提交 184e2516 编写于 作者: L Linus Torvalds

Merge tag 'rdma-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland/infiniband

Pull more infiniband changes from Roland Dreier:
 "Second batch of InfiniBand/RDMA changes for 3.8:
   - cxgb4 changes to fix lookup engine hash collisions
   - mlx4 changes to make flow steering usable
   - fix to IPoIB to avoid pinning dst reference for too long"

* tag 'rdma-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland/infiniband:
  RDMA/cxgb4: Fix bug for active and passive LE hash collision path
  RDMA/cxgb4: Fix LE hash collision bug for passive open connection
  RDMA/cxgb4: Fix LE hash collision bug for active open connection
  mlx4_core: Allow choosing flow steering mode
  mlx4_core: Adjustments to Flow Steering activation logic for SR-IOV
  mlx4_core: Fix error flow in the flow steering wrapper
  mlx4_core: Add QPN enforcement for flow steering rules set by VFs
  cxgb4: Add LE hash collision bug fix path in LLD driver
  cxgb4: Add T4 filter support
  IPoIB: Call skb_dst_drop() once skb is enqueued for sending
此差异已折叠。
...@@ -279,6 +279,11 @@ static int stats_show(struct seq_file *seq, void *v) ...@@ -279,6 +279,11 @@ static int stats_show(struct seq_file *seq, void *v)
seq_printf(seq, " DB State: %s Transitions %llu\n", seq_printf(seq, " DB State: %s Transitions %llu\n",
db_state_str[dev->db_state], db_state_str[dev->db_state],
dev->rdev.stats.db_state_transitions); dev->rdev.stats.db_state_transitions);
seq_printf(seq, "TCAM_FULL: %10llu\n", dev->rdev.stats.tcam_full);
seq_printf(seq, "ACT_OFLD_CONN_FAILS: %10llu\n",
dev->rdev.stats.act_ofld_conn_fails);
seq_printf(seq, "PAS_OFLD_CONN_FAILS: %10llu\n",
dev->rdev.stats.pas_ofld_conn_fails);
return 0; return 0;
} }
...@@ -309,6 +314,9 @@ static ssize_t stats_clear(struct file *file, const char __user *buf, ...@@ -309,6 +314,9 @@ static ssize_t stats_clear(struct file *file, const char __user *buf,
dev->rdev.stats.db_empty = 0; dev->rdev.stats.db_empty = 0;
dev->rdev.stats.db_drop = 0; dev->rdev.stats.db_drop = 0;
dev->rdev.stats.db_state_transitions = 0; dev->rdev.stats.db_state_transitions = 0;
dev->rdev.stats.tcam_full = 0;
dev->rdev.stats.act_ofld_conn_fails = 0;
dev->rdev.stats.pas_ofld_conn_fails = 0;
mutex_unlock(&dev->rdev.stats.lock); mutex_unlock(&dev->rdev.stats.lock);
return count; return count;
} }
...@@ -322,6 +330,113 @@ static const struct file_operations stats_debugfs_fops = { ...@@ -322,6 +330,113 @@ static const struct file_operations stats_debugfs_fops = {
.write = stats_clear, .write = stats_clear,
}; };
static int dump_ep(int id, void *p, void *data)
{
struct c4iw_ep *ep = p;
struct c4iw_debugfs_data *epd = data;
int space;
int cc;
space = epd->bufsize - epd->pos - 1;
if (space == 0)
return 1;
cc = snprintf(epd->buf + epd->pos, space,
"ep %p cm_id %p qp %p state %d flags 0x%lx history 0x%lx "
"hwtid %d atid %d %pI4:%d <-> %pI4:%d\n",
ep, ep->com.cm_id, ep->com.qp, (int)ep->com.state,
ep->com.flags, ep->com.history, ep->hwtid, ep->atid,
&ep->com.local_addr.sin_addr.s_addr,
ntohs(ep->com.local_addr.sin_port),
&ep->com.remote_addr.sin_addr.s_addr,
ntohs(ep->com.remote_addr.sin_port));
if (cc < space)
epd->pos += cc;
return 0;
}
static int dump_listen_ep(int id, void *p, void *data)
{
struct c4iw_listen_ep *ep = p;
struct c4iw_debugfs_data *epd = data;
int space;
int cc;
space = epd->bufsize - epd->pos - 1;
if (space == 0)
return 1;
cc = snprintf(epd->buf + epd->pos, space,
"ep %p cm_id %p state %d flags 0x%lx stid %d backlog %d "
"%pI4:%d\n", ep, ep->com.cm_id, (int)ep->com.state,
ep->com.flags, ep->stid, ep->backlog,
&ep->com.local_addr.sin_addr.s_addr,
ntohs(ep->com.local_addr.sin_port));
if (cc < space)
epd->pos += cc;
return 0;
}
static int ep_release(struct inode *inode, struct file *file)
{
struct c4iw_debugfs_data *epd = file->private_data;
if (!epd) {
pr_info("%s null qpd?\n", __func__);
return 0;
}
vfree(epd->buf);
kfree(epd);
return 0;
}
static int ep_open(struct inode *inode, struct file *file)
{
struct c4iw_debugfs_data *epd;
int ret = 0;
int count = 1;
epd = kmalloc(sizeof(*epd), GFP_KERNEL);
if (!epd) {
ret = -ENOMEM;
goto out;
}
epd->devp = inode->i_private;
epd->pos = 0;
spin_lock_irq(&epd->devp->lock);
idr_for_each(&epd->devp->hwtid_idr, count_idrs, &count);
idr_for_each(&epd->devp->atid_idr, count_idrs, &count);
idr_for_each(&epd->devp->stid_idr, count_idrs, &count);
spin_unlock_irq(&epd->devp->lock);
epd->bufsize = count * 160;
epd->buf = vmalloc(epd->bufsize);
if (!epd->buf) {
ret = -ENOMEM;
goto err1;
}
spin_lock_irq(&epd->devp->lock);
idr_for_each(&epd->devp->hwtid_idr, dump_ep, epd);
idr_for_each(&epd->devp->atid_idr, dump_ep, epd);
idr_for_each(&epd->devp->stid_idr, dump_listen_ep, epd);
spin_unlock_irq(&epd->devp->lock);
file->private_data = epd;
goto out;
err1:
kfree(epd);
out:
return ret;
}
static const struct file_operations ep_debugfs_fops = {
.owner = THIS_MODULE,
.open = ep_open,
.release = ep_release,
.read = debugfs_read,
};
static int setup_debugfs(struct c4iw_dev *devp) static int setup_debugfs(struct c4iw_dev *devp)
{ {
struct dentry *de; struct dentry *de;
...@@ -344,6 +459,11 @@ static int setup_debugfs(struct c4iw_dev *devp) ...@@ -344,6 +459,11 @@ static int setup_debugfs(struct c4iw_dev *devp)
if (de && de->d_inode) if (de && de->d_inode)
de->d_inode->i_size = 4096; de->d_inode->i_size = 4096;
de = debugfs_create_file("eps", S_IWUSR, devp->debugfs_root,
(void *)devp, &ep_debugfs_fops);
if (de && de->d_inode)
de->d_inode->i_size = 4096;
return 0; return 0;
} }
...@@ -475,6 +595,9 @@ static void c4iw_dealloc(struct uld_ctx *ctx) ...@@ -475,6 +595,9 @@ static void c4iw_dealloc(struct uld_ctx *ctx)
idr_destroy(&ctx->dev->cqidr); idr_destroy(&ctx->dev->cqidr);
idr_destroy(&ctx->dev->qpidr); idr_destroy(&ctx->dev->qpidr);
idr_destroy(&ctx->dev->mmidr); idr_destroy(&ctx->dev->mmidr);
idr_destroy(&ctx->dev->hwtid_idr);
idr_destroy(&ctx->dev->stid_idr);
idr_destroy(&ctx->dev->atid_idr);
iounmap(ctx->dev->rdev.oc_mw_kva); iounmap(ctx->dev->rdev.oc_mw_kva);
ib_dealloc_device(&ctx->dev->ibdev); ib_dealloc_device(&ctx->dev->ibdev);
ctx->dev = NULL; ctx->dev = NULL;
...@@ -532,6 +655,9 @@ static struct c4iw_dev *c4iw_alloc(const struct cxgb4_lld_info *infop) ...@@ -532,6 +655,9 @@ static struct c4iw_dev *c4iw_alloc(const struct cxgb4_lld_info *infop)
idr_init(&devp->cqidr); idr_init(&devp->cqidr);
idr_init(&devp->qpidr); idr_init(&devp->qpidr);
idr_init(&devp->mmidr); idr_init(&devp->mmidr);
idr_init(&devp->hwtid_idr);
idr_init(&devp->stid_idr);
idr_init(&devp->atid_idr);
spin_lock_init(&devp->lock); spin_lock_init(&devp->lock);
mutex_init(&devp->rdev.stats.lock); mutex_init(&devp->rdev.stats.lock);
mutex_init(&devp->db_mutex); mutex_init(&devp->db_mutex);
...@@ -577,14 +703,76 @@ static void *c4iw_uld_add(const struct cxgb4_lld_info *infop) ...@@ -577,14 +703,76 @@ static void *c4iw_uld_add(const struct cxgb4_lld_info *infop)
return ctx; return ctx;
} }
static inline struct sk_buff *copy_gl_to_skb_pkt(const struct pkt_gl *gl,
const __be64 *rsp,
u32 pktshift)
{
struct sk_buff *skb;
/*
* Allocate space for cpl_pass_accept_req which will be synthesized by
* driver. Once the driver synthesizes the request the skb will go
* through the regular cpl_pass_accept_req processing.
* The math here assumes sizeof cpl_pass_accept_req >= sizeof
* cpl_rx_pkt.
*/
skb = alloc_skb(gl->tot_len + sizeof(struct cpl_pass_accept_req) +
sizeof(struct rss_header) - pktshift, GFP_ATOMIC);
if (unlikely(!skb))
return NULL;
__skb_put(skb, gl->tot_len + sizeof(struct cpl_pass_accept_req) +
sizeof(struct rss_header) - pktshift);
/*
* This skb will contain:
* rss_header from the rspq descriptor (1 flit)
* cpl_rx_pkt struct from the rspq descriptor (2 flits)
* space for the difference between the size of an
* rx_pkt and pass_accept_req cpl (1 flit)
* the packet data from the gl
*/
skb_copy_to_linear_data(skb, rsp, sizeof(struct cpl_pass_accept_req) +
sizeof(struct rss_header));
skb_copy_to_linear_data_offset(skb, sizeof(struct rss_header) +
sizeof(struct cpl_pass_accept_req),
gl->va + pktshift,
gl->tot_len - pktshift);
return skb;
}
static inline int recv_rx_pkt(struct c4iw_dev *dev, const struct pkt_gl *gl,
const __be64 *rsp)
{
unsigned int opcode = *(u8 *)rsp;
struct sk_buff *skb;
if (opcode != CPL_RX_PKT)
goto out;
skb = copy_gl_to_skb_pkt(gl , rsp, dev->rdev.lldi.sge_pktshift);
if (skb == NULL)
goto out;
if (c4iw_handlers[opcode] == NULL) {
pr_info("%s no handler opcode 0x%x...\n", __func__,
opcode);
kfree_skb(skb);
goto out;
}
c4iw_handlers[opcode](dev, skb);
return 1;
out:
return 0;
}
static int c4iw_uld_rx_handler(void *handle, const __be64 *rsp, static int c4iw_uld_rx_handler(void *handle, const __be64 *rsp,
const struct pkt_gl *gl) const struct pkt_gl *gl)
{ {
struct uld_ctx *ctx = handle; struct uld_ctx *ctx = handle;
struct c4iw_dev *dev = ctx->dev; struct c4iw_dev *dev = ctx->dev;
struct sk_buff *skb; struct sk_buff *skb;
const struct cpl_act_establish *rpl; u8 opcode;
unsigned int opcode;
if (gl == NULL) { if (gl == NULL) {
/* omit RSS and rsp_ctrl at end of descriptor */ /* omit RSS and rsp_ctrl at end of descriptor */
...@@ -600,6 +788,18 @@ static int c4iw_uld_rx_handler(void *handle, const __be64 *rsp, ...@@ -600,6 +788,18 @@ static int c4iw_uld_rx_handler(void *handle, const __be64 *rsp,
u32 qid = be32_to_cpu(rc->pldbuflen_qid); u32 qid = be32_to_cpu(rc->pldbuflen_qid);
c4iw_ev_handler(dev, qid); c4iw_ev_handler(dev, qid);
return 0;
} else if (unlikely(*(u8 *)rsp != *(u8 *)gl->va)) {
if (recv_rx_pkt(dev, gl, rsp))
return 0;
pr_info("%s: unexpected FL contents at %p, " \
"RSS %#llx, FL %#llx, len %u\n",
pci_name(ctx->lldi.pdev), gl->va,
(unsigned long long)be64_to_cpu(*rsp),
(unsigned long long)be64_to_cpu(*(u64 *)gl->va),
gl->tot_len);
return 0; return 0;
} else { } else {
skb = cxgb4_pktgl_to_skb(gl, 128, 128); skb = cxgb4_pktgl_to_skb(gl, 128, 128);
...@@ -607,13 +807,11 @@ static int c4iw_uld_rx_handler(void *handle, const __be64 *rsp, ...@@ -607,13 +807,11 @@ static int c4iw_uld_rx_handler(void *handle, const __be64 *rsp,
goto nomem; goto nomem;
} }
rpl = cplhdr(skb); opcode = *(u8 *)rsp;
opcode = rpl->ot.opcode;
if (c4iw_handlers[opcode]) if (c4iw_handlers[opcode])
c4iw_handlers[opcode](dev, skb); c4iw_handlers[opcode](dev, skb);
else else
printk(KERN_INFO "%s no handler opcode 0x%x...\n", __func__, pr_info("%s no handler opcode 0x%x...\n", __func__,
opcode); opcode);
return 0; return 0;
......
