCK_EVT_FEAT_KTIME;
cd->mult = 16777;
cd->shift = 12;
cd->min_delta_ns = 1;
cd->max_delta_ns = LONG_MAX;
cd->rating = 400;
cd->cpumask = cpumask_of(cpu);
cd->set_next_event = s390_next_event;
cd->set_next_ktime = s390_next_ktime;
cd->set_mode = s390_set_mode;
clockevents_register_device(cd);
......
......@@ -46,9 +46,6 @@ config NEED_PER_CPU_PAGE_FIRST_CHUNK
config SYS_SUPPORTS_HUGETLBFS
def_bool y
config GENERIC_TIME
def_bool y
config GENERIC_CLOCKEVENTS
def_bool y
......
......@@ -11,7 +11,6 @@ CONFIG_HAVE_ARCH_ALLOC_REMAP=y
CONFIG_HAVE_SETUP_PER_CPU_AREA=y
CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK=y
CONFIG_SYS_SUPPORTS_HUGETLBFS=y
CONFIG_GENERIC_TIME=y
CONFIG_GENERIC_CLOCKEVENTS=y
CONFIG_RWSEM_GENERIC_SPINLOCK=y
CONFIG_DEFAULT_MIGRATION_COST=10000000
......
......@@ -11,7 +11,6 @@ CONFIG_HAVE_ARCH_ALLOC_REMAP=y
CONFIG_HAVE_SETUP_PER_CPU_AREA=y
CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK=y
CONFIG_SYS_SUPPORTS_HUGETLBFS=y
CONFIG_GENERIC_TIME=y
CONFIG_GENERIC_CLOCKEVENTS=y
CONFIG_RWSEM_GENERIC_SPINLOCK=y
CONFIG_DEFAULT_MIGRATION_COST=10000000
......
......@@ -13,7 +13,6 @@ CONFIG_LOCKDEP_SUPPORT=y
# CONFIG_STACKTRACE_SUPPORT is not set
CONFIG_GENERIC_CALIBRATE_DELAY=y
CONFIG_GENERIC_BUG=y
CONFIG_GENERIC_TIME=y
CONFIG_GENERIC_CLOCKEVENTS=y
CONFIG_IRQ_RELEASE_METHOD=y
CONFIG_HZ=100
......
......@@ -68,6 +68,7 @@ config X86
select GENERIC_IRQ_PROBE
select GENERIC_PENDING_IRQ if SMP
select GENERIC_IRQ_SHOW
select GENERIC_CLOCKEVENTS_MIN_ADJUST
select IRQ_FORCED_THREADING
select USE_GENERIC_SMP_HELPERS if SMP
select HAVE_BPF_JIT if (X86_64 && NET)
......
......@@ -15,7 +15,6 @@ CONFIG_GENERIC_GPIO=y
# CONFIG_ARCH_HAS_ILOG2_U64 is not set
CONFIG_NO_IOPORT=y
CONFIG_HZ=100
CONFIG_GENERIC_TIME=y
CONFIG_DEFCONFIG_LIST="/lib/modules/$UNAME_RELEASE/.config"
CONFIG_CONSTRUCTORS=y
......
......@@ -15,7 +15,6 @@ CONFIG_GENERIC_GPIO=y
# CONFIG_ARCH_HAS_ILOG2_U64 is not set
CONFIG_NO_IOPORT=y
CONFIG_HZ=100
CONFIG_GENERIC_TIME=y
CONFIG_DEFCONFIG_LIST="/lib/modules/$UNAME_RELEASE/.config"
#
......
......@@ -348,7 +348,7 @@ static void apbt_restart_clocksource(struct clocksource *cs)
* dw_apb_clocksource_register() as the next step.
*/
struct dw_apb_clocksource *
dw_apb_clocksource_init(unsigned rating, char *name, void __iomem *base,
dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
unsigned long freq)
{
struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
......
......@@ -120,10 +120,12 @@ static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
{
u64 idle_time = get_cpu_idle_time_us(cpu, wall);
u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
if (idle_time == -1ULL)
return get_cpu_idle_time_jiffy(cpu, wall);
else
idle_time += get_cpu_iowait_time_us(cpu, wall);
return idle_time;
}
......
......@@ -144,10 +144,12 @@ static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
{
u64 idle_time = get_cpu_idle_time_us(cpu, wall);
u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
if (idle_time == -1ULL)
return get_cpu_idle_time_jiffy(cpu, wall);
else
idle_time += get_cpu_iowait_time_us(cpu, wall);
return idle_time;
}
......
