提交 1e904e1b 编写于 作者: N Nicolas Pitre

ARM: vexpress: introduce DCSCB support

This adds basic CPU and cluster reset controls on RTSM for the
A15x4-A7x4 model configuration using the Dual Cluster System
Configuration Block (DCSCB).

The cache coherency interconnect (CCI) is not handled yet.
Signed-off-by: NNicolas Pitre <nico@linaro.org>
Reviewed-by: NSantosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: NPawel Moll <pawel.moll@arm.com>
上级 bbc8d77d
ARM Dual Cluster System Configuration Block
-------------------------------------------
The Dual Cluster System Configuration Block (DCSCB) provides basic
functionality for controlling clocks, resets and configuration pins in
the Dual Cluster System implemented by the Real-Time System Model (RTSM).
Required properties:
- compatible : should be "arm,rtsm,dcscb"
- reg : physical base address and the size of the registers window
Example:
dcscb@60000000 {
compatible = "arm,rtsm,dcscb";
reg = <0x60000000 0x1000>;
};
......@@ -57,4 +57,12 @@ config ARCH_VEXPRESS_CORTEX_A5_A9_ERRATA
config ARCH_VEXPRESS_CA9X4
bool "Versatile Express Cortex-A9x4 tile"
config ARCH_VEXPRESS_DCSCB
bool "Dual Cluster System Control Block (DCSCB) support"
depends on MCPM
help
Support for the Dual Cluster System Configuration Block (DCSCB).
This is needed to provide CPU and cluster power management
on RTSM implementing big.LITTLE.
endmenu
......@@ -6,5 +6,6 @@ ccflags-$(CONFIG_ARCH_MULTIPLATFORM) := -I$(srctree)/$(src)/include \
obj-y := v2m.o
obj-$(CONFIG_ARCH_VEXPRESS_CA9X4) += ct-ca9x4.o
obj-$(CONFIG_ARCH_VEXPRESS_DCSCB) += dcscb.o
obj-$(CONFIG_SMP) += platsmp.o
obj-$(CONFIG_HOTPLUG_CPU) += hotplug.o
/*
* arch/arm/mach-vexpress/dcscb.c - Dual Cluster System Configuration Block
*
* Created by: Nicolas Pitre, May 2012
* Copyright: (C) 2012-2013 Linaro Limited
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/of_address.h>
#include <linux/vexpress.h>
#include <asm/mcpm.h>
#include <asm/proc-fns.h>
#include <asm/cacheflush.h>
#include <asm/cputype.h>
#include <asm/cp15.h>
#define RST_HOLD0 0x0
#define RST_HOLD1 0x4
#define SYS_SWRESET 0x8
#define RST_STAT0 0xc
#define RST_STAT1 0x10
#define EAG_CFG_R 0x20
#define EAG_CFG_W 0x24
#define KFC_CFG_R 0x28
#define KFC_CFG_W 0x2c
#define DCS_CFG_R 0x30
/*
* We can't use regular spinlocks. In the switcher case, it is possible
* for an outbound CPU to call power_down() while its inbound counterpart
* is already live using the same logical CPU number which trips lockdep
* debugging.
*/
static arch_spinlock_t dcscb_lock = __ARCH_SPIN_LOCK_UNLOCKED;
static void __iomem *dcscb_base;
static int dcscb_power_up(unsigned int cpu, unsigned int cluster)
{
unsigned int rst_hold, cpumask = (1 << cpu);
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
if (cpu >= 4 || cluster >= 2)
return -EINVAL;
/*
* Since this is called with IRQs enabled, and no arch_spin_lock_irq
* variant exists, we need to disable IRQs manually here.
*/
local_irq_disable();
arch_spin_lock(&dcscb_lock);
rst_hold = readl_relaxed(dcscb_base + RST_HOLD0 + cluster * 4);
if (rst_hold & (1 << 8)) {
/* remove cluster reset and add individual CPU's reset */
rst_hold &= ~(1 << 8);
rst_hold |= 0xf;
}
rst_hold &= ~(cpumask | (cpumask << 4));
writel_relaxed(rst_hold, dcscb_base + RST_HOLD0 + cluster * 4);
arch_spin_unlock(&dcscb_lock);
local_irq_enable();
return 0;
}
static void dcscb_power_down(void)
{
unsigned int mpidr, cpu, cluster, rst_hold, cpumask, last_man;
mpidr = read_cpuid_mpidr();
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
cpumask = (1 << cpu);
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
BUG_ON(cpu >= 4 || cluster >= 2);
arch_spin_lock(&dcscb_lock);
rst_hold = readl_relaxed(dcscb_base + RST_HOLD0 + cluster * 4);
rst_hold |= cpumask;
if (((rst_hold | (rst_hold >> 4)) & 0xf) == 0xf)
rst_hold |= (1 << 8);
writel_relaxed(rst_hold, dcscb_base + RST_HOLD0 + cluster * 4);
arch_spin_unlock(&dcscb_lock);
last_man = (rst_hold & (1 << 8));
/*
* Now let's clean our L1 cache and shut ourself down.
* If we're the last CPU in this cluster then clean L2 too.
*/
/*
* A15/A7 can hit in the cache with SCTLR.C=0, so we don't need
* a preliminary flush here for those CPUs. At least, that's
* the theory -- without the extra flush, Linux explodes on
* RTSM (to be investigated)..
*/
flush_cache_louis();
set_cr(get_cr() & ~CR_C);
if (!last_man) {
flush_cache_louis();
} else {
flush_cache_all();
outer_flush_all();
}
/* Disable local coherency by clearing the ACTLR "SMP" bit: */
set_auxcr(get_auxcr() & ~(1 << 6));
/* Now we are prepared for power-down, do it: */
dsb();
wfi();
/* Not dead at this point? Let our caller cope. */
}
static const struct mcpm_platform_ops dcscb_power_ops = {
.power_up = dcscb_power_up,
.power_down = dcscb_power_down,
};
static int __init dcscb_init(void)
{
struct device_node *node;
int ret;
node = of_find_compatible_node(NULL, NULL, "arm,rtsm,dcscb");
if (!node)
return -ENODEV;
dcscb_base = of_iomap(node, 0);
if (!dcscb_base)
return -EADDRNOTAVAIL;
ret = mcpm_platform_register(&dcscb_power_ops);
if (ret) {
iounmap(dcscb_base);
return ret;
}
pr_info("VExpress DCSCB support installed\n");
/*
* Future entries into the kernel can now go
* through the cluster entry vectors.
*/
vexpress_flags_set(virt_to_phys(mcpm_entry_point));
return 0;
}
early_initcall(dcscb_init);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册