...@@ -130,6 +130,9 @@ struct c4iw_stats { ...@@ -130,6 +130,9 @@ struct c4iw_stats {
u64 db_empty; u64 db_empty;
u64 db_drop; u64 db_drop;
u64 db_state_transitions; u64 db_state_transitions;
u64 tcam_full;
u64 act_ofld_conn_fails;
u64 pas_ofld_conn_fails;
}; };
struct c4iw_rdev { struct c4iw_rdev {
...@@ -223,6 +226,9 @@ struct c4iw_dev { ...@@ -223,6 +226,9 @@ struct c4iw_dev {
struct dentry *debugfs_root; struct dentry *debugfs_root;
enum db_state db_state; enum db_state db_state;
int qpcnt; int qpcnt;
struct idr hwtid_idr;
struct idr atid_idr;
struct idr stid_idr;
}; };
static inline struct c4iw_dev *to_c4iw_dev(struct ib_device *ibdev) static inline struct c4iw_dev *to_c4iw_dev(struct ib_device *ibdev)
...@@ -712,6 +718,31 @@ enum c4iw_ep_flags { ...@@ -712,6 +718,31 @@ enum c4iw_ep_flags {
CLOSE_SENT = 3, CLOSE_SENT = 3,
}; };
enum c4iw_ep_history {
ACT_OPEN_REQ = 0,
ACT_OFLD_CONN = 1,
ACT_OPEN_RPL = 2,
ACT_ESTAB = 3,
PASS_ACCEPT_REQ = 4,
PASS_ESTAB = 5,
ABORT_UPCALL = 6,
ESTAB_UPCALL = 7,
CLOSE_UPCALL = 8,
ULP_ACCEPT = 9,
ULP_REJECT = 10,
TIMEDOUT = 11,
PEER_ABORT = 12,
PEER_CLOSE = 13,
CONNREQ_UPCALL = 14,
ABORT_CONN = 15,
DISCONN_UPCALL = 16,
EP_DISC_CLOSE = 17,
EP_DISC_ABORT = 18,
CONN_RPL_UPCALL = 19,
ACT_RETRY_NOMEM = 20,
ACT_RETRY_INUSE = 21
};
struct c4iw_ep_common { struct c4iw_ep_common {
struct iw_cm_id *cm_id; struct iw_cm_id *cm_id;
struct c4iw_qp *qp; struct c4iw_qp *qp;
...@@ -723,6 +754,7 @@ struct c4iw_ep_common { ...@@ -723,6 +754,7 @@ struct c4iw_ep_common {
struct sockaddr_in remote_addr; struct sockaddr_in remote_addr;
struct c4iw_wr_wait wr_wait; struct c4iw_wr_wait wr_wait;
unsigned long flags; unsigned long flags;
unsigned long history;
}; };
struct c4iw_listen_ep { struct c4iw_listen_ep {
...@@ -760,6 +792,7 @@ struct c4iw_ep { ...@@ -760,6 +792,7 @@ struct c4iw_ep {
u8 tos; u8 tos;
u8 retry_with_mpa_v1; u8 retry_with_mpa_v1;
u8 tried_with_mpa_v1; u8 tried_with_mpa_v1;
unsigned int retry_count;
}; };
static inline struct c4iw_ep *to_ep(struct iw_cm_id *cm_id) static inline struct c4iw_ep *to_ep(struct iw_cm_id *cm_id)
......
...@@ -752,6 +752,9 @@ void ipoib_cm_send(struct net_device *dev, struct sk_buff *skb, struct ipoib_cm_ ...@@ -752,6 +752,9 @@ void ipoib_cm_send(struct net_device *dev, struct sk_buff *skb, struct ipoib_cm_
dev->trans_start = jiffies; dev->trans_start = jiffies;
++tx->tx_head; ++tx->tx_head;
skb_orphan(skb);
skb_dst_drop(skb);
if (++priv->tx_outstanding == ipoib_sendq_size) { if (++priv->tx_outstanding == ipoib_sendq_size) {
ipoib_dbg(priv, "TX ring 0x%x full, stopping kernel net queue\n", ipoib_dbg(priv, "TX ring 0x%x full, stopping kernel net queue\n",
tx->qp->qp_num); tx->qp->qp_num);
......
...@@ -615,8 +615,9 @@ void ipoib_send(struct net_device *dev, struct sk_buff *skb, ...@@ -615,8 +615,9 @@ void ipoib_send(struct net_device *dev, struct sk_buff *skb,
address->last_send = priv->tx_head; address->last_send = priv->tx_head;
++priv->tx_head; ++priv->tx_head;
skb_orphan(skb);
skb_orphan(skb);
skb_dst_drop(skb);
} }
if (unlikely(priv->tx_outstanding > MAX_SEND_CQE)) if (unlikely(priv->tx_outstanding > MAX_SEND_CQE))
......
...@@ -35,6 +35,8 @@ ...@@ -35,6 +35,8 @@
#ifndef __CXGB4_H__ #ifndef __CXGB4_H__
#define __CXGB4_H__ #define __CXGB4_H__
#include "t4_hw.h"
#include <linux/bitops.h> #include <linux/bitops.h>
#include <linux/cache.h> #include <linux/cache.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
...@@ -212,6 +214,8 @@ struct tp_err_stats { ...@@ -212,6 +214,8 @@ struct tp_err_stats {
struct tp_params { struct tp_params {
unsigned int ntxchan; /* # of Tx channels */ unsigned int ntxchan; /* # of Tx channels */
unsigned int tre; /* log2 of core clocks per TP tick */ unsigned int tre; /* log2 of core clocks per TP tick */
unsigned short tx_modq_map; /* TX modulation scheduler queue to */
/* channel map */
uint32_t dack_re; /* DACK timer resolution */ uint32_t dack_re; /* DACK timer resolution */
unsigned short tx_modq[NCHAN]; /* channel to modulation queue map */ unsigned short tx_modq[NCHAN]; /* channel to modulation queue map */
...@@ -526,6 +530,7 @@ struct adapter { ...@@ -526,6 +530,7 @@ struct adapter {
struct net_device *port[MAX_NPORTS]; struct net_device *port[MAX_NPORTS];
u8 chan_map[NCHAN]; /* channel -> port map */ u8 chan_map[NCHAN]; /* channel -> port map */
u32 filter_mode;
unsigned int l2t_start; unsigned int l2t_start;
unsigned int l2t_end; unsigned int l2t_end;
struct l2t_data *l2t; struct l2t_data *l2t;
...@@ -545,6 +550,129 @@ struct adapter { ...@@ -545,6 +550,129 @@ struct adapter {
spinlock_t stats_lock; spinlock_t stats_lock;
}; };
/* Defined bit width of user definable filter tuples
*/
#define ETHTYPE_BITWIDTH 16
#define FRAG_BITWIDTH 1
#define MACIDX_BITWIDTH 9
#define FCOE_BITWIDTH 1
#define IPORT_BITWIDTH 3
#define MATCHTYPE_BITWIDTH 3
#define PROTO_BITWIDTH 8
#define TOS_BITWIDTH 8
#define PF_BITWIDTH 8
#define VF_BITWIDTH 8
#define IVLAN_BITWIDTH 16
#define OVLAN_BITWIDTH 16
/* Filter matching rules. These consist of a set of ingress packet field
* (value, mask) tuples. The associated ingress packet field matches the
* tuple when ((field & mask) == value). (Thus a wildcard "don't care" field
* rule can be constructed by specifying a tuple of (0, 0).) A filter rule
* matches an ingress packet when all of the individual individual field
* matching rules are true.
*
* Partial field masks are always valid, however, while it may be easy to
* understand their meanings for some fields (e.g. IP address to match a
* subnet), for others making sensible partial masks is less intuitive (e.g.
* MPS match type) ...
*
* Most of the following data structures are modeled on T4 capabilities.
* Drivers for earlier chips use the subsets which make sense for those chips.
* We really need to come up with a hardware-independent mechanism to
* represent hardware filter capabilities ...
*/
struct ch_filter_tuple {
/* Compressed header matching field rules. The TP_VLAN_PRI_MAP
* register selects which of these fields will participate in the
* filter match rules -- up to a maximum of 36 bits. Because
* TP_VLAN_PRI_MAP is a global register, all filters must use the same
* set of fields.
*/
uint32_t ethtype:ETHTYPE_BITWIDTH; /* Ethernet type */
uint32_t frag:FRAG_BITWIDTH; /* IP fragmentation header */
uint32_t ivlan_vld:1; /* inner VLAN valid */
uint32_t ovlan_vld:1; /* outer VLAN valid */
uint32_t pfvf_vld:1; /* PF/VF valid */
uint32_t macidx:MACIDX_BITWIDTH; /* exact match MAC index */
uint32_t fcoe:FCOE_BITWIDTH; /* FCoE packet */
uint32_t iport:IPORT_BITWIDTH; /* ingress port */
uint32_t matchtype:MATCHTYPE_BITWIDTH; /* MPS match type */
uint32_t proto:PROTO_BITWIDTH; /* protocol type */
uint32_t tos:TOS_BITWIDTH; /* TOS/Traffic Type */
uint32_t pf:PF_BITWIDTH; /* PCI-E PF ID */
uint32_t vf:VF_BITWIDTH; /* PCI-E VF ID */
uint32_t ivlan:IVLAN_BITWIDTH; /* inner VLAN */
uint32_t ovlan:OVLAN_BITWIDTH; /* outer VLAN */
/* Uncompressed header matching field rules. These are always
* available for field rules.
*/
uint8_t lip[16]; /* local IP address (IPv4 in [3:0]) */
uint8_t fip[16]; /* foreign IP address (IPv4 in [3:0]) */
uint16_t lport; /* local port */
uint16_t fport; /* foreign port */
};
/* A filter ioctl command.
*/
struct ch_filter_specification {
/* Administrative fields for filter.
*/
uint32_t hitcnts:1; /* count filter hits in TCB */
uint32_t prio:1; /* filter has priority over active/server */
/* Fundamental filter typing. This is the one element of filter
* matching that doesn't exist as a (value, mask) tuple.
*/
uint32_t type:1; /* 0 => IPv4, 1 => IPv6 */
/* Packet dispatch information. Ingress packets which match the
* filter rules will be dropped, passed to the host or switched back
* out as egress packets.
*/
uint32_t action:2; /* drop, pass, switch */
uint32_t rpttid:1; /* report TID in RSS hash field */
uint32_t dirsteer:1; /* 0 => RSS, 1 => steer to iq */
uint32_t iq:10; /* ingress queue */
uint32_t maskhash:1; /* dirsteer=0: store RSS hash in TCB */
uint32_t dirsteerhash:1;/* dirsteer=1: 0 => TCB contains RSS hash */
/* 1 => TCB contains IQ ID */
/* Switch proxy/rewrite fields. An ingress packet which matches a
* filter with "switch" set will be looped back out as an egress
* packet -- potentially with some Ethernet header rewriting.
*/
uint32_t eport:2; /* egress port to switch packet out */
uint32_t newdmac:1; /* rewrite destination MAC address */
uint32_t newsmac:1; /* rewrite source MAC address */
uint32_t newvlan:2; /* rewrite VLAN Tag */
uint8_t dmac[ETH_ALEN]; /* new destination MAC address */
uint8_t smac[ETH_ALEN]; /* new source MAC address */
uint16_t vlan; /* VLAN Tag to insert */
/* Filter rule value/mask pairs.
*/
struct ch_filter_tuple val;
struct ch_filter_tuple mask;
};
enum {
FILTER_PASS = 0, /* default */
FILTER_DROP,
FILTER_SWITCH
};
enum {
VLAN_NOCHANGE = 0, /* default */
VLAN_REMOVE,
VLAN_INSERT,
VLAN_REWRITE
};
static inline u32 t4_read_reg(struct adapter *adap, u32 reg_addr) static inline u32 t4_read_reg(struct adapter *adap, u32 reg_addr)
{ {
return readl(adap->regs + reg_addr); return readl(adap->regs + reg_addr);
...@@ -701,6 +829,12 @@ static inline int t4_wr_mbox_ns(struct adapter *adap, int mbox, const void *cmd, ...@@ -701,6 +829,12 @@ static inline int t4_wr_mbox_ns(struct adapter *adap, int mbox, const void *cmd,
void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
unsigned int data_reg, const u32 *vals, unsigned int data_reg, const u32 *vals,
unsigned int nregs, unsigned int start_idx); unsigned int nregs, unsigned int start_idx);
void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
unsigned int data_reg, u32 *vals, unsigned int nregs,
unsigned int start_idx);
struct fw_filter_wr;
void t4_intr_enable(struct adapter *adapter); void t4_intr_enable(struct adapter *adapter);
void t4_intr_disable(struct adapter *adapter); void t4_intr_disable(struct adapter *adapter);
int t4_slow_intr_handler(struct adapter *adapter); int t4_slow_intr_handler(struct adapter *adapter);
...@@ -737,6 +871,8 @@ void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, ...@@ -737,6 +871,8 @@ void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
const unsigned short *alpha, const unsigned short *beta); const unsigned short *alpha, const unsigned short *beta);
void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid);
void t4_wol_magic_enable(struct adapter *adap, unsigned int port, void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
const u8 *addr); const u8 *addr);
int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map, int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
......
...@@ -175,6 +175,30 @@ enum { ...@@ -175,6 +175,30 @@ enum {
MIN_FL_ENTRIES = 16 MIN_FL_ENTRIES = 16
}; };
/* Host shadow copy of ingress filter entry. This is in host native format
* and doesn't match the ordering or bit order, etc. of the hardware of the
* firmware command. The use of bit-field structure elements is purely to
* remind ourselves of the field size limitations and save memory in the case
* where the filter table is large.
*/
struct filter_entry {
/* Administrative fields for filter.
*/
u32 valid:1; /* filter allocated and valid */
u32 locked:1; /* filter is administratively locked */
u32 pending:1; /* filter action is pending firmware reply */
u32 smtidx:8; /* Source MAC Table index for smac */
struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
/* The filter itself. Most of this is a straight copy of information
* provided by the extended ioctl(). Some fields are translated to
* internal forms -- for instance the Ingress Queue ID passed in from
* the ioctl() is translated into the Absolute Ingress Queue ID.