......@@ -10,6 +10,7 @@
#include <linux/time.h>
#include <linux/irqnr.h>
#include <asm/cputime.h>
#include <linux/tick.h>
#ifndef arch_irq_stat_cpu
#define arch_irq_stat_cpu(cpu) 0
......@@ -21,6 +22,35 @@
#define arch_idle_time(cpu) 0
#endif
static cputime64_t get_idle_time(int cpu)
{
u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
cputime64_t idle;
if (idle_time == -1ULL) {
/* !NO_HZ so we can rely on cpustat.idle */
idle = kstat_cpu(cpu).cpustat.idle;
idle = cputime64_add(idle, arch_idle_time(cpu));
} else
idle = usecs_to_cputime(idle_time);
return idle;
}
static cputime64_t get_iowait_time(int cpu)
{
u64 iowait_time = get_cpu_iowait_time_us(cpu, NULL);
cputime64_t iowait;
if (iowait_time == -1ULL)
/* !NO_HZ so we can rely on cpustat.iowait */
iowait = kstat_cpu(cpu).cpustat.iowait;
else
iowait = usecs_to_cputime(iowait_time);
return iowait;
}
static int show_stat(struct seq_file *p, void *v)
{
int i, j;
......@@ -42,9 +72,8 @@ static int show_stat(struct seq_file *p, void *v)
user = cputime64_add(user, kstat_cpu(i).cpustat.user);
nice = cputime64_add(nice, kstat_cpu(i).cpustat.nice);
system = cputime64_add(system, kstat_cpu(i).cpustat.system);
idle = cputime64_add(idle, kstat_cpu(i).cpustat.idle);
idle = cputime64_add(idle, arch_idle_time(i));
iowait = cputime64_add(iowait, kstat_cpu(i).cpustat.iowait);
idle = cputime64_add(idle, get_idle_time(i));
iowait = cputime64_add(iowait, get_iowait_time(i));
irq = cputime64_add(irq, kstat_cpu(i).cpustat.irq);
softirq = cputime64_add(softirq, kstat_cpu(i).cpustat.softirq);
steal = cputime64_add(steal, kstat_cpu(i).cpustat.steal);
......@@ -76,14 +105,12 @@ static int show_stat(struct seq_file *p, void *v)
(unsigned long long)cputime64_to_clock_t(guest),
(unsigned long long)cputime64_to_clock_t(guest_nice));
for_each_online_cpu(i) {
/* Copy values here to work around gcc-2.95.3, gcc-2.96 */
user = kstat_cpu(i).cpustat.user;
nice = kstat_cpu(i).cpustat.nice;
system = kstat_cpu(i).cpustat.system;
idle = kstat_cpu(i).cpustat.idle;
idle = cputime64_add(idle, arch_idle_time(i));
iowait = kstat_cpu(i).cpustat.iowait;
idle = get_idle_time(i);
iowait = get_iowait_time(i);
irq = kstat_cpu(i).cpustat.irq;
softirq = kstat_cpu(i).cpustat.softirq;
steal = kstat_cpu(i).cpustat.steal;
......
......@@ -38,8 +38,8 @@ typedef u64 cputime64_t;
/*
* Convert cputime to microseconds and back.
*/
#define cputime_to_usecs(__ct) jiffies_to_usecs(__ct);
#define usecs_to_cputime(__msecs) usecs_to_jiffies(__msecs);
#define cputime_to_usecs(__ct) jiffies_to_usecs(__ct)
#define usecs_to_cputime(__msecs) usecs_to_jiffies(__msecs)
/*
* Convert cputime to seconds and back.
......
......@@ -13,6 +13,16 @@ enum alarmtimer_type {
ALARM_NUMTYPE,
};
enum alarmtimer_restart {
ALARMTIMER_NORESTART,
ALARMTIMER_RESTART,
};
#define ALARMTIMER_STATE_INACTIVE 0x00
#define ALARMTIMER_STATE_ENQUEUED 0x01
#define ALARMTIMER_STATE_CALLBACK 0x02
/**
* struct alarm - Alarm timer structure
* @node: timerqueue node for adding to the event list this value
......@@ -25,16 +35,45 @@ enum alarmtimer_type {
*/
struct alarm {
struct timerqueue_node node;
ktime_t period;
void (*function)(struct alarm *);
enum alarmtimer_restart (*function)(struct alarm *, ktime_t now);
enum alarmtimer_type type;
bool enabled;
int state;
void *data;
};
void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
void (*function)(struct alarm *));
void alarm_start(struct alarm *alarm, ktime_t start, ktime_t period);
void alarm_cancel(struct alarm *alarm);
enum alarmtimer_restart (*function)(struct alarm *, ktime_t));
void alarm_start(struct alarm *alarm, ktime_t start);
int alarm_try_to_cancel(struct alarm *alarm);
int alarm_cancel(struct alarm *alarm);
u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval);
/*
* A alarmtimer is active, when it is enqueued into timerqueue or the
* callback function is running.
*/
static inline int alarmtimer_active(const struct alarm *timer)
{
return timer->state != ALARMTIMER_STATE_INACTIVE;
}
/*
* Helper function to check, whether the timer is on one of the queues
*/
static inline int alarmtimer_is_queued(struct alarm *timer)
{
return timer->state & ALARMTIMER_STATE_ENQUEUED;
}
/*
* Helper function to check, whether the timer is running the callback
* function
*/
static inline int alarmtimer_callback_running(struct alarm *timer)
{
return timer->state & ALARMTIMER_STATE_CALLBACK;
}
#endif
......@@ -45,20 +45,22 @@ enum clock_event_nofitiers {
*/
#define CLOCK_EVT_FEAT_PERIODIC 0x000001
#define CLOCK_EVT_FEAT_ONESHOT 0x000002
#define CLOCK_EVT_FEAT_KTIME 0x000004
/*
* x86(64) specific misfeatures:
*
* - Clockevent source stops in C3 State and needs broadcast support.
* - Local APIC timer is used as a dummy device.