*/
struct ch_filter_specification fs;
};
#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
...@@ -325,6 +349,9 @@ enum { ...@@ -325,6 +349,9 @@ enum {
static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT; static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
module_param(tp_vlan_pri_map, uint, 0644);
MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
static struct dentry *cxgb4_debugfs_root; static struct dentry *cxgb4_debugfs_root;
static LIST_HEAD(adapter_list); static LIST_HEAD(adapter_list);
...@@ -506,8 +533,67 @@ static int link_start(struct net_device *dev) ...@@ -506,8 +533,67 @@ static int link_start(struct net_device *dev)
return ret; return ret;
} }
/* /* Clear a filter and release any of its resources that we own. This also
* Response queue handler for the FW event queue. * clears the filter's "pending" status.
*/
static void clear_filter(struct adapter *adap, struct filter_entry *f)
{
/* If the new or old filter have loopback rewriteing rules then we'll
* need to free any existing Layer Two Table (L2T) entries of the old
* filter rule. The firmware will handle freeing up any Source MAC
* Table (SMT) entries used for rewriting Source MAC Addresses in
* loopback rules.
*/
if (f->l2t)
cxgb4_l2t_release(f->l2t);
/* The zeroing of the filter rule below clears the filter valid,
* pending, locked flags, l2t pointer, etc. so it's all we need for
* this operation.
*/
memset(f, 0, sizeof(*f));
}
/* Handle a filter write/deletion reply.
*/
static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
{
unsigned int idx = GET_TID(rpl);
unsigned int nidx = idx - adap->tids.ftid_base;
unsigned int ret;
struct filter_entry *f;
if (idx >= adap->tids.ftid_base && nidx <
(adap->tids.nftids + adap->tids.nsftids)) {
idx = nidx;
ret = GET_TCB_COOKIE(rpl->cookie);
f = &adap->tids.ftid_tab[idx];
if (ret == FW_FILTER_WR_FLT_DELETED) {
/* Clear the filter when we get confirmation from the
* hardware that the filter has been deleted.
*/
clear_filter(adap, f);
} else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
idx);
clear_filter(adap, f);
} else if (ret == FW_FILTER_WR_FLT_ADDED) {
f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
f->pending = 0; /* asynchronous setup completed */
f->valid = 1;
} else {
/* Something went wrong. Issue a warning about the
* problem and clear everything out.
*/
dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
idx, ret);
clear_filter(adap, f);
}
}
}
/* Response queue handler for the FW event queue.
*/ */
static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
const struct pkt_gl *gl) const struct pkt_gl *gl)
...@@ -542,6 +628,10 @@ static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, ...@@ -542,6 +628,10 @@ static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
const struct cpl_l2t_write_rpl *p = (void *)rsp; const struct cpl_l2t_write_rpl *p = (void *)rsp;
do_l2t_write_rpl(q->adap, p); do_l2t_write_rpl(q->adap, p);
} else if (opcode == CPL_SET_TCB_RPL) {
const struct cpl_set_tcb_rpl *p = (void *)rsp;
filter_rpl(q->adap, p);
} else } else
dev_err(q->adap->pdev_dev, dev_err(q->adap->pdev_dev,
"unexpected CPL %#x on FW event queue\n", opcode); "unexpected CPL %#x on FW event queue\n", opcode);
...@@ -983,6 +1073,148 @@ static void t4_free_mem(void *addr) ...@@ -983,6 +1073,148 @@ static void t4_free_mem(void *addr)
kfree(addr); kfree(addr);
} }
/* Send a Work Request to write the filter at a specified index. We construct
* a Firmware Filter Work Request to have the work done and put the indicated
* filter into "pending" mode which will prevent any further actions against
* it till we get a reply from the firmware on the completion status of the
* request.
*/
static int set_filter_wr(struct adapter *adapter, int fidx)
{
struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
struct sk_buff *skb;
struct fw_filter_wr *fwr;
unsigned int ftid;
/* If the new filter requires loopback Destination MAC and/or VLAN
* rewriting then we need to allocate a Layer 2 Table (L2T) entry for
* the filter.
*/
if (f->fs.newdmac || f->fs.newvlan) {
/* allocate L2T entry for new filter */
f->l2t = t4_l2t_alloc_switching(adapter->l2t);
if (f->l2t == NULL)
return -EAGAIN;
if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
f->fs.eport, f->fs.dmac)) {
cxgb4_l2t_release(f->l2t);
f->l2t = NULL;
return -ENOMEM;
}
}
ftid = adapter->tids.ftid_base + fidx;
skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
memset(fwr, 0, sizeof(*fwr));
/* It would be nice to put most of the following in t4_hw.c but most
* of the work is translating the cxgbtool ch_filter_specification
* into the Work Request and the definition of that structure is
* currently in cxgbtool.h which isn't appropriate to pull into the
* common code. We may eventually try to come up with a more neutral
* filter specification structure but for now it's easiest to simply
* put this fairly direct code in line ...
*/
fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
fwr->tid_to_iq =
htonl(V_FW_FILTER_WR_TID(ftid) |
V_FW_FILTER_WR_RQTYPE(f->fs.type) |
V_FW_FILTER_WR_NOREPLY(0) |
V_FW_FILTER_WR_IQ(f->fs.iq));
fwr->del_filter_to_l2tix =
htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
f->fs.newvlan == VLAN_REWRITE) |
V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
f->fs.newvlan == VLAN_REWRITE) |
V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
V_FW_FILTER_WR_PRIO(f->fs.prio) |
V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
fwr->ethtype = htons(f->fs.val.ethtype);
fwr->ethtypem = htons(f->fs.mask.ethtype);
fwr->frag_to_ovlan_vldm =
(V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
fwr->smac_sel = 0;
fwr->rx_chan_rx_rpl_iq =
htons(V_FW_FILTER_WR_RX_CHAN(0) |
V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
fwr->maci_to_matchtypem =
htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
V_FW_FILTER_WR_PORT(f->fs.val.iport) |
V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
fwr->ptcl = f->fs.val.proto;
fwr->ptclm = f->fs.mask.proto;
fwr->ttyp = f->fs.val.tos;
fwr->ttypm = f->fs.mask.tos;
fwr->ivlan = htons(f->fs.val.ivlan);
fwr->ivlanm = htons(f->fs.mask.ivlan);
fwr->ovlan = htons(f->fs.val.ovlan);
fwr->ovlanm = htons(f->fs.mask.ovlan);
memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
fwr->lp = htons(f->fs.val.lport);
fwr->lpm = htons(f->fs.mask.lport);
fwr->fp = htons(f->fs.val.fport);
fwr->fpm = htons(f->fs.mask.fport);
if (f->fs.newsmac)
memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
/* Mark the filter as "pending" and ship off the Filter Work Request.
* When we get the Work Request Reply we'll clear the pending status.
*/
f->pending = 1;
set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
t4_ofld_send(adapter, skb);
return 0;
}
/* Delete the filter at a specified index.
*/
static int del_filter_wr(struct adapter *adapter, int fidx)
{
struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
struct sk_buff *skb;
struct fw_filter_wr *fwr;
unsigned int len, ftid;
len = sizeof(*fwr);
ftid = adapter->tids.ftid_base + fidx;
skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
fwr = (struct fw_filter_wr *)__skb_put(skb, len);
t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
/* Mark the filter as "pending" and ship off the Filter Work Request.
* When we get the Work Request Reply we'll clear the pending status.
*/
f->pending = 1;
t4_mgmt_tx(adapter, skb);
return 0;
}
static inline int is_offload(const struct adapter *adap) static inline int is_offload(const struct adapter *adap)
{ {
return adap->params.offload; return adap->params.offload;
...@@ -2195,7 +2427,7 @@ int cxgb4_alloc_atid(struct tid_info *t, void *data) ...@@ -2195,7 +2427,7 @@ int cxgb4_alloc_atid(struct tid_info *t, void *data)
if (t->afree) { if (t->afree) {
union aopen_entry *p = t->afree; union aopen_entry *p = t->afree;
atid = p - t->atid_tab; atid = (p - t->atid_tab) + t->atid_base;
t->afree = p->next; t->afree = p->next;
p->data = data; p->data = data;
t->atids_in_use++; t->atids_in_use++;
...@@ -2210,7 +2442,7 @@ EXPORT_SYMBOL(cxgb4_alloc_atid); ...@@ -2210,7 +2442,7 @@ EXPORT_SYMBOL(cxgb4_alloc_atid);
*/ */
void cxgb4_free_atid(struct tid_info *t, unsigned int atid) void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
{ {
union aopen_entry *p = &t->atid_tab[atid]; union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
spin_lock_bh(&t->atid_lock); spin_lock_bh(&t->atid_lock);
p->next = t->afree; p->next = t->afree;
...@@ -2249,8 +2481,34 @@ int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) ...@@ -2249,8 +2481,34 @@ int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
} }
EXPORT_SYMBOL(cxgb4_alloc_stid); EXPORT_SYMBOL(cxgb4_alloc_stid);
/* /* Allocate a server filter TID and set it to the supplied value.
* Release a server TID. */
int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
{
int stid;
spin_lock_bh(&t->stid_lock);
if (family == PF_INET) {
stid = find_next_zero_bit(t->stid_bmap,
t->nstids + t->nsftids, t->nstids);
if (stid < (t->nstids + t->nsftids))
__set_bit(stid, t->stid_bmap);
else
stid = -1;
} else {
stid = -1;
}
if (stid >= 0) {
t->stid_tab[stid].data = data;
stid += t->stid_base;
t->stids_in_use++;
}
spin_unlock_bh(&t->stid_lock);
return stid;
}
EXPORT_SYMBOL(cxgb4_alloc_sftid);
/* Release a server TID.
*/ */
void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
{ {
...@@ -2362,18 +2620,26 @@ EXPORT_SYMBOL(cxgb4_remove_tid); ...@@ -2362,18 +2620,26 @@ EXPORT_SYMBOL(cxgb4_remove_tid);
static int tid_init(struct tid_info *t) static int tid_init(struct tid_info *t)
{ {
size_t size; size_t size;
unsigned int stid_bmap_size;
unsigned int natids = t->natids; unsigned int natids = t->natids;
size = t->ntids * sizeof(*t->tid_tab) + natids * sizeof(*t->atid_tab) + stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
size = t->ntids * sizeof(*t->tid_tab) +
natids * sizeof(*t->atid_tab) +
t->nstids * sizeof(*t->stid_tab) + t->nstids * sizeof(*t->stid_tab) +
BITS_TO_LONGS(t->nstids) * sizeof(long); t->nsftids * sizeof(*t->stid_tab) +
stid_bmap_size * sizeof(long) +
t->nftids * sizeof(*t->ftid_tab) +
t->nsftids * sizeof(*t->ftid_tab);
t->tid_tab = t4_alloc_mem(size); t->tid_tab = t4_alloc_mem(size);
if (!t->tid_tab) if (!t->tid_tab)
return -ENOMEM; return -ENOMEM;
t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids]; t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
spin_lock_init(&t->stid_lock); spin_lock_init(&t->stid_lock);
spin_lock_init(&t->atid_lock); spin_lock_init(&t->atid_lock);
...@@ -2388,7 +2654,7 @@ static int tid_init(struct tid_info *t) ...@@ -2388,7 +2654,7 @@ static int tid_init(struct tid_info *t)
t->atid_tab[natids - 1].next = &t->atid_tab[natids]; t->atid_tab[natids - 1].next = &t->atid_tab[natids];
t->afree = t->atid_tab; t->afree = t->atid_tab;
} }
bitmap_zero(t->stid_bmap, t->nstids); bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
return 0; return 0;
} }
...@@ -2404,7 +2670,8 @@ static int tid_init(struct tid_info *t) ...@@ -2404,7 +2670,8 @@ static int tid_init(struct tid_info *t)
* Returns <0 on error and one of the %NET_XMIT_* values on success. * Returns <0 on error and one of the %NET_XMIT_* values on success.
*/ */
int cxgb4_create_server(const struct net_device *dev, unsigned int stid, int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
__be32 sip, __be16 sport, unsigned int queue) __be32 sip, __be16 sport, __be16 vlan,
unsigned int queue)
{ {
unsigned int chan; unsigned int chan;
struct sk_buff *skb; struct sk_buff *skb;
...@@ -2750,6 +3017,7 @@ static void uld_attach(struct adapter *adap, unsigned int uld) ...@@ -2750,6 +3017,7 @@ static void uld_attach(struct adapter *adap, unsigned int uld)
{ {
void *handle; void *handle;
struct cxgb4_lld_info lli; struct cxgb4_lld_info lli;
unsigned short i;
lli.pdev = adap->pdev; lli.pdev = adap->pdev;
lli.l2t = adap->l2t; lli.l2t = adap->l2t;
...@@ -2776,10 +3044,16 @@ static void uld_attach(struct adapter *adap, unsigned int uld) ...@@ -2776,10 +3044,16 @@ static void uld_attach(struct adapter *adap, unsigned int uld)
lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET( lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >> t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
(adap->fn * 4)); (adap->fn * 4));
lli.filt_mode = adap->filter_mode;
/* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
for (i = 0; i < NCHAN; i++)
lli.tx_modq[i] = i;
lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS); lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL); lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
lli.fw_vers = adap->params.fw_vers; lli.fw_vers = adap->params.fw_vers;
lli.dbfifo_int_thresh = dbfifo_int_thresh; lli.dbfifo_int_thresh = dbfifo_int_thresh;
lli.sge_pktshift = adap->sge.pktshift;
lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
handle = ulds[uld].add(&lli); handle = ulds[uld].add(&lli);
if (IS_ERR(handle)) { if (IS_ERR(handle)) {
...@@ -2999,6 +3273,126 @@ static int cxgb_close(struct net_device *dev) ...@@ -2999,6 +3273,126 @@ static int cxgb_close(struct net_device *dev)
return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false); return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
} }
/* Return an error number if the indicated filter isn't writable ...
*/
static int writable_filter(struct filter_entry *f)
{
if (f->locked)
return -EPERM;
if (f->pending)
return -EBUSY;
return 0;
}
/* Delete the filter at the specified index (if valid). The checks for all
* the common problems with doing this like the filter being locked, currently
* pending in another operation, etc.