*/
#define CLOCK_EVT_FEAT_C3STOP 0x000004
#define CLOCK_EVT_FEAT_DUMMY 0x000008
#define CLOCK_EVT_FEAT_C3STOP 0x000008
#define CLOCK_EVT_FEAT_DUMMY 0x000010
/**
* struct clock_event_device - clock event device descriptor
* @event_handler: Assigned by the framework to be called by the low
* level handler of the event source
* @set_next_event: set next event function
* @set_next_event: set next event function using a clocksource delta
* @set_next_ktime: set next event function using a direct ktime value
* @next_event: local storage for the next event in oneshot mode
* @max_delta_ns: maximum delta value in ns
* @min_delta_ns: minimum delta value in ns
......@@ -81,6 +83,8 @@ struct clock_event_device {
void (*event_handler)(struct clock_event_device *);
int (*set_next_event)(unsigned long evt,
struct clock_event_device *);
int (*set_next_ktime)(ktime_t expires,
struct clock_event_device *);
ktime_t next_event;
u64 max_delta_ns;
u64 min_delta_ns;
......@@ -140,7 +144,7 @@ extern void clockevents_set_mode(struct clock_event_device *dev,
enum clock_event_mode mode);
extern int clockevents_register_notifier(struct notifier_block *nb);
extern int clockevents_program_event(struct clock_event_device *dev,
ktime_t expires, ktime_t now);
ktime_t expires, bool force);
extern void clockevents_handle_noop(struct clock_event_device *dev);
......
......@@ -46,7 +46,7 @@ struct dw_apb_clock_event_device *
dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
void __iomem *base, int irq, unsigned long freq);
struct dw_apb_clocksource *
dw_apb_clocksource_init(unsigned rating, char *name, void __iomem *base,
dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
unsigned long freq);
void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs);
void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs);
......
......@@ -303,7 +303,7 @@ extern void jiffies_to_timespec(const unsigned long jiffies,
extern unsigned long timeval_to_jiffies(const struct timeval *value);
extern void jiffies_to_timeval(const unsigned long jiffies,
struct timeval *value);
extern clock_t jiffies_to_clock_t(long x);
extern clock_t jiffies_to_clock_t(unsigned long x);
extern unsigned long clock_t_to_jiffies(unsigned long x);
extern u64 jiffies_64_to_clock_t(u64 x);
extern u64 nsec_to_clock_t(u64 x);
......
......@@ -81,7 +81,10 @@ struct k_itimer {
unsigned long incr;
unsigned long expires;
} mmtimer;
struct alarm alarmtimer;
struct {
struct alarm alarmtimer;
ktime_t interval;
} alarm;
struct rcu_head rcu;
} it;
};
......
......@@ -575,7 +575,7 @@ EXPORT_SYMBOL(jiffies_to_timeval);
/*
* Convert jiffies/jiffies_64 to clock_t and back.
*/
clock_t jiffies_to_clock_t(long x)
clock_t jiffies_to_clock_t(unsigned long x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
# if HZ < USER_HZ
......
......@@ -27,3 +27,5 @@ config GENERIC_CLOCKEVENTS_BUILD
default y
depends on GENERIC_CLOCKEVENTS || GENERIC_CLOCKEVENTS_MIGR
config GENERIC_CLOCKEVENTS_MIN_ADJUST
bool
......@@ -52,27 +52,6 @@ static struct rtc_timer rtctimer;
static struct rtc_device *rtcdev;
static DEFINE_SPINLOCK(rtcdev_lock);
/**
* has_wakealarm - check rtc device has wakealarm ability
* @dev: current device
* @name_ptr: name to be returned
*
* This helper function checks to see if the rtc device can wake
* from suspend.
*/
static int has_wakealarm(struct device *dev, void *name_ptr)
{
struct rtc_device *candidate = to_rtc_device(dev);
if (!candidate->ops->set_alarm)
return 0;
if (!device_may_wakeup(candidate->dev.parent))
return 0;
*(const char **)name_ptr = dev_name(dev);
return 1;
}
/**
* alarmtimer_get_rtcdev - Return selected rtcdevice
*
......@@ -82,37 +61,64 @@ static int has_wakealarm(struct device *dev, void *name_ptr)
*/
static struct rtc_device *alarmtimer_get_rtcdev(void)
{
struct device *dev;
char *str;
unsigned long flags;
struct rtc_device *ret;
spin_lock_irqsave(&rtcdev_lock, flags);
if (!rtcdev) {
/* Find an rtc device and init the rtc_timer */
dev = class_find_device(rtc_class, NULL, &str, has_wakealarm);
/* If we have a device then str is valid. See has_wakealarm() */
if (dev) {
rtcdev = rtc_class_open(str);
/*
* Drop the reference we got in class_find_device,
* rtc_open takes its own.