*/
static int delete_filter(struct adapter *adapter, unsigned int fidx)
{
struct filter_entry *f;
int ret;
if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
return -EINVAL;
f = &adapter->tids.ftid_tab[fidx];
ret = writable_filter(f);
if (ret)
return ret;
if (f->valid)
return del_filter_wr(adapter, fidx);
return 0;
}
int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
__be32 sip, __be16 sport, __be16 vlan,
unsigned int queue, unsigned char port, unsigned char mask)
{
int ret;
struct filter_entry *f;
struct adapter *adap;
int i;
u8 *val;
adap = netdev2adap(dev);
/* Adjust stid to correct filter index */
stid -= adap->tids.nstids;
stid += adap->tids.nftids;
/* Check to make sure the filter requested is writable ...
*/
f = &adap->tids.ftid_tab[stid];
ret = writable_filter(f);
if (ret)
return ret;
/* Clear out any old resources being used by the filter before
* we start constructing the new filter.
*/
if (f->valid)
clear_filter(adap, f);
/* Clear out filter specifications */
memset(&f->fs, 0, sizeof(struct ch_filter_specification));
f->fs.val.lport = cpu_to_be16(sport);
f->fs.mask.lport = ~0;
val = (u8 *)&sip;
if ((val[0] | val[1] | val[2] | val[3]) != 0) {
for (i = 0; i < 4; i++) {
f->fs.val.lip[i] = val[i];
f->fs.mask.lip[i] = ~0;
}
if (adap->filter_mode & F_PORT) {
f->fs.val.iport = port;
f->fs.mask.iport = mask;
}
}
f->fs.dirsteer = 1;
f->fs.iq = queue;
/* Mark filter as locked */
f->locked = 1;
f->fs.rpttid = 1;
ret = set_filter_wr(adap, stid);
if (ret) {
clear_filter(adap, f);
return ret;
}
return 0;
}
EXPORT_SYMBOL(cxgb4_create_server_filter);
int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
unsigned int queue, bool ipv6)
{
int ret;
struct filter_entry *f;
struct adapter *adap;
adap = netdev2adap(dev);
/* Adjust stid to correct filter index */
stid -= adap->tids.nstids;
stid += adap->tids.nftids;
f = &adap->tids.ftid_tab[stid];
/* Unlock the filter */
f->locked = 0;
ret = delete_filter(adap, stid);
if (ret)
return ret;
return 0;
}
EXPORT_SYMBOL(cxgb4_remove_server_filter);
static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev, static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
struct rtnl_link_stats64 *ns) struct rtnl_link_stats64 *ns)
{ {
...@@ -3245,6 +3639,34 @@ static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) ...@@ -3245,6 +3639,34 @@ static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
v = t4_read_reg(adap, TP_PIO_DATA); v = t4_read_reg(adap, TP_PIO_DATA);
t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR); t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
/* first 4 Tx modulation queues point to consecutive Tx channels */
adap->params.tp.tx_modq_map = 0xE4;
t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
/* associate each Tx modulation queue with consecutive Tx channels */
v = 0x84218421;
t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
&v, 1, A_TP_TX_SCHED_HDR);
t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
&v, 1, A_TP_TX_SCHED_FIFO);
t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
&v, 1, A_TP_TX_SCHED_PCMD);
#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
if (is_offload(adap)) {
t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
}
/* get basic stuff going */ /* get basic stuff going */
return t4_early_init(adap, adap->fn); return t4_early_init(adap, adap->fn);
} }
...@@ -4035,6 +4457,10 @@ static int adap_init0(struct adapter *adap) ...@@ -4035,6 +4457,10 @@ static int adap_init0(struct adapter *adap)
for (j = 0; j < NCHAN; j++) for (j = 0; j < NCHAN; j++)
adap->params.tp.tx_modq[j] = j; adap->params.tp.tx_modq[j] = j;
t4_read_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
&adap->filter_mode, 1,
TP_VLAN_PRI_MAP);
adap->flags |= FW_OK; adap->flags |= FW_OK;
return 0; return 0;
...@@ -4661,6 +5087,17 @@ static void remove_one(struct pci_dev *pdev) ...@@ -4661,6 +5087,17 @@ static void remove_one(struct pci_dev *pdev)
if (adapter->debugfs_root) if (adapter->debugfs_root)
debugfs_remove_recursive(adapter->debugfs_root); debugfs_remove_recursive(adapter->debugfs_root);
/* If we allocated filters, free up state associated with any
* valid filters ...
*/
if (adapter->tids.ftid_tab) {
struct filter_entry *f = &adapter->tids.ftid_tab[0];
for (i = 0; i < (adapter->tids.nftids +
adapter->tids.nsftids); i++, f++)
if (f->valid)
clear_filter(adapter, f);
}
if (adapter->flags & FULL_INIT_DONE) if (adapter->flags & FULL_INIT_DONE)
cxgb_down(adapter); cxgb_down(adapter);
......
...@@ -38,6 +38,7 @@ ...@@ -38,6 +38,7 @@
#include <linux/cache.h> #include <linux/cache.h>
#include <linux/spinlock.h> #include <linux/spinlock.h>
#include <linux/skbuff.h> #include <linux/skbuff.h>
#include <linux/inetdevice.h>
#include <linux/atomic.h> #include <linux/atomic.h>
/* CPL message priority levels */ /* CPL message priority levels */
...@@ -97,7 +98,9 @@ struct tid_info { ...@@ -97,7 +98,9 @@ struct tid_info {
union aopen_entry *atid_tab; union aopen_entry *atid_tab;
unsigned int natids; unsigned int natids;
unsigned int atid_base;
struct filter_entry *ftid_tab;
unsigned int nftids; unsigned int nftids;
unsigned int ftid_base; unsigned int ftid_base;
unsigned int aftid_base; unsigned int aftid_base;
...@@ -129,7 +132,7 @@ static inline void *lookup_atid(const struct tid_info *t, unsigned int atid) ...@@ -129,7 +132,7 @@ static inline void *lookup_atid(const struct tid_info *t, unsigned int atid)
static inline void *lookup_stid(const struct tid_info *t, unsigned int stid) static inline void *lookup_stid(const struct tid_info *t, unsigned int stid)
{ {
stid -= t->stid_base; stid -= t->stid_base;
return stid < t->nstids ? t->stid_tab[stid].data : NULL; return stid < (t->nstids + t->nsftids) ? t->stid_tab[stid].data : NULL;
} }
static inline void cxgb4_insert_tid(struct tid_info *t, void *data, static inline void cxgb4_insert_tid(struct tid_info *t, void *data,
...@@ -141,6 +144,7 @@ static inline void cxgb4_insert_tid(struct tid_info *t, void *data, ...@@ -141,6 +144,7 @@ static inline void cxgb4_insert_tid(struct tid_info *t, void *data,
int cxgb4_alloc_atid(struct tid_info *t, void *data); int cxgb4_alloc_atid(struct tid_info *t, void *data);
int cxgb4_alloc_stid(struct tid_info *t, int family, void *data); int cxgb4_alloc_stid(struct tid_info *t, int family, void *data);
int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data);
void cxgb4_free_atid(struct tid_info *t, unsigned int atid); void cxgb4_free_atid(struct tid_info *t, unsigned int atid);
void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family); void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family);
void cxgb4_remove_tid(struct tid_info *t, unsigned int qid, unsigned int tid); void cxgb4_remove_tid(struct tid_info *t, unsigned int qid, unsigned int tid);
...@@ -148,8 +152,14 @@ void cxgb4_remove_tid(struct tid_info *t, unsigned int qid, unsigned int tid); ...@@ -148,8 +152,14 @@ void cxgb4_remove_tid(struct tid_info *t, unsigned int qid, unsigned int tid);
struct in6_addr; struct in6_addr;
int cxgb4_create_server(const struct net_device *dev, unsigned int stid, int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
__be32 sip, __be16 sport, unsigned int queue); __be32 sip, __be16 sport, __be16 vlan,
unsigned int queue);
int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
__be32 sip, __be16 sport, __be16 vlan,
unsigned int queue,
unsigned char port, unsigned char mask);
int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
unsigned int queue, bool ipv6);
static inline void set_wr_txq(struct sk_buff *skb, int prio, int queue) static inline void set_wr_txq(struct sk_buff *skb, int prio, int queue)
{ {
skb_set_queue_mapping(skb, (queue << 1) | prio); skb_set_queue_mapping(skb, (queue << 1) | prio);
...@@ -221,9 +231,16 @@ struct cxgb4_lld_info { ...@@ -221,9 +231,16 @@ struct cxgb4_lld_info {
unsigned int iscsi_iolen; /* iSCSI max I/O length */ unsigned int iscsi_iolen; /* iSCSI max I/O length */
unsigned short udb_density; /* # of user DB/page */ unsigned short udb_density; /* # of user DB/page */
unsigned short ucq_density; /* # of user CQs/page */ unsigned short ucq_density; /* # of user CQs/page */
unsigned short filt_mode; /* filter optional components */
unsigned short tx_modq[NCHAN]; /* maps each tx channel to a */
/* scheduler queue */
void __iomem *gts_reg; /* address of GTS register */ void __iomem *gts_reg; /* address of GTS register */
void __iomem *db_reg; /* address of kernel doorbell */ void __iomem *db_reg; /* address of kernel doorbell */
int dbfifo_int_thresh; /* doorbell fifo int threshold */ int dbfifo_int_thresh; /* doorbell fifo int threshold */
unsigned int sge_pktshift; /* Padding between CPL and */
/* packet data */
bool enable_fw_ofld_conn; /* Enable connection through fw */
/* WR */
}; };
struct cxgb4_uld_info { struct cxgb4_uld_info {
......
...@@ -484,6 +484,38 @@ void t4_l2t_update(struct adapter *adap, struct neighbour *neigh) ...@@ -484,6 +484,38 @@ void t4_l2t_update(struct adapter *adap, struct neighbour *neigh)
handle_failed_resolution(adap, arpq); handle_failed_resolution(adap, arpq);
} }
/* Allocate an L2T entry for use by a switching rule. Such need to be
* explicitly freed and while busy they are not on any hash chain, so normal
* address resolution updates do not see them.
*/
struct l2t_entry *t4_l2t_alloc_switching(struct l2t_data *d)
{
struct l2t_entry *e;
write_lock_bh(&d->lock);
e = alloc_l2e(d);
if (e) {
spin_lock(&e->lock); /* avoid race with t4_l2t_free */
e->state = L2T_STATE_SWITCHING;
atomic_set(&e->refcnt, 1);
spin_unlock(&e->lock);
}
write_unlock_bh(&d->lock);
return e;
}
/* Sets/updates the contents of a switching L2T entry that has been allocated
* with an earlier call to @t4_l2t_alloc_switching.
*/
int t4_l2t_set_switching(struct adapter *adap, struct l2t_entry *e, u16 vlan,
u8 port, u8 *eth_addr)
{
e->vlan = vlan;
e->lport = port;
memcpy(e->dmac, eth_addr, ETH_ALEN);
return write_l2e(adap, e, 0);
}
struct l2t_data *t4_init_l2t(void) struct l2t_data *t4_init_l2t(void)
{ {
int i; int i;
......
...@@ -100,6 +100,9 @@ struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh, ...@@ -100,6 +100,9 @@ struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh,
unsigned int priority); unsigned int priority);
void t4_l2t_update(struct adapter *adap, struct neighbour *neigh); void t4_l2t_update(struct adapter *adap, struct neighbour *neigh);
struct l2t_entry *t4_l2t_alloc_switching(struct l2t_data *d);
int t4_l2t_set_switching(struct adapter *adap, struct l2t_entry *e, u16 vlan,
u8 port, u8 *eth_addr);
struct l2t_data *t4_init_l2t(void); struct l2t_data *t4_init_l2t(void);
void do_l2t_write_rpl(struct adapter *p, const struct cpl_l2t_write_rpl *rpl); void do_l2t_write_rpl(struct adapter *p, const struct cpl_l2t_write_rpl *rpl);
......
...@@ -109,7 +109,7 @@ void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, ...@@ -109,7 +109,7 @@ void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
* Reads registers that are accessed indirectly through an address/data * Reads registers that are accessed indirectly through an address/data
* register pair. * register pair.
*/ */
static void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
unsigned int data_reg, u32 *vals, unsigned int data_reg, u32 *vals,
unsigned int nregs, unsigned int start_idx) unsigned int nregs, unsigned int start_idx)
{ {
...@@ -2268,6 +2268,26 @@ int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map, ...@@ -2268,6 +2268,26 @@ int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
return 0; return 0;
} }
/* t4_mk_filtdelwr - create a delete filter WR
* @ftid: the filter ID
* @wr: the filter work request to populate
* @qid: ingress queue to receive the delete notification
*
* Creates a filter work request to delete the supplied filter. If @qid is
* negative the delete notification is suppressed.
*/
void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
{
memset(wr, 0, sizeof(*wr));
wr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
wr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*wr) / 16));
wr->tid_to_iq = htonl(V_FW_FILTER_WR_TID(ftid) |
V_FW_FILTER_WR_NOREPLY(qid < 0));
wr->del_filter_to_l2tix = htonl(F_FW_FILTER_WR_DEL_FILTER);
if (qid >= 0)
wr->rx_chan_rx_rpl_iq = htons(V_FW_FILTER_WR_RX_RPL_IQ(qid));
}
#define INIT_CMD(var, cmd, rd_wr) do { \ #define INIT_CMD(var, cmd, rd_wr) do { \
(var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \ (var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \
FW_CMD_REQUEST | FW_CMD_##rd_wr); \ FW_CMD_REQUEST | FW_CMD_##rd_wr); \
......