*/
put_device(dev);
rtc_timer_init(&rtctimer, NULL, NULL);
}
}
ret = rtcdev;
spin_unlock_irqrestore(&rtcdev_lock, flags);
return ret;
}
static int alarmtimer_rtc_add_device(struct device *dev,
struct class_interface *class_intf)
{
unsigned long flags;
struct rtc_device *rtc = to_rtc_device(dev);
if (rtcdev)
return -EBUSY;
if (!rtc->ops->set_alarm)
return -1;
if (!device_may_wakeup(rtc->dev.parent))
return -1;
spin_lock_irqsave(&rtcdev_lock, flags);
if (!rtcdev) {
rtcdev = rtc;
/* hold a reference so it doesn't go away */
get_device(dev);
}
spin_unlock_irqrestore(&rtcdev_lock, flags);
return 0;
}
static struct class_interface alarmtimer_rtc_interface = {
.add_dev = &alarmtimer_rtc_add_device,
};
static int alarmtimer_rtc_interface_setup(void)
{
alarmtimer_rtc_interface.class = rtc_class;
return class_interface_register(&alarmtimer_rtc_interface);
}
static void alarmtimer_rtc_interface_remove(void)
{
class_interface_unregister(&alarmtimer_rtc_interface);
}
#else
#define alarmtimer_get_rtcdev() (0)
#define rtcdev (0)
static inline struct rtc_device *alarmtimer_get_rtcdev(void)
{
return NULL;
}
#define rtcdev (NULL)
static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
static inline void alarmtimer_rtc_interface_remove(void) { }
#endif
/**
* alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
* @base: pointer to the base where the timer is being run
......@@ -126,6 +132,8 @@ static struct rtc_device *alarmtimer_get_rtcdev(void)
static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
{
timerqueue_add(&base->timerqueue, &alarm->node);
alarm->state |= ALARMTIMER_STATE_ENQUEUED;
if (&alarm->node == timerqueue_getnext(&base->timerqueue)) {
hrtimer_try_to_cancel(&base->timer);
hrtimer_start(&base->timer, alarm->node.expires,
......@@ -147,7 +155,12 @@ static void alarmtimer_remove(struct alarm_base *base, struct alarm *alarm)
{
struct timerqueue_node *next = timerqueue_getnext(&base->timerqueue);
if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
return;
timerqueue_del(&base->timerqueue, &alarm->node);
alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
if (next == &alarm->node) {
hrtimer_try_to_cancel(&base->timer);
next = timerqueue_getnext(&base->timerqueue);
......@@ -174,6 +187,7 @@ static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
unsigned long flags;
ktime_t now;
int ret = HRTIMER_NORESTART;
int restart = ALARMTIMER_NORESTART;
spin_lock_irqsave(&base->lock, flags);
now = base->gettime();
......@@ -187,17 +201,19 @@ static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
alarm = container_of(next, struct alarm, node);
timerqueue_del(&base->timerqueue, &alarm->node);
alarm->enabled = 0;
/* Re-add periodic timers */
if (alarm->period.tv64) {
alarm->node.expires = ktime_add(expired, alarm->period);
timerqueue_add(&base->timerqueue, &alarm->node);
alarm->enabled = 1;
}
alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
alarm->state |= ALARMTIMER_STATE_CALLBACK;
spin_unlock_irqrestore(&base->lock, flags);
if (alarm->function)
alarm->function(alarm);
restart = alarm->function(alarm, now);
spin_lock_irqsave(&base->lock, flags);
alarm->state &= ~ALARMTIMER_STATE_CALLBACK;
if (restart != ALARMTIMER_NORESTART) {
timerqueue_add(&base->timerqueue, &alarm->node);
alarm->state |= ALARMTIMER_STATE_ENQUEUED;
}
}
if (next) {
......@@ -234,7 +250,7 @@ static int alarmtimer_suspend(struct device *dev)
freezer_delta = ktime_set(0, 0);
spin_unlock_irqrestore(&freezer_delta_lock, flags);
rtc = rtcdev;
rtc = alarmtimer_get_rtcdev();
/* If we have no rtcdev, just return */
if (!rtc)
return 0;
......@@ -299,53 +315,111 @@ static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
* @function: callback that is run when the alarm fires
*/
void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
void (*function)(struct alarm *))
enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
{
timerqueue_init(&alarm->node);
alarm->period = ktime_set(0, 0);
alarm->function = function;
alarm->type = type;
alarm->enabled = 0;
alarm->state = ALARMTIMER_STATE_INACTIVE;
}
/**
* alarm_start - Sets an alarm to fire
* @alarm: ptr to alarm to set
* @start: time to run the alarm
* @period: period at which the alarm will recur
*/
void alarm_start(struct alarm *alarm, ktime_t start, ktime_t period)
void alarm_start(struct alarm *alarm, ktime_t start)
{
struct alarm_base *base = &alarm_bases[alarm->type];
unsigned long flags;
spin_lock_irqsave(&base->lock, flags);
if (alarm->enabled)
if (alarmtimer_active(alarm))
alarmtimer_remove(base, alarm);
alarm->node.expires = start;
alarm->period = period;
alarmtimer_enqueue(base, alarm);
alarm->enabled = 1;
spin_unlock_irqrestore(&base->lock, flags);
}
/**
* alarm_cancel - Tries to cancel an alarm timer
* alarm_try_to_cancel - Tries to cancel an alarm timer
* @alarm: ptr to alarm to be canceled
*
* Returns 1 if the timer was canceled, 0 if it was not running,
* and -1 if the callback was running
*/
void alarm_cancel(struct alarm *alarm)
int alarm_try_to_cancel(struct alarm *alarm)
{
struct alarm_base *base = &alarm_bases[alarm->type];
unsigned long flags;
int ret = -1;
spin_lock_irqsave(&base->lock, flags);
if (alarm->enabled)
if (alarmtimer_callback_running(alarm))
goto out;
if (alarmtimer_is_queued(alarm)) {
alarmtimer_remove(base, alarm);
alarm->enabled = 0;
ret = 1;
} else
ret = 0;
out:
spin_unlock_irqrestore(&base->lock, flags);
return ret;
}
/**
* alarm_cancel - Spins trying to cancel an alarm timer until it is done
* @alarm: ptr to alarm to be canceled
*
* Returns 1 if the timer was canceled, 0 if it was not active.