...@@ -193,8 +193,24 @@ struct work_request_hdr { ...@@ -193,8 +193,24 @@ struct work_request_hdr {
__be64 wr_lo; __be64 wr_lo;
}; };
/* wr_hi fields */
#define S_WR_OP 24
#define V_WR_OP(x) ((__u64)(x) << S_WR_OP)
#define WR_HDR struct work_request_hdr wr #define WR_HDR struct work_request_hdr wr
/* option 0 fields */
#define S_MSS_IDX 60
#define M_MSS_IDX 0xF
#define V_MSS_IDX(x) ((__u64)(x) << S_MSS_IDX)
#define G_MSS_IDX(x) (((x) >> S_MSS_IDX) & M_MSS_IDX)
/* option 2 fields */
#define S_RSS_QUEUE 0
#define M_RSS_QUEUE 0x3FF
#define V_RSS_QUEUE(x) ((x) << S_RSS_QUEUE)
#define G_RSS_QUEUE(x) (((x) >> S_RSS_QUEUE) & M_RSS_QUEUE)
struct cpl_pass_open_req { struct cpl_pass_open_req {
WR_HDR; WR_HDR;
union opcode_tid ot; union opcode_tid ot;
...@@ -204,12 +220,14 @@ struct cpl_pass_open_req { ...@@ -204,12 +220,14 @@ struct cpl_pass_open_req {
__be32 peer_ip; __be32 peer_ip;
__be64 opt0; __be64 opt0;
#define TX_CHAN(x) ((x) << 2) #define TX_CHAN(x) ((x) << 2)
#define NO_CONG(x) ((x) << 4)
#define DELACK(x) ((x) << 5) #define DELACK(x) ((x) << 5)
#define ULP_MODE(x) ((x) << 8) #define ULP_MODE(x) ((x) << 8)
#define RCV_BUFSIZ(x) ((x) << 12) #define RCV_BUFSIZ(x) ((x) << 12)
#define DSCP(x) ((x) << 22) #define DSCP(x) ((x) << 22)
#define SMAC_SEL(x) ((u64)(x) << 28) #define SMAC_SEL(x) ((u64)(x) << 28)
#define L2T_IDX(x) ((u64)(x) << 36) #define L2T_IDX(x) ((u64)(x) << 36)
#define TCAM_BYPASS(x) ((u64)(x) << 48)
#define NAGLE(x) ((u64)(x) << 49) #define NAGLE(x) ((u64)(x) << 49)
#define WND_SCALE(x) ((u64)(x) << 50) #define WND_SCALE(x) ((u64)(x) << 50)
#define KEEP_ALIVE(x) ((u64)(x) << 54) #define KEEP_ALIVE(x) ((u64)(x) << 54)
...@@ -247,8 +265,10 @@ struct cpl_pass_accept_rpl { ...@@ -247,8 +265,10 @@ struct cpl_pass_accept_rpl {
#define RSS_QUEUE_VALID (1 << 10) #define RSS_QUEUE_VALID (1 << 10)
#define RX_COALESCE_VALID(x) ((x) << 11) #define RX_COALESCE_VALID(x) ((x) << 11)
#define RX_COALESCE(x) ((x) << 12) #define RX_COALESCE(x) ((x) << 12)
#define PACE(x) ((x) << 16)
#define TX_QUEUE(x) ((x) << 23) #define TX_QUEUE(x) ((x) << 23)
#define RX_CHANNEL(x) ((x) << 26) #define RX_CHANNEL(x) ((x) << 26)
#define CCTRL_ECN(x) ((x) << 27)
#define WND_SCALE_EN(x) ((x) << 28) #define WND_SCALE_EN(x) ((x) << 28)
#define TSTAMPS_EN(x) ((x) << 29) #define TSTAMPS_EN(x) ((x) << 29)
#define SACK_EN(x) ((x) << 30) #define SACK_EN(x) ((x) << 30)
...@@ -292,6 +312,9 @@ struct cpl_pass_establish { ...@@ -292,6 +312,9 @@ struct cpl_pass_establish {
union opcode_tid ot; union opcode_tid ot;
__be32 rsvd; __be32 rsvd;
__be32 tos_stid; __be32 tos_stid;
#define PASS_OPEN_TID(x) ((x) << 0)
#define PASS_OPEN_TOS(x) ((x) << 24)
#define GET_PASS_OPEN_TID(x) (((x) >> 0) & 0xFFFFFF)
#define GET_POPEN_TID(x) ((x) & 0xffffff) #define GET_POPEN_TID(x) ((x) & 0xffffff)
#define GET_POPEN_TOS(x) (((x) >> 24) & 0xff) #define GET_POPEN_TOS(x) (((x) >> 24) & 0xff)
__be16 mac_idx; __be16 mac_idx;
...@@ -332,6 +355,7 @@ struct cpl_set_tcb_field { ...@@ -332,6 +355,7 @@ struct cpl_set_tcb_field {
__be16 word_cookie; __be16 word_cookie;
#define TCB_WORD(x) ((x) << 0) #define TCB_WORD(x) ((x) << 0)
#define TCB_COOKIE(x) ((x) << 5) #define TCB_COOKIE(x) ((x) << 5)
#define GET_TCB_COOKIE(x) (((x) >> 5) & 7)
__be64 mask; __be64 mask;
__be64 val; __be64 val;
}; };
...@@ -536,6 +560,37 @@ struct cpl_rx_pkt { ...@@ -536,6 +560,37 @@ struct cpl_rx_pkt {
__be16 err_vec; __be16 err_vec;
}; };
/* rx_pkt.l2info fields */
#define S_RX_ETHHDR_LEN 0
#define M_RX_ETHHDR_LEN 0x1F
#define V_RX_ETHHDR_LEN(x) ((x) << S_RX_ETHHDR_LEN)
#define G_RX_ETHHDR_LEN(x) (((x) >> S_RX_ETHHDR_LEN) & M_RX_ETHHDR_LEN)
#define S_RX_MACIDX 8
#define M_RX_MACIDX 0x1FF
#define V_RX_MACIDX(x) ((x) << S_RX_MACIDX)
#define G_RX_MACIDX(x) (((x) >> S_RX_MACIDX) & M_RX_MACIDX)
#define S_RXF_SYN 21
#define V_RXF_SYN(x) ((x) << S_RXF_SYN)
#define F_RXF_SYN V_RXF_SYN(1U)
#define S_RX_CHAN 28
#define M_RX_CHAN 0xF
#define V_RX_CHAN(x) ((x) << S_RX_CHAN)
#define G_RX_CHAN(x) (((x) >> S_RX_CHAN) & M_RX_CHAN)
/* rx_pkt.hdr_len fields */
#define S_RX_TCPHDR_LEN 0
#define M_RX_TCPHDR_LEN 0x3F
#define V_RX_TCPHDR_LEN(x) ((x) << S_RX_TCPHDR_LEN)
#define G_RX_TCPHDR_LEN(x) (((x) >> S_RX_TCPHDR_LEN) & M_RX_TCPHDR_LEN)
#define S_RX_IPHDR_LEN 6
#define M_RX_IPHDR_LEN 0x3FF
#define V_RX_IPHDR_LEN(x) ((x) << S_RX_IPHDR_LEN)
#define G_RX_IPHDR_LEN(x) (((x) >> S_RX_IPHDR_LEN) & M_RX_IPHDR_LEN)
struct cpl_trace_pkt { struct cpl_trace_pkt {
u8 opcode; u8 opcode;
u8 intf; u8 intf;
...@@ -634,6 +689,17 @@ struct cpl_fw6_msg { ...@@ -634,6 +689,17 @@ struct cpl_fw6_msg {
/* cpl_fw6_msg.type values */ /* cpl_fw6_msg.type values */
enum { enum {
FW6_TYPE_CMD_RPL = 0, FW6_TYPE_CMD_RPL = 0,
FW6_TYPE_WR_RPL = 1,
FW6_TYPE_CQE = 2,
FW6_TYPE_OFLD_CONNECTION_WR_RPL = 3,
};
struct cpl_fw6_msg_ofld_connection_wr_rpl {
__u64 cookie;
__be32 tid; /* or atid in case of active failure */
__u8 t_state;
__u8 retval;
__u8 rsvd[2];
}; };
enum { enum {
......
...@@ -1064,4 +1064,41 @@ ...@@ -1064,4 +1064,41 @@
#define ADDRESS(x) ((x) << ADDRESS_SHIFT) #define ADDRESS(x) ((x) << ADDRESS_SHIFT)
#define XGMAC_PORT_INT_CAUSE 0x10dc #define XGMAC_PORT_INT_CAUSE 0x10dc
#define A_TP_TX_MOD_QUEUE_REQ_MAP 0x7e28
#define A_TP_TX_MOD_CHANNEL_WEIGHT 0x7e34
#define S_TX_MOD_QUEUE_REQ_MAP 0
#define M_TX_MOD_QUEUE_REQ_MAP 0xffffU
#define V_TX_MOD_QUEUE_REQ_MAP(x) ((x) << S_TX_MOD_QUEUE_REQ_MAP)
#define A_TP_TX_MOD_QUEUE_WEIGHT0 0x7e30
#define S_TX_MODQ_WEIGHT3 24
#define M_TX_MODQ_WEIGHT3 0xffU
#define V_TX_MODQ_WEIGHT3(x) ((x) << S_TX_MODQ_WEIGHT3)
#define S_TX_MODQ_WEIGHT2 16
#define M_TX_MODQ_WEIGHT2 0xffU
#define V_TX_MODQ_WEIGHT2(x) ((x) << S_TX_MODQ_WEIGHT2)
#define S_TX_MODQ_WEIGHT1 8
#define M_TX_MODQ_WEIGHT1 0xffU
#define V_TX_MODQ_WEIGHT1(x) ((x) << S_TX_MODQ_WEIGHT1)
#define S_TX_MODQ_WEIGHT0 0
#define M_TX_MODQ_WEIGHT0 0xffU
#define V_TX_MODQ_WEIGHT0(x) ((x) << S_TX_MODQ_WEIGHT0)
#define A_TP_TX_SCHED_HDR 0x23
#define A_TP_TX_SCHED_FIFO 0x24
#define A_TP_TX_SCHED_PCMD 0x25
#define S_PORT 1
#define V_PORT(x) ((x) << S_PORT)
#define F_PORT V_PORT(1U)
#endif /* __T4_REGS_H */ #endif /* __T4_REGS_H */
...@@ -35,6 +35,45 @@ ...@@ -35,6 +35,45 @@
#ifndef _T4FW_INTERFACE_H_ #ifndef _T4FW_INTERFACE_H_
#define _T4FW_INTERFACE_H_ #define _T4FW_INTERFACE_H_
enum fw_retval {
FW_SUCCESS = 0, /* completed sucessfully */
FW_EPERM = 1, /* operation not permitted */
FW_ENOENT = 2, /* no such file or directory */
FW_EIO = 5, /* input/output error; hw bad */
FW_ENOEXEC = 8, /* exec format error; inv microcode */
FW_EAGAIN = 11, /* try again */
FW_ENOMEM = 12, /* out of memory */
FW_EFAULT = 14, /* bad address; fw bad */
FW_EBUSY = 16, /* resource busy */
FW_EEXIST = 17, /* file exists */
FW_EINVAL = 22, /* invalid argument */
FW_ENOSPC = 28, /* no space left on device */
FW_ENOSYS = 38, /* functionality not implemented */
FW_EPROTO = 71, /* protocol error */
FW_EADDRINUSE = 98, /* address already in use */
FW_EADDRNOTAVAIL = 99, /* cannot assigned requested address */
FW_ENETDOWN = 100, /* network is down */
FW_ENETUNREACH = 101, /* network is unreachable */
FW_ENOBUFS = 105, /* no buffer space available */
FW_ETIMEDOUT = 110, /* timeout */
FW_EINPROGRESS = 115, /* fw internal */
FW_SCSI_ABORT_REQUESTED = 128, /* */
FW_SCSI_ABORT_TIMEDOUT = 129, /* */
FW_SCSI_ABORTED = 130, /* */
FW_SCSI_CLOSE_REQUESTED = 131, /* */
FW_ERR_LINK_DOWN = 132, /* */
FW_RDEV_NOT_READY = 133, /* */
FW_ERR_RDEV_LOST = 134, /* */
FW_ERR_RDEV_LOGO = 135, /* */
FW_FCOE_NO_XCHG = 136, /* */
FW_SCSI_RSP_ERR = 137, /* */
FW_ERR_RDEV_IMPL_LOGO = 138, /* */
FW_SCSI_UNDER_FLOW_ERR = 139, /* */
FW_SCSI_OVER_FLOW_ERR = 140, /* */
FW_SCSI_DDP_ERR = 141, /* DDP error*/
FW_SCSI_TASK_ERR = 142, /* No SCSI tasks available */
};
#define FW_T4VF_SGE_BASE_ADDR 0x0000 #define FW_T4VF_SGE_BASE_ADDR 0x0000
#define FW_T4VF_MPS_BASE_ADDR 0x0100 #define FW_T4VF_MPS_BASE_ADDR 0x0100
#define FW_T4VF_PL_BASE_ADDR 0x0200 #define FW_T4VF_PL_BASE_ADDR 0x0200
...@@ -46,6 +85,7 @@ enum fw_wr_opcodes { ...@@ -46,6 +85,7 @@ enum fw_wr_opcodes {
FW_ULPTX_WR = 0x04, FW_ULPTX_WR = 0x04,
FW_TP_WR = 0x05, FW_TP_WR = 0x05,
FW_ETH_TX_PKT_WR = 0x08, FW_ETH_TX_PKT_WR = 0x08,
FW_OFLD_CONNECTION_WR = 0x2f,
FW_FLOWC_WR = 0x0a, FW_FLOWC_WR = 0x0a,
FW_OFLD_TX_DATA_WR = 0x0b, FW_OFLD_TX_DATA_WR = 0x0b,
FW_CMD_WR = 0x10, FW_CMD_WR = 0x10,
...@@ -81,6 +121,282 @@ struct fw_wr_hdr { ...@@ -81,6 +121,282 @@ struct fw_wr_hdr {
#define FW_WR_LEN16(x) ((x) << 0) #define FW_WR_LEN16(x) ((x) << 0)
#define HW_TPL_FR_MT_PR_IV_P_FC 0X32B #define HW_TPL_FR_MT_PR_IV_P_FC 0X32B
#define HW_TPL_FR_MT_PR_OV_P_FC 0X327
/* filter wr reply code in cookie in CPL_SET_TCB_RPL */
enum fw_filter_wr_cookie {
FW_FILTER_WR_SUCCESS,
FW_FILTER_WR_FLT_ADDED,
FW_FILTER_WR_FLT_DELETED,
FW_FILTER_WR_SMT_TBL_FULL,
FW_FILTER_WR_EINVAL,
};
struct fw_filter_wr {
__be32 op_pkd;
__be32 len16_pkd;
__be64 r3;
__be32 tid_to_iq;
__be32 del_filter_to_l2tix;
__be16 ethtype;
__be16 ethtypem;
__u8 frag_to_ovlan_vldm;
__u8 smac_sel;
__be16 rx_chan_rx_rpl_iq;
__be32 maci_to_matchtypem;
__u8 ptcl;
__u8 ptclm;
__u8 ttyp;
__u8 ttypm;
__be16 ivlan;
__be16 ivlanm;
__be16 ovlan;
__be16 ovlanm;
__u8 lip[16];
__u8 lipm[16];
__u8 fip[16];
__u8 fipm[16];
__be16 lp;
__be16 lpm;
__be16 fp;
__be16 fpm;
__be16 r7;
__u8 sma[6];
};
#define S_FW_FILTER_WR_TID 12
#define M_FW_FILTER_WR_TID 0xfffff
#define V_FW_FILTER_WR_TID(x) ((x) << S_FW_FILTER_WR_TID)
#define G_FW_FILTER_WR_TID(x) \
(((x) >> S_FW_FILTER_WR_TID) & M_FW_FILTER_WR_TID)
#define S_FW_FILTER_WR_RQTYPE 11
#define M_FW_FILTER_WR_RQTYPE 0x1
#define V_FW_FILTER_WR_RQTYPE(x) ((x) << S_FW_FILTER_WR_RQTYPE)
#define G_FW_FILTER_WR_RQTYPE(x) \
(((x) >> S_FW_FILTER_WR_RQTYPE) & M_FW_FILTER_WR_RQTYPE)
#define F_FW_FILTER_WR_RQTYPE V_FW_FILTER_WR_RQTYPE(1U)
#define S_FW_FILTER_WR_NOREPLY 10
#define M_FW_FILTER_WR_NOREPLY 0x1
#define V_FW_FILTER_WR_NOREPLY(x) ((x) << S_FW_FILTER_WR_NOREPLY)
#define G_FW_FILTER_WR_NOREPLY(x) \
(((x) >> S_FW_FILTER_WR_NOREPLY) & M_FW_FILTER_WR_NOREPLY)
#define F_FW_FILTER_WR_NOREPLY V_FW_FILTER_WR_NOREPLY(1U)
#define S_FW_FILTER_WR_IQ 0
#define M_FW_FILTER_WR_IQ 0x3ff
#define V_FW_FILTER_WR_IQ(x) ((x) << S_FW_FILTER_WR_IQ)
#define G_FW_FILTER_WR_IQ(x) \
(((x) >> S_FW_FILTER_WR_IQ) & M_FW_FILTER_WR_IQ)
#define S_FW_FILTER_WR_DEL_FILTER 31
#define M_FW_FILTER_WR_DEL_FILTER 0x1
#define V_FW_FILTER_WR_DEL_FILTER(x) ((x) << S_FW_FILTER_WR_DEL_FILTER)
#define G_FW_FILTER_WR_DEL_FILTER(x) \
(((x) >> S_FW_FILTER_WR_DEL_FILTER) & M_FW_FILTER_WR_DEL_FILTER)
#define F_FW_FILTER_WR_DEL_FILTER V_FW_FILTER_WR_DEL_FILTER(1U)
#define S_FW_FILTER_WR_RPTTID 25
#define M_FW_FILTER_WR_RPTTID 0x1
#define V_FW_FILTER_WR_RPTTID(x) ((x) << S_FW_FILTER_WR_RPTTID)
#define G_FW_FILTER_WR_RPTTID(x) \
(((x) >> S_FW_FILTER_WR_RPTTID) & M_FW_FILTER_WR_RPTTID)
#define F_FW_FILTER_WR_RPTTID V_FW_FILTER_WR_RPTTID(1U)
#define S_FW_FILTER_WR_DROP 24
#define M_FW_FILTER_WR_DROP 0x1
#define V_FW_FILTER_WR_DROP(x) ((x) << S_FW_FILTER_WR_DROP)
#define G_FW_FILTER_WR_DROP(x) \
(((x) >> S_FW_FILTER_WR_DROP) & M_FW_FILTER_WR_DROP)
#define F_FW_FILTER_WR_DROP V_FW_FILTER_WR_DROP(1U)
#define S_FW_FILTER_WR_DIRSTEER 23
#define M_FW_FILTER_WR_DIRSTEER 0x1
#define V_FW_FILTER_WR_DIRSTEER(x) ((x) << S_FW_FILTER_WR_DIRSTEER)
#define G_FW_FILTER_WR_DIRSTEER(x) \
(((x) >> S_FW_FILTER_WR_DIRSTEER) & M_FW_FILTER_WR_DIRSTEER)
#define F_FW_FILTER_WR_DIRSTEER V_FW_FILTER_WR_DIRSTEER(1U)
#define S_FW_FILTER_WR_MASKHASH 22
#define M_FW_FILTER_WR_MASKHASH 0x1
#define V_FW_FILTER_WR_MASKHASH(x) ((x) << S_FW_FILTER_WR_MASKHASH)
#define G_FW_FILTER_WR_MASKHASH(x) \
(((x) >> S_FW_FILTER_WR_MASKHASH) & M_FW_FILTER_WR_MASKHASH)
#define F_FW_FILTER_WR_MASKHASH V_FW_FILTER_WR_MASKHASH(1U)
#define S_FW_FILTER_WR_DIRSTEERHASH 21
#define M_FW_FILTER_WR_DIRSTEERHASH 0x1
#define V_FW_FILTER_WR_DIRSTEERHASH(x) ((x) << S_FW_FILTER_WR_DIRSTEERHASH)
#define G_FW_FILTER_WR_DIRSTEERHASH(x) \
(((x) >> S_FW_FILTER_WR_DIRSTEERHASH) & M_FW_FILTER_WR_DIRSTEERHASH)
#define F_FW_FILTER_WR_DIRSTEERHASH V_FW_FILTER_WR_DIRSTEERHASH(1U)
#define S_FW_FILTER_WR_LPBK 20
#define M_FW_FILTER_WR_LPBK 0x1
#define V_FW_FILTER_WR_LPBK(x) ((x) << S_FW_FILTER_WR_LPBK)
#define G_FW_FILTER_WR_LPBK(x) \
(((x) >> S_FW_FILTER_WR_LPBK) & M_FW_FILTER_WR_LPBK)
#define F_FW_FILTER_WR_LPBK V_FW_FILTER_WR_LPBK(1U)
#define S_FW_FILTER_WR_DMAC 19
#define M_FW_FILTER_WR_DMAC 0x1
#define V_FW_FILTER_WR_DMAC(x) ((x) << S_FW_FILTER_WR_DMAC)
#define G_FW_FILTER_WR_DMAC(x) \
(((x) >> S_FW_FILTER_WR_DMAC) & M_FW_FILTER_WR_DMAC)
#define F_FW_FILTER_WR_DMAC V_FW_FILTER_WR_DMAC(1U)
#define S_FW_FILTER_WR_SMAC 18
#define M_FW_FILTER_WR_SMAC 0x1
#define V_FW_FILTER_WR_SMAC(x) ((x) << S_FW_FILTER_WR_SMAC)
#define G_FW_FILTER_WR_SMAC(x) \
(((x) >> S_FW_FILTER_WR_SMAC) & M_FW_FILTER_WR_SMAC)
#define F_FW_FILTER_WR_SMAC V_FW_FILTER_WR_SMAC(1U)
#define S_FW_FILTER_WR_INSVLAN 17
#define M_FW_FILTER_WR_INSVLAN 0x1
#define V_FW_FILTER_WR_INSVLAN(x) ((x) << S_FW_FILTER_WR_INSVLAN)
#define G_FW_FILTER_WR_INSVLAN(x) \
(((x) >> S_FW_FILTER_WR_INSVLAN) & M_FW_FILTER_WR_INSVLAN)
#define F_FW_FILTER_WR_INSVLAN V_FW_FILTER_WR_INSVLAN(1U)
#define S_FW_FILTER_WR_RMVLAN 16
#define M_FW_FILTER_WR_RMVLAN 0x1
#define V_FW_FILTER_WR_RMVLAN(x) ((x) << S_FW_FILTER_WR_RMVLAN)
#define G_FW_FILTER_WR_RMVLAN(x) \
(((x) >> S_FW_FILTER_WR_RMVLAN) & M_FW_FILTER_WR_RMVLAN)
#define F_FW_FILTER_WR_RMVLAN V_FW_FILTER_WR_RMVLAN(1U)
#define S_FW_FILTER_WR_HITCNTS 15
#define M_FW_FILTER_WR_HITCNTS 0x1
#define V_FW_FILTER_WR_HITCNTS(x) ((x) << S_FW_FILTER_WR_HITCNTS)
#define G_FW_FILTER_WR_HITCNTS(x) \
(((x) >> S_FW_FILTER_WR_HITCNTS) & M_FW_FILTER_WR_HITCNTS)
#define F_FW_FILTER_WR_HITCNTS V_FW_FILTER_WR_HITCNTS(1U)
#define S_FW_FILTER_WR_TXCHAN 13
#define M_FW_FILTER_WR_TXCHAN 0x3
#define V_FW_FILTER_WR_TXCHAN(x) ((x) << S_FW_FILTER_WR_TXCHAN)
#define G_FW_FILTER_WR_TXCHAN(x) \
(((x) >> S_FW_FILTER_WR_TXCHAN) & M_FW_FILTER_WR_TXCHAN)
#define S_FW_FILTER_WR_PRIO 12
#define M_FW_FILTER_WR_PRIO 0x1
#define V_FW_FILTER_WR_PRIO(x) ((x) << S_FW_FILTER_WR_PRIO)
#define G_FW_FILTER_WR_PRIO(x) \
(((x) >> S_FW_FILTER_WR_PRIO) & M_FW_FILTER_WR_PRIO)
#define F_FW_FILTER_WR_PRIO V_FW_FILTER_WR_PRIO(1U)
#define S_FW_FILTER_WR_L2TIX 0
#define M_FW_FILTER_WR_L2TIX 0xfff
#define V_FW_FILTER_WR_L2TIX(x) ((x) << S_FW_FILTER_WR_L2TIX)
#define G_FW_FILTER_WR_L2TIX(x) \
(((x) >> S_FW_FILTER_WR_L2TIX) & M_FW_FILTER_WR_L2TIX)
#define S_FW_FILTER_WR_FRAG 7
#define M_FW_FILTER_WR_FRAG 0x1
#define V_FW_FILTER_WR_FRAG(x) ((x) << S_FW_FILTER_WR_FRAG)
#define G_FW_FILTER_WR_FRAG(x) \
(((x) >> S_FW_FILTER_WR_FRAG) & M_FW_FILTER_WR_FRAG)
#define F_FW_FILTER_WR_FRAG V_FW_FILTER_WR_FRAG(1U)
#define S_FW_FILTER_WR_FRAGM 6
#define M_FW_FILTER_WR_FRAGM 0x1
#define V_FW_FILTER_WR_FRAGM(x) ((x) << S_FW_FILTER_WR_FRAGM)
#define G_FW_FILTER_WR_FRAGM(x) \
(((x) >> S_FW_FILTER_WR_FRAGM) & M_FW_FILTER_WR_FRAGM)
#define F_FW_FILTER_WR_FRAGM V_FW_FILTER_WR_FRAGM(1U)
#define S_FW_FILTER_WR_IVLAN_VLD 5
#define M_FW_FILTER_WR_IVLAN_VLD 0x1
#define V_FW_FILTER_WR_IVLAN_VLD(x) ((x) << S_FW_FILTER_WR_IVLAN_VLD)
#define G_FW_FILTER_WR_IVLAN_VLD(x) \
(((x) >> S_FW_FILTER_WR_IVLAN_VLD) & M_FW_FILTER_WR_IVLAN_VLD)
#define F_FW_FILTER_WR_IVLAN_VLD V_FW_FILTER_WR_IVLAN_VLD(1U)
#define S_FW_FILTER_WR_OVLAN_VLD 4
#define M_FW_FILTER_WR_OVLAN_VLD 0x1
#define V_FW_FILTER_WR_OVLAN_VLD(x) ((x) << S_FW_FILTER_WR_OVLAN_VLD)
#define G_FW_FILTER_WR_OVLAN_VLD(x) \
(((x) >> S_FW_FILTER_WR_OVLAN_VLD) & M_FW_FILTER_WR_OVLAN_VLD)
#define F_FW_FILTER_WR_OVLAN_VLD V_FW_FILTER_WR_OVLAN_VLD(1U)
#define S_FW_FILTER_WR_IVLAN_VLDM 3
#define M_FW_FILTER_WR_IVLAN_VLDM 0x1
#define V_FW_FILTER_WR_IVLAN_VLDM(x) ((x) << S_FW_FILTER_WR_IVLAN_VLDM)
#define G_FW_FILTER_WR_IVLAN_VLDM(x) \
(((x) >> S_FW_FILTER_WR_IVLAN_VLDM) & M_FW_FILTER_WR_IVLAN_VLDM)
#define F_FW_FILTER_WR_IVLAN_VLDM V_FW_FILTER_WR_IVLAN_VLDM(1U)
#define S_FW_FILTER_WR_OVLAN_VLDM 2
#define M_FW_FILTER_WR_OVLAN_VLDM 0x1
#define V_FW_FILTER_WR_OVLAN_VLDM(x) ((x) << S_FW_FILTER_WR_OVLAN_VLDM)
#define G_FW_FILTER_WR_OVLAN_VLDM(x) \