*/
int alarm_cancel(struct alarm *alarm)
{
for (;;) {
int ret = alarm_try_to_cancel(alarm);
if (ret >= 0)
return ret;
cpu_relax();
}
}
u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
{
u64 overrun = 1;
ktime_t delta;
delta = ktime_sub(now, alarm->node.expires);
if (delta.tv64 < 0)
return 0;
if (unlikely(delta.tv64 >= interval.tv64)) {
s64 incr = ktime_to_ns(interval);
overrun = ktime_divns(delta, incr);
alarm->node.expires = ktime_add_ns(alarm->node.expires,
incr*overrun);
if (alarm->node.expires.tv64 > now.tv64)
return overrun;
/*
* This (and the ktime_add() below) is the
* correction for exact:
*/
overrun++;
}
alarm->node.expires = ktime_add(alarm->node.expires, interval);
return overrun;
}
/**
* clock2alarm - helper that converts from clockid to alarmtypes
* @clockid: clockid.
......@@ -365,12 +439,21 @@ static enum alarmtimer_type clock2alarm(clockid_t clockid)
*
* Posix timer callback for expired alarm timers.
*/
static void alarm_handle_timer(struct alarm *alarm)
static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
ktime_t now)
{
struct k_itimer *ptr = container_of(alarm, struct k_itimer,
it.alarmtimer);
it.alarm.alarmtimer);
if (posix_timer_event(ptr, 0) != 0)
ptr->it_overrun++;
/* Re-add periodic timers */
if (ptr->it.alarm.interval.tv64) {
ptr->it_overrun += alarm_forward(alarm, now,
ptr->it.alarm.interval);
return ALARMTIMER_RESTART;
}
return ALARMTIMER_NORESTART;
}
/**
......@@ -427,7 +510,7 @@ static int alarm_timer_create(struct k_itimer *new_timer)
type = clock2alarm(new_timer->it_clock);
base = &alarm_bases[type];
alarm_init(&new_timer->it.alarmtimer, type, alarm_handle_timer);
alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
return 0;
}
......@@ -444,9 +527,9 @@ static void alarm_timer_get(struct k_itimer *timr,
memset(cur_setting, 0, sizeof(struct itimerspec));
cur_setting->it_interval =
ktime_to_timespec(timr->it.alarmtimer.period);
ktime_to_timespec(timr->it.alarm.interval);
cur_setting->it_value =
ktime_to_timespec(timr->it.alarmtimer.node.expires);
ktime_to_timespec(timr->it.alarm.alarmtimer.node.expires);
return;
}
......@@ -461,7 +544,9 @@ static int alarm_timer_del(struct k_itimer *timr)
if (!rtcdev)
return -ENOTSUPP;
alarm_cancel(&timr->it.alarmtimer);
if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
return TIMER_RETRY;
return 0;
}
......@@ -481,25 +566,17 @@ static int alarm_timer_set(struct k_itimer *timr, int flags,
if (!rtcdev)
return -ENOTSUPP;
/*
* XXX HACK! Currently we can DOS a system if the interval
* period on alarmtimers is too small. Cap the interval here
* to 100us and solve this properly in a future patch! -jstultz
*/
if ((new_setting->it_interval.tv_sec == 0) &&
(new_setting->it_interval.tv_nsec < 100000))
new_setting->it_interval.tv_nsec = 100000;
if (old_setting)
alarm_timer_get(timr, old_setting);
/* If the timer was already set, cancel it */
alarm_cancel(&timr->it.alarmtimer);
if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
return TIMER_RETRY;
/* start the timer */
alarm_start(&timr->it.alarmtimer,
timespec_to_ktime(new_setting->it_value),
timespec_to_ktime(new_setting->it_interval));
timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
alarm_start(&timr->it.alarm.alarmtimer,
timespec_to_ktime(new_setting->it_value));
return 0;
}
......@@ -509,13 +586,15 @@ static int alarm_timer_set(struct k_itimer *timr, int flags,
*
* Wakes up the task that set the alarmtimer
*/
static void alarmtimer_nsleep_wakeup(struct alarm *alarm)
static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
ktime_t now)
{
struct task_struct *task = (struct task_struct *)alarm->data;
alarm->data = NULL;
if (task)
wake_up_process(task);
return ALARMTIMER_NORESTART;
}
/**
......@@ -530,7 +609,7 @@ static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
alarm->data = (void *)current;
do {
set_current_state(TASK_INTERRUPTIBLE);
alarm_start(alarm, absexp, ktime_set(0, 0));
alarm_start(alarm, absexp);
if (likely(alarm->data))
schedule();
......@@ -691,6 +770,7 @@ static struct platform_driver alarmtimer_driver = {
*/
static int __init alarmtimer_init(void)
{
struct platform_device *pdev;
int error = 0;
int i;
struct k_clock alarm_clock = {
......@@ -719,10 +799,26 @@ static int __init alarmtimer_init(void)
HRTIMER_MODE_ABS);
alarm_bases[i].timer.function = alarmtimer_fired;
}
error = alarmtimer_rtc_interface_setup();
if (error)
return error;
error = platform_driver_register(&alarmtimer_driver);
platform_device_register_simple("alarmtimer", -1, NULL, 0);
if (error)
goto out_if;
pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
if (IS_ERR(pdev)) {
error = PTR_ERR(pdev);
goto out_drv;
}
return 0;
out_drv:
platform_driver_unregister(&alarmtimer_driver);
out_if:
alarmtimer_rtc_interface_remove();
return error;
}
device_initcall(alarmtimer_init);
......@@ -94,42 +94,143 @@ void clockevents_shutdown(struct clock_event_device *dev)
dev->next_event.tv64 = KTIME_MAX;
}
#ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
/* Limit min_delta to a jiffie */
#define MIN_DELTA_LIMIT (NSEC_PER_SEC / HZ)
/**
* clockevents_increase_min_delta - raise minimum delta of a clock event device
* @dev: device to increase the minimum delta
*
* Returns 0 on success, -ETIME when the minimum delta reached the limit.
*/
static int clockevents_increase_min_delta(struct clock_event_device *dev)
{
/* Nothing to do if we already reached the limit */
if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
printk(KERN_WARNING "CE: Reprogramming failure. Giving up\n");
dev->next_event.tv64 = KTIME_MAX;
return -ETIME;
}
if (dev->min_delta_ns < 5000)
dev->min_delta_ns = 5000;
else
dev->min_delta_ns += dev->min_delta_ns >> 1;
if (dev->min_delta_ns > MIN_DELTA_LIMIT)
dev->min_delta_ns = MIN_DELTA_LIMIT;
printk(KERN_WARNING "CE: %s increased min_delta_ns to %llu nsec\n",
dev->name ? dev->name : "?",
(unsigned long long) dev->min_delta_ns);
return 0;
}
/**
* clockevents_program_min_delta - Set clock event device to the minimum delay.
* @dev: device to program
*
* Returns 0 on success, -ETIME when the retry loop failed.
*/
static int clockevents_program_min_delta(struct clock_event_device *dev)
{
unsigned long long clc;
int64_t delta;
int i;
for (i = 0;;) {
delta = dev->min_delta_ns;
dev->next_event = ktime_add_ns(ktime_get(), delta);
if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN)
return 0;
dev->retries++;
clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
if (dev->set_next_event((unsigned long) clc, dev) == 0)
return 0;
if (++i > 2) {
/*
* We tried 3 times to program the device with the
* given min_delta_ns. Try to increase the minimum
* delta, if that fails as well get out of here.
*/
if (clockevents_increase_min_delta(dev))
return -ETIME;
i = 0;
}
}
}
#else /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
/**
* clockevents_program_min_delta - Set clock event device to the minimum delay.
* @dev: device to program
*
* Returns 0 on success, -ETIME when the retry loop failed.
*/
static int clockevents_program_min_delta(struct clock_event_device *dev)
{
unsigned long long clc;
int64_t delta;
delta = dev->min_delta_ns;
dev->next_event = ktime_add_ns(ktime_get(), delta);
if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN)
return 0;
dev->retries++;
clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
return dev->set_next_event((unsigned long) clc, dev);
}
#endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
/**
* clockevents_program_event - Reprogram the clock event device.
* @dev: device to program
* @expires: absolute expiry time (monotonic clock)
* @force: program minimum delay if expires can not be set
*
* Returns 0 on success, -ETIME when the event is in the past.
*/
int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
ktime_t now)
bool force)
{
unsigned long long clc;
int64_t delta;
int rc;
if (unlikely(expires.tv64 < 0)) {
WARN_ON_ONCE(1);
return -ETIME;
}
delta = ktime_to_ns(ktime_sub(expires, now));
if (delta <= 0)
return -ETIME;
dev->next_event = expires;
if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN)
return 0;
if (delta > dev->max_delta_ns)
delta = dev->max_delta_ns;
if (delta < dev->min_delta_ns)
delta = dev->min_delta_ns;
/* Shortcut for clockevent devices that can deal with ktime. */
if (dev->features & CLOCK_EVT_FEAT_KTIME)
return dev->set_next_ktime(expires, dev);
delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
if (delta <= 0)
return force ? clockevents_program_min_delta(dev) : -ETIME;
clc = delta * dev->mult;
clc >>= dev->shift;
delta = min(delta, (int64_t) dev->max_delta_ns);
delta = max(delta, (int64_t) dev->min_delta_ns);
return dev->set_next_event((unsigned long) clc, dev);
clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
rc = dev->set_next_event((unsigned long) clc, dev);
return (rc && force) ? clockevents_program_min_delta(dev) : rc;
}
/**
......@@ -258,7 +359,7 @@ int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
if (dev->mode != CLOCK_EVT_MODE_ONESHOT)
return 0;
return clockevents_program_event(dev, dev->next_event, ktime_get());
return clockevents_program_event(dev, dev->next_event, false);
}
/*
......