(((x) >> S_FW_FILTER_WR_OVLAN_VLDM) & M_FW_FILTER_WR_OVLAN_VLDM)
#define F_FW_FILTER_WR_OVLAN_VLDM V_FW_FILTER_WR_OVLAN_VLDM(1U)
#define S_FW_FILTER_WR_RX_CHAN 15
#define M_FW_FILTER_WR_RX_CHAN 0x1
#define V_FW_FILTER_WR_RX_CHAN(x) ((x) << S_FW_FILTER_WR_RX_CHAN)
#define G_FW_FILTER_WR_RX_CHAN(x) \
(((x) >> S_FW_FILTER_WR_RX_CHAN) & M_FW_FILTER_WR_RX_CHAN)
#define F_FW_FILTER_WR_RX_CHAN V_FW_FILTER_WR_RX_CHAN(1U)
#define S_FW_FILTER_WR_RX_RPL_IQ 0
#define M_FW_FILTER_WR_RX_RPL_IQ 0x3ff
#define V_FW_FILTER_WR_RX_RPL_IQ(x) ((x) << S_FW_FILTER_WR_RX_RPL_IQ)
#define G_FW_FILTER_WR_RX_RPL_IQ(x) \
(((x) >> S_FW_FILTER_WR_RX_RPL_IQ) & M_FW_FILTER_WR_RX_RPL_IQ)
#define S_FW_FILTER_WR_MACI 23
#define M_FW_FILTER_WR_MACI 0x1ff
#define V_FW_FILTER_WR_MACI(x) ((x) << S_FW_FILTER_WR_MACI)
#define G_FW_FILTER_WR_MACI(x) \
(((x) >> S_FW_FILTER_WR_MACI) & M_FW_FILTER_WR_MACI)
#define S_FW_FILTER_WR_MACIM 14
#define M_FW_FILTER_WR_MACIM 0x1ff
#define V_FW_FILTER_WR_MACIM(x) ((x) << S_FW_FILTER_WR_MACIM)
#define G_FW_FILTER_WR_MACIM(x) \
(((x) >> S_FW_FILTER_WR_MACIM) & M_FW_FILTER_WR_MACIM)
#define S_FW_FILTER_WR_FCOE 13
#define M_FW_FILTER_WR_FCOE 0x1
#define V_FW_FILTER_WR_FCOE(x) ((x) << S_FW_FILTER_WR_FCOE)
#define G_FW_FILTER_WR_FCOE(x) \
(((x) >> S_FW_FILTER_WR_FCOE) & M_FW_FILTER_WR_FCOE)
#define F_FW_FILTER_WR_FCOE V_FW_FILTER_WR_FCOE(1U)
#define S_FW_FILTER_WR_FCOEM 12
#define M_FW_FILTER_WR_FCOEM 0x1
#define V_FW_FILTER_WR_FCOEM(x) ((x) << S_FW_FILTER_WR_FCOEM)
#define G_FW_FILTER_WR_FCOEM(x) \
(((x) >> S_FW_FILTER_WR_FCOEM) & M_FW_FILTER_WR_FCOEM)
#define F_FW_FILTER_WR_FCOEM V_FW_FILTER_WR_FCOEM(1U)
#define S_FW_FILTER_WR_PORT 9
#define M_FW_FILTER_WR_PORT 0x7
#define V_FW_FILTER_WR_PORT(x) ((x) << S_FW_FILTER_WR_PORT)
#define G_FW_FILTER_WR_PORT(x) \
(((x) >> S_FW_FILTER_WR_PORT) & M_FW_FILTER_WR_PORT)
#define S_FW_FILTER_WR_PORTM 6
#define M_FW_FILTER_WR_PORTM 0x7
#define V_FW_FILTER_WR_PORTM(x) ((x) << S_FW_FILTER_WR_PORTM)
#define G_FW_FILTER_WR_PORTM(x) \
(((x) >> S_FW_FILTER_WR_PORTM) & M_FW_FILTER_WR_PORTM)
#define S_FW_FILTER_WR_MATCHTYPE 3
#define M_FW_FILTER_WR_MATCHTYPE 0x7
#define V_FW_FILTER_WR_MATCHTYPE(x) ((x) << S_FW_FILTER_WR_MATCHTYPE)
#define G_FW_FILTER_WR_MATCHTYPE(x) \
(((x) >> S_FW_FILTER_WR_MATCHTYPE) & M_FW_FILTER_WR_MATCHTYPE)
#define S_FW_FILTER_WR_MATCHTYPEM 0
#define M_FW_FILTER_WR_MATCHTYPEM 0x7
#define V_FW_FILTER_WR_MATCHTYPEM(x) ((x) << S_FW_FILTER_WR_MATCHTYPEM)
#define G_FW_FILTER_WR_MATCHTYPEM(x) \
(((x) >> S_FW_FILTER_WR_MATCHTYPEM) & M_FW_FILTER_WR_MATCHTYPEM)
struct fw_ulptx_wr { struct fw_ulptx_wr {
__be32 op_to_compl; __be32 op_to_compl;
...@@ -100,6 +416,108 @@ struct fw_eth_tx_pkt_wr { ...@@ -100,6 +416,108 @@ struct fw_eth_tx_pkt_wr {
__be64 r3; __be64 r3;
}; };
struct fw_ofld_connection_wr {
__be32 op_compl;
__be32 len16_pkd;
__u64 cookie;
__be64 r2;
__be64 r3;
struct fw_ofld_connection_le {
__be32 version_cpl;
__be32 filter;
__be32 r1;
__be16 lport;
__be16 pport;
union fw_ofld_connection_leip {
struct fw_ofld_connection_le_ipv4 {
__be32 pip;
__be32 lip;
__be64 r0;
__be64 r1;
__be64 r2;
} ipv4;
struct fw_ofld_connection_le_ipv6 {
__be64 pip_hi;
__be64 pip_lo;
__be64 lip_hi;
__be64 lip_lo;
} ipv6;
} u;
} le;
struct fw_ofld_connection_tcb {
__be32 t_state_to_astid;
__be16 cplrxdataack_cplpassacceptrpl;
__be16 rcv_adv;
__be32 rcv_nxt;
__be32 tx_max;
__be64 opt0;
__be32 opt2;
__be32 r1;
__be64 r2;
__be64 r3;
} tcb;
};
#define S_FW_OFLD_CONNECTION_WR_VERSION 31
#define M_FW_OFLD_CONNECTION_WR_VERSION 0x1
#define V_FW_OFLD_CONNECTION_WR_VERSION(x) \
((x) << S_FW_OFLD_CONNECTION_WR_VERSION)
#define G_FW_OFLD_CONNECTION_WR_VERSION(x) \
(((x) >> S_FW_OFLD_CONNECTION_WR_VERSION) & \
M_FW_OFLD_CONNECTION_WR_VERSION)
#define F_FW_OFLD_CONNECTION_WR_VERSION \
V_FW_OFLD_CONNECTION_WR_VERSION(1U)
#define S_FW_OFLD_CONNECTION_WR_CPL 30
#define M_FW_OFLD_CONNECTION_WR_CPL 0x1
#define V_FW_OFLD_CONNECTION_WR_CPL(x) ((x) << S_FW_OFLD_CONNECTION_WR_CPL)
#define G_FW_OFLD_CONNECTION_WR_CPL(x) \
(((x) >> S_FW_OFLD_CONNECTION_WR_CPL) & M_FW_OFLD_CONNECTION_WR_CPL)
#define F_FW_OFLD_CONNECTION_WR_CPL V_FW_OFLD_CONNECTION_WR_CPL(1U)
#define S_FW_OFLD_CONNECTION_WR_T_STATE 28
#define M_FW_OFLD_CONNECTION_WR_T_STATE 0xf
#define V_FW_OFLD_CONNECTION_WR_T_STATE(x) \
((x) << S_FW_OFLD_CONNECTION_WR_T_STATE)
#define G_FW_OFLD_CONNECTION_WR_T_STATE(x) \
(((x) >> S_FW_OFLD_CONNECTION_WR_T_STATE) & \
M_FW_OFLD_CONNECTION_WR_T_STATE)
#define S_FW_OFLD_CONNECTION_WR_RCV_SCALE 24
#define M_FW_OFLD_CONNECTION_WR_RCV_SCALE 0xf
#define V_FW_OFLD_CONNECTION_WR_RCV_SCALE(x) \
((x) << S_FW_OFLD_CONNECTION_WR_RCV_SCALE)
#define G_FW_OFLD_CONNECTION_WR_RCV_SCALE(x) \
(((x) >> S_FW_OFLD_CONNECTION_WR_RCV_SCALE) & \
M_FW_OFLD_CONNECTION_WR_RCV_SCALE)
#define S_FW_OFLD_CONNECTION_WR_ASTID 0
#define M_FW_OFLD_CONNECTION_WR_ASTID 0xffffff
#define V_FW_OFLD_CONNECTION_WR_ASTID(x) \
((x) << S_FW_OFLD_CONNECTION_WR_ASTID)
#define G_FW_OFLD_CONNECTION_WR_ASTID(x) \
(((x) >> S_FW_OFLD_CONNECTION_WR_ASTID) & M_FW_OFLD_CONNECTION_WR_ASTID)
#define S_FW_OFLD_CONNECTION_WR_CPLRXDATAACK 15
#define M_FW_OFLD_CONNECTION_WR_CPLRXDATAACK 0x1
#define V_FW_OFLD_CONNECTION_WR_CPLRXDATAACK(x) \
((x) << S_FW_OFLD_CONNECTION_WR_CPLRXDATAACK)
#define G_FW_OFLD_CONNECTION_WR_CPLRXDATAACK(x) \
(((x) >> S_FW_OFLD_CONNECTION_WR_CPLRXDATAACK) & \
M_FW_OFLD_CONNECTION_WR_CPLRXDATAACK)
#define F_FW_OFLD_CONNECTION_WR_CPLRXDATAACK \
V_FW_OFLD_CONNECTION_WR_CPLRXDATAACK(1U)
#define S_FW_OFLD_CONNECTION_WR_CPLPASSACCEPTRPL 14
#define M_FW_OFLD_CONNECTION_WR_CPLPASSACCEPTRPL 0x1
#define V_FW_OFLD_CONNECTION_WR_CPLPASSACCEPTRPL(x) \
((x) << S_FW_OFLD_CONNECTION_WR_CPLPASSACCEPTRPL)
#define G_FW_OFLD_CONNECTION_WR_CPLPASSACCEPTRPL(x) \
(((x) >> S_FW_OFLD_CONNECTION_WR_CPLPASSACCEPTRPL) & \
M_FW_OFLD_CONNECTION_WR_CPLPASSACCEPTRPL)
#define F_FW_OFLD_CONNECTION_WR_CPLPASSACCEPTRPL \
V_FW_OFLD_CONNECTION_WR_CPLPASSACCEPTRPL(1U)
enum fw_flowc_mnem { enum fw_flowc_mnem {
FW_FLOWC_MNEM_PFNVFN, /* PFN [15:8] VFN [7:0] */ FW_FLOWC_MNEM_PFNVFN, /* PFN [15:8] VFN [7:0] */
FW_FLOWC_MNEM_CH, FW_FLOWC_MNEM_CH,
......
...@@ -1338,6 +1338,7 @@ int mlx4_QUERY_HCA(struct mlx4_dev *dev, ...@@ -1338,6 +1338,7 @@ int mlx4_QUERY_HCA(struct mlx4_dev *dev,
{ {
struct mlx4_cmd_mailbox *mailbox; struct mlx4_cmd_mailbox *mailbox;
__be32 *outbox; __be32 *outbox;
u32 dword_field;
int err; int err;
u8 byte_field; u8 byte_field;
...@@ -1372,10 +1373,18 @@ int mlx4_QUERY_HCA(struct mlx4_dev *dev, ...@@ -1372,10 +1373,18 @@ int mlx4_QUERY_HCA(struct mlx4_dev *dev,
MLX4_GET(param->rdmarc_base, outbox, INIT_HCA_RDMARC_BASE_OFFSET); MLX4_GET(param->rdmarc_base, outbox, INIT_HCA_RDMARC_BASE_OFFSET);
MLX4_GET(param->log_rd_per_qp, outbox, INIT_HCA_LOG_RD_OFFSET); MLX4_GET(param->log_rd_per_qp, outbox, INIT_HCA_LOG_RD_OFFSET);
MLX4_GET(dword_field, outbox, INIT_HCA_FLAGS_OFFSET);
if (dword_field & (1 << INIT_HCA_DEVICE_MANAGED_FLOW_STEERING_EN)) {
param->steering_mode = MLX4_STEERING_MODE_DEVICE_MANAGED;
} else {
MLX4_GET(byte_field, outbox, INIT_HCA_UC_STEERING_OFFSET);
if (byte_field & 0x8)
param->steering_mode = MLX4_STEERING_MODE_B0;
else
param->steering_mode = MLX4_STEERING_MODE_A0;
}
/* steering attributes */ /* steering attributes */
if (dev->caps.steering_mode == if (param->steering_mode == MLX4_STEERING_MODE_DEVICE_MANAGED) {
MLX4_STEERING_MODE_DEVICE_MANAGED) {
MLX4_GET(param->mc_base, outbox, INIT_HCA_FS_BASE_OFFSET); MLX4_GET(param->mc_base, outbox, INIT_HCA_FS_BASE_OFFSET);
MLX4_GET(param->log_mc_entry_sz, outbox, MLX4_GET(param->log_mc_entry_sz, outbox,
INIT_HCA_FS_LOG_ENTRY_SZ_OFFSET); INIT_HCA_FS_LOG_ENTRY_SZ_OFFSET);
......
...@@ -172,6 +172,7 @@ struct mlx4_init_hca_param { ...@@ -172,6 +172,7 @@ struct mlx4_init_hca_param {
u8 log_uar_sz; u8 log_uar_sz;
u8 uar_page_sz; /* log pg sz in 4k chunks */ u8 uar_page_sz; /* log pg sz in 4k chunks */
u8 fs_hash_enable_bits; u8 fs_hash_enable_bits;
u8 steering_mode; /* for QUERY_HCA */
u64 dev_cap_enabled; u64 dev_cap_enabled;
}; };
......