......@@ -186,6 +186,7 @@ static struct timer_list watchdog_timer;
static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
static DEFINE_SPINLOCK(watchdog_lock);
static int watchdog_running;
static atomic_t watchdog_reset_pending;
static int clocksource_watchdog_kthread(void *data);
static void __clocksource_change_rating(struct clocksource *cs, int rating);
......@@ -247,12 +248,14 @@ static void clocksource_watchdog(unsigned long data)
struct clocksource *cs;
cycle_t csnow, wdnow;
int64_t wd_nsec, cs_nsec;
int next_cpu;
int next_cpu, reset_pending;
spin_lock(&watchdog_lock);
if (!watchdog_running)
goto out;
reset_pending = atomic_read(&watchdog_reset_pending);
list_for_each_entry(cs, &watchdog_list, wd_list) {
/* Clocksource already marked unstable? */
......@@ -268,7 +271,8 @@ static void clocksource_watchdog(unsigned long data)
local_irq_enable();
/* Clocksource initialized ? */
if (!(cs->flags & CLOCK_SOURCE_WATCHDOG)) {
if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
atomic_read(&watchdog_reset_pending)) {
cs->flags |= CLOCK_SOURCE_WATCHDOG;
cs->wd_last = wdnow;
cs->cs_last = csnow;
......@@ -283,8 +287,11 @@ static void clocksource_watchdog(unsigned long data)
cs->cs_last = csnow;
cs->wd_last = wdnow;
if (atomic_read(&watchdog_reset_pending))
continue;
/* Check the deviation from the watchdog clocksource. */
if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
if ((abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD)) {
clocksource_unstable(cs, cs_nsec - wd_nsec);
continue;
}
......@@ -302,6 +309,13 @@ static void clocksource_watchdog(unsigned long data)
}
}
/*
* We only clear the watchdog_reset_pending, when we did a
* full cycle through all clocksources.
*/
if (reset_pending)
atomic_dec(&watchdog_reset_pending);
/*
* Cycle through CPUs to check if the CPUs stay synchronized
* to each other.
......@@ -344,23 +358,7 @@ static inline void clocksource_reset_watchdog(void)
static void clocksource_resume_watchdog(void)
{
unsigned long flags;
/*
* We use trylock here to avoid a potential dead lock when
* kgdb calls this code after the kernel has been stopped with
* watchdog_lock held. When watchdog_lock is held we just
* return and accept, that the watchdog might trigger and mark
* the monitored clock source (usually TSC) unstable.
*
* This does not affect the other caller clocksource_resume()
* because at this point the kernel is UP, interrupts are
* disabled and nothing can hold watchdog_lock.
*/
if (!spin_trylock_irqsave(&watchdog_lock, flags))
return;
clocksource_reset_watchdog();
spin_unlock_irqrestore(&watchdog_lock, flags);
atomic_inc(&watchdog_reset_pending);
}
static void clocksource_enqueue_watchdog(struct clocksource *cs)
......
......@@ -194,7 +194,7 @@ static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
for (next = dev->next_event; ;) {
next = ktime_add(next, tick_period);
if (!clockevents_program_event(dev, next, ktime_get()))
if (!clockevents_program_event(dev, next, false))
return;
tick_do_periodic_broadcast();
}
......@@ -373,7 +373,7 @@ static int tick_broadcast_set_event(ktime_t expires, int force)
{
struct clock_event_device *bc = tick_broadcast_device.evtdev;
return tick_dev_program_event(bc, expires, force);
return clockevents_program_event(bc, expires, force);
}
int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
......
......@@ -94,7 +94,7 @@ void tick_handle_periodic(struct clock_event_device *dev)
*/
next = ktime_add(dev->next_event, tick_period);
for (;;) {
if (!clockevents_program_event(dev, next, ktime_get()))
if (!clockevents_program_event(dev, next, false))
return;
/*
* Have to be careful here. If we're in oneshot mode,
......@@ -137,7 +137,7 @@ void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
for (;;) {
if (!clockevents_program_event(dev, next, ktime_get()))
if (!clockevents_program_event(dev, next, false))
return;
next = ktime_add(next, tick_period);
}
......
......@@ -26,8 +26,6 @@ extern void clockevents_shutdown(struct clock_event_device *dev);
extern void tick_setup_oneshot(struct clock_event_device *newdev,
void (*handler)(struct clock_event_device *),
ktime_t nextevt);
extern int tick_dev_program_event(struct clock_event_device *dev,
ktime_t expires, int force);
extern int tick_program_event(ktime_t expires, int force);
extern void tick_oneshot_notify(void);
extern int tick_switch_to_oneshot(void (*handler)(struct clock_event_device *));
......
......@@ -21,74 +21,6 @@
#include "tick-internal.h"
/* Limit min_delta to a jiffie */
#define MIN_DELTA_LIMIT (NSEC_PER_SEC / HZ)
static int tick_increase_min_delta(struct clock_event_device *dev)
{
/* Nothing to do if we already reached the limit */
if (dev->min_delta_ns >= MIN_DELTA_LIMIT)
return -ETIME;
if (dev->min_delta_ns < 5000)
dev->min_delta_ns = 5000;
else
dev->min_delta_ns += dev->min_delta_ns >> 1;
if (dev->min_delta_ns > MIN_DELTA_LIMIT)
dev->min_delta_ns = MIN_DELTA_LIMIT;
printk(KERN_WARNING "CE: %s increased min_delta_ns to %llu nsec\n",
dev->name ? dev->name : "?",
(unsigned long long) dev->min_delta_ns);
return 0;
}
/**
* tick_program_event internal worker function
*/
int tick_dev_program_event(struct clock_event_device *dev, ktime_t expires,
int force)
{
ktime_t now = ktime_get();
int i;
for (i = 0;;) {
int ret = clockevents_program_event(dev, expires, now);
if (!ret || !force)
return ret;
dev->retries++;
/*
* We tried 3 times to program the device with the given
* min_delta_ns. If that's not working then we increase it
* and emit a warning.
*/
if (++i > 2) {
/* Increase the min. delta and try again */
if (tick_increase_min_delta(dev)) {
/*
* Get out of the loop if min_delta_ns
* hit the limit already. That's
* better than staying here forever.
*
* We clear next_event so we have a
* chance that the box survives.
*/
printk(KERN_WARNING
"CE: Reprogramming failure. Giving up\n");
dev->next_event.tv64 = KTIME_MAX;
return -ETIME;
}
i = 0;
}
now = ktime_get();
expires = ktime_add_ns(now, dev->min_delta_ns);
}
}
/**
* tick_program_event
*/
......@@ -96,7 +28,7 @@ int tick_program_event(ktime_t expires, int force)
{
struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
return tick_dev_program_event(dev, expires, force);
return clockevents_program_event(dev, expires, force);
}
/**
......@@ -104,11 +36,10 @@ int tick_program_event(ktime_t expires, int force)
*/
void tick_resume_oneshot(void)
{
struct tick_device *td = &__get_cpu_var(tick_cpu_device);
struct clock_event_device *dev = td->evtdev;
struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
tick_program_event(ktime_get(), 1);
clockevents_program_event(dev, ktime_get(), true);
}
/**
......@@ -120,7 +51,7 @@ void tick_setup_oneshot(struct clock_event_device *newdev,
{
newdev->event_handler = handler;
clockevents_set_mode(newdev, CLOCK_EVT_MODE_ONESHOT);
tick_dev_program_event(newdev, next_event, 1);
clockevents_program_event(newdev, next_event, true);
}
/**
......
......@@ -158,9 +158,10 @@ update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_upda
if (ts->idle_active) {
delta = ktime_sub(now, ts->idle_entrytime);
ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
if (nr_iowait_cpu(cpu) > 0)
ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
else
ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
ts->idle_entrytime = now;
}
......@@ -196,11 +197,11 @@ static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
/**
* get_cpu_idle_time_us - get the total idle time of a cpu
* @cpu: CPU number to query
* @last_update_time: variable to store update time in
* @last_update_time: variable to store update time in. Do not update
* counters if NULL.
*
* Return the cummulative idle time (since boot) for a given
* CPU, in microseconds. The idle time returned includes
* the iowait time (unlike what "top" and co report).
* CPU, in microseconds.
*
* This time is measured via accounting rather than sampling,
* and is as accurate as ktime_get() is.
......@@ -210,20 +211,35 @@ static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
ktime_t now, idle;
if (!tick_nohz_enabled)
return -1;
update_ts_time_stats(cpu, ts, ktime_get(), last_update_time);
now = ktime_get();
if (last_update_time) {
update_ts_time_stats(cpu, ts, now, last_update_time);
idle = ts->idle_sleeptime;
} else {
if (ts->idle_active && !nr_iowait_cpu(cpu)) {
ktime_t delta = ktime_sub(now, ts->idle_entrytime);
idle = ktime_add(ts->idle_sleeptime, delta);
} else {
idle = ts->idle_sleeptime;
}
}
return ktime_to_us(idle);
return ktime_to_us(ts->idle_sleeptime);
}
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
/*
/**
* get_cpu_iowait_time_us - get the total iowait time of a cpu
* @cpu: CPU number to query
* @last_update_time: variable to store update time in
* @last_update_time: variable to store update time in. Do not update
* counters if NULL.
*
* Return the cummulative iowait time (since boot) for a given
* CPU, in microseconds.
......@@ -236,13 +252,26 @@ EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
ktime_t now, iowait;
if (!tick_nohz_enabled)
return -1;
update_ts_time_stats(cpu, ts, ktime_get(), last_update_time);
now = ktime_get();
if (last_update_time) {
update_ts_time_stats(cpu, ts, now, last_update_time);
iowait = ts->iowait_sleeptime;
} else {
if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
ktime_t delta = ktime_sub(now, ts->idle_entrytime);
return ktime_to_us(ts->iowait_sleeptime);
iowait = ktime_add(ts->iowait_sleeptime, delta);
} else {
iowait = ts->iowait_sleeptime;
}
}
return ktime_to_us(iowait);
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
......@@ -634,8 +663,6 @@ static void tick_nohz_switch_to_nohz(void)
next = ktime_add(next, tick_period);
}
local_irq_enable();
printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", smp_processor_id());
}
/*
......@@ -787,10 +814,8 @@ void tick_setup_sched_timer(void)
}
#ifdef CONFIG_NO_HZ
if (tick_nohz_enabled) {
if (tick_nohz_enabled)
ts->nohz_mode = NOHZ_MODE_HIGHRES;
printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", smp_processor_id());
}
#endif
}
#endif /* HIGH_RES_TIMERS */
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册