...@@ -85,15 +85,15 @@ static int probe_vf; ...@@ -85,15 +85,15 @@ static int probe_vf;
module_param(probe_vf, int, 0644); module_param(probe_vf, int, 0644);
MODULE_PARM_DESC(probe_vf, "number of vfs to probe by pf driver (num_vfs > 0)"); MODULE_PARM_DESC(probe_vf, "number of vfs to probe by pf driver (num_vfs > 0)");
int mlx4_log_num_mgm_entry_size = 10; int mlx4_log_num_mgm_entry_size = MLX4_DEFAULT_MGM_LOG_ENTRY_SIZE;
module_param_named(log_num_mgm_entry_size, module_param_named(log_num_mgm_entry_size,
mlx4_log_num_mgm_entry_size, int, 0444); mlx4_log_num_mgm_entry_size, int, 0444);
MODULE_PARM_DESC(log_num_mgm_entry_size, "log mgm size, that defines the num" MODULE_PARM_DESC(log_num_mgm_entry_size, "log mgm size, that defines the num"
" of qp per mcg, for example:" " of qp per mcg, for example:"
" 10 gives 248.range: 9<=" " 10 gives 248.range: 7 <="
" log_num_mgm_entry_size <= 12." " log_num_mgm_entry_size <= 12."
" Not in use with device managed" " To activate device managed"
" flow steering"); " flow steering when available, set to -1");
static bool enable_64b_cqe_eqe; static bool enable_64b_cqe_eqe;
module_param(enable_64b_cqe_eqe, bool, 0444); module_param(enable_64b_cqe_eqe, bool, 0444);
...@@ -281,28 +281,6 @@ static int mlx4_dev_cap(struct mlx4_dev *dev, struct mlx4_dev_cap *dev_cap) ...@@ -281,28 +281,6 @@ static int mlx4_dev_cap(struct mlx4_dev *dev, struct mlx4_dev_cap *dev_cap)
dev->caps.max_gso_sz = dev_cap->max_gso_sz; dev->caps.max_gso_sz = dev_cap->max_gso_sz;
dev->caps.max_rss_tbl_sz = dev_cap->max_rss_tbl_sz; dev->caps.max_rss_tbl_sz = dev_cap->max_rss_tbl_sz;
if (dev_cap->flags2 & MLX4_DEV_CAP_FLAG2_FS_EN) {
dev->caps.steering_mode = MLX4_STEERING_MODE_DEVICE_MANAGED;
dev->caps.num_qp_per_mgm = dev_cap->fs_max_num_qp_per_entry;
dev->caps.fs_log_max_ucast_qp_range_size =
dev_cap->fs_log_max_ucast_qp_range_size;
} else {
if (dev->caps.flags & MLX4_DEV_CAP_FLAG_VEP_UC_STEER &&
dev->caps.flags & MLX4_DEV_CAP_FLAG_VEP_MC_STEER) {
dev->caps.steering_mode = MLX4_STEERING_MODE_B0;
} else {
dev->caps.steering_mode = MLX4_STEERING_MODE_A0;
if (dev->caps.flags & MLX4_DEV_CAP_FLAG_VEP_UC_STEER ||
dev->caps.flags & MLX4_DEV_CAP_FLAG_VEP_MC_STEER)
mlx4_warn(dev, "Must have UC_STEER and MC_STEER flags "
"set to use B0 steering. Falling back to A0 steering mode.\n");
}
dev->caps.num_qp_per_mgm = mlx4_get_qp_per_mgm(dev);
}
mlx4_dbg(dev, "Steering mode is: %s\n",
mlx4_steering_mode_str(dev->caps.steering_mode));
/* Sense port always allowed on supported devices for ConnectX-1 and -2 */ /* Sense port always allowed on supported devices for ConnectX-1 and -2 */
if (mlx4_priv(dev)->pci_dev_data & MLX4_PCI_DEV_FORCE_SENSE_PORT) if (mlx4_priv(dev)->pci_dev_data & MLX4_PCI_DEV_FORCE_SENSE_PORT)
dev->caps.flags |= MLX4_DEV_CAP_FLAG_SENSE_SUPPORT; dev->caps.flags |= MLX4_DEV_CAP_FLAG_SENSE_SUPPORT;
...@@ -493,6 +471,23 @@ int mlx4_is_slave_active(struct mlx4_dev *dev, int slave) ...@@ -493,6 +471,23 @@ int mlx4_is_slave_active(struct mlx4_dev *dev, int slave)
} }
EXPORT_SYMBOL(mlx4_is_slave_active); EXPORT_SYMBOL(mlx4_is_slave_active);
static void slave_adjust_steering_mode(struct mlx4_dev *dev,
struct mlx4_dev_cap *dev_cap,
struct mlx4_init_hca_param *hca_param)
{
dev->caps.steering_mode = hca_param->steering_mode;
if (dev->caps.steering_mode == MLX4_STEERING_MODE_DEVICE_MANAGED) {
dev->caps.num_qp_per_mgm = dev_cap->fs_max_num_qp_per_entry;
dev->caps.fs_log_max_ucast_qp_range_size =
dev_cap->fs_log_max_ucast_qp_range_size;
} else
dev->caps.num_qp_per_mgm =
4 * ((1 << hca_param->log_mc_entry_sz)/16 - 2);
mlx4_dbg(dev, "Steering mode is: %s\n",
mlx4_steering_mode_str(dev->caps.steering_mode));
}
static int mlx4_slave_cap(struct mlx4_dev *dev) static int mlx4_slave_cap(struct mlx4_dev *dev)
{ {
int err; int err;
...@@ -635,6 +630,8 @@ static int mlx4_slave_cap(struct mlx4_dev *dev) ...@@ -635,6 +630,8 @@ static int mlx4_slave_cap(struct mlx4_dev *dev)
dev->caps.cqe_size = 32; dev->caps.cqe_size = 32;
} }
slave_adjust_steering_mode(dev, &dev_cap, &hca_param);
return 0; return 0;
err_mem: err_mem:
...@@ -1321,6 +1318,59 @@ static void mlx4_parav_master_pf_caps(struct mlx4_dev *dev) ...@@ -1321,6 +1318,59 @@ static void mlx4_parav_master_pf_caps(struct mlx4_dev *dev)
} }
} }
static int choose_log_fs_mgm_entry_size(int qp_per_entry)
{
int i = MLX4_MIN_MGM_LOG_ENTRY_SIZE;
for (i = MLX4_MIN_MGM_LOG_ENTRY_SIZE; i <= MLX4_MAX_MGM_LOG_ENTRY_SIZE;
i++) {
if (qp_per_entry <= 4 * ((1 << i) / 16 - 2))
break;
}
return (i <= MLX4_MAX_MGM_LOG_ENTRY_SIZE) ? i : -1;
}
static void choose_steering_mode(struct mlx4_dev *dev,
struct mlx4_dev_cap *dev_cap)
{
if (mlx4_log_num_mgm_entry_size == -1 &&
dev_cap->flags2 & MLX4_DEV_CAP_FLAG2_FS_EN &&
(!mlx4_is_mfunc(dev) ||
(dev_cap->fs_max_num_qp_per_entry >= (num_vfs + 1))) &&
choose_log_fs_mgm_entry_size(dev_cap->fs_max_num_qp_per_entry) >=
MLX4_MIN_MGM_LOG_ENTRY_SIZE) {
dev->oper_log_mgm_entry_size =
choose_log_fs_mgm_entry_size(dev_cap->fs_max_num_qp_per_entry);
dev->caps.steering_mode = MLX4_STEERING_MODE_DEVICE_MANAGED;
dev->caps.num_qp_per_mgm = dev_cap->fs_max_num_qp_per_entry;
dev->caps.fs_log_max_ucast_qp_range_size =
dev_cap->fs_log_max_ucast_qp_range_size;
} else {
if (dev->caps.flags & MLX4_DEV_CAP_FLAG_VEP_UC_STEER &&
dev->caps.flags & MLX4_DEV_CAP_FLAG_VEP_MC_STEER)
dev->caps.steering_mode = MLX4_STEERING_MODE_B0;
else {
dev->caps.steering_mode = MLX4_STEERING_MODE_A0;
if (dev->caps.flags & MLX4_DEV_CAP_FLAG_VEP_UC_STEER ||
dev->caps.flags & MLX4_DEV_CAP_FLAG_VEP_MC_STEER)
mlx4_warn(dev, "Must have both UC_STEER and MC_STEER flags "
"set to use B0 steering. Falling back to A0 steering mode.\n");
}
dev->oper_log_mgm_entry_size =
mlx4_log_num_mgm_entry_size > 0 ?
mlx4_log_num_mgm_entry_size :
MLX4_DEFAULT_MGM_LOG_ENTRY_SIZE;
dev->caps.num_qp_per_mgm = mlx4_get_qp_per_mgm(dev);
}
mlx4_dbg(dev, "Steering mode is: %s, oper_log_mgm_entry_size = %d, "
"modparam log_num_mgm_entry_size = %d\n",
mlx4_steering_mode_str(dev->caps.steering_mode),
dev->oper_log_mgm_entry_size,
mlx4_log_num_mgm_entry_size);
}
static int mlx4_init_hca(struct mlx4_dev *dev) static int mlx4_init_hca(struct mlx4_dev *dev)
{ {
struct mlx4_priv *priv = mlx4_priv(dev); struct mlx4_priv *priv = mlx4_priv(dev);
...@@ -1360,6 +1410,8 @@ static int mlx4_init_hca(struct mlx4_dev *dev) ...@@ -1360,6 +1410,8 @@ static int mlx4_init_hca(struct mlx4_dev *dev)
goto err_stop_fw; goto err_stop_fw;
} }
choose_steering_mode(dev, &dev_cap);
if (mlx4_is_master(dev)) if (mlx4_is_master(dev))
mlx4_parav_master_pf_caps(dev); mlx4_parav_master_pf_caps(dev);
...@@ -2452,6 +2504,17 @@ static int __init mlx4_verify_params(void) ...@@ -2452,6 +2504,17 @@ static int __init mlx4_verify_params(void)
port_type_array[0] = true; port_type_array[0] = true;
} }
if (mlx4_log_num_mgm_entry_size != -1 &&
(mlx4_log_num_mgm_entry_size < MLX4_MIN_MGM_LOG_ENTRY_SIZE ||
mlx4_log_num_mgm_entry_size > MLX4_MAX_MGM_LOG_ENTRY_SIZE)) {
pr_warning("mlx4_core: mlx4_log_num_mgm_entry_size (%d) not "
"in legal range (-1 or %d..%d)\n",
mlx4_log_num_mgm_entry_size,
MLX4_MIN_MGM_LOG_ENTRY_SIZE,
MLX4_MAX_MGM_LOG_ENTRY_SIZE);
return -1;
}
return 0; return 0;
} }
......
...@@ -54,12 +54,7 @@ struct mlx4_mgm { ...@@ -54,12 +54,7 @@ struct mlx4_mgm {
int mlx4_get_mgm_entry_size(struct mlx4_dev *dev) int mlx4_get_mgm_entry_size(struct mlx4_dev *dev)
{ {
if (dev->caps.steering_mode == return 1 << dev->oper_log_mgm_entry_size;
MLX4_STEERING_MODE_DEVICE_MANAGED)
return 1 << MLX4_FS_MGM_LOG_ENTRY_SIZE;
else
return min((1 << mlx4_log_num_mgm_entry_size),
MLX4_MAX_MGM_ENTRY_SIZE);
} }
int mlx4_get_qp_per_mgm(struct mlx4_dev *dev) int mlx4_get_qp_per_mgm(struct mlx4_dev *dev)
......
...@@ -94,8 +94,10 @@ enum { ...@@ -94,8 +94,10 @@ enum {
}; };
enum { enum {
MLX4_MAX_MGM_ENTRY_SIZE = 0x1000, MLX4_DEFAULT_MGM_LOG_ENTRY_SIZE = 10,
MLX4_MAX_QP_PER_MGM = 4 * (MLX4_MAX_MGM_ENTRY_SIZE / 16 - 2), MLX4_MIN_MGM_LOG_ENTRY_SIZE = 7,
MLX4_MAX_MGM_LOG_ENTRY_SIZE = 12,
MLX4_MAX_QP_PER_MGM = 4 * ((1 << MLX4_MAX_MGM_LOG_ENTRY_SIZE) / 16 - 2),
MLX4_MTT_ENTRY_PER_SEG = 8, MLX4_MTT_ENTRY_PER_SEG = 8,
}; };
......
...@@ -3071,6 +3071,7 @@ int mlx4_QP_FLOW_STEERING_ATTACH_wrapper(struct mlx4_dev *dev, int slave, ...@@ -3071,6 +3071,7 @@ int mlx4_QP_FLOW_STEERING_ATTACH_wrapper(struct mlx4_dev *dev, int slave,
struct mlx4_resource_tracker *tracker = &priv->mfunc.master.res_tracker; struct mlx4_resource_tracker *tracker = &priv->mfunc.master.res_tracker;
struct list_head *rlist = &tracker->slave_list[slave].res_list[RES_MAC]; struct list_head *rlist = &tracker->slave_list[slave].res_list[RES_MAC];
int err; int err;
int qpn;
struct mlx4_net_trans_rule_hw_ctrl *ctrl; struct mlx4_net_trans_rule_hw_ctrl *ctrl;
struct _rule_hw *rule_header; struct _rule_hw *rule_header;
int header_id; int header_id;
...@@ -3080,13 +3081,21 @@ int mlx4_QP_FLOW_STEERING_ATTACH_wrapper(struct mlx4_dev *dev, int slave, ...@@ -3080,13 +3081,21 @@ int mlx4_QP_FLOW_STEERING_ATTACH_wrapper(struct mlx4_dev *dev, int slave,
return -EOPNOTSUPP; return -EOPNOTSUPP;
ctrl = (struct mlx4_net_trans_rule_hw_ctrl *)inbox->buf; ctrl = (struct mlx4_net_trans_rule_hw_ctrl *)inbox->buf;
qpn = be32_to_cpu(ctrl->qpn) & 0xffffff;
err = get_res(dev, slave, qpn, RES_QP, NULL);
if (err) {
pr_err("Steering rule with qpn 0x%x rejected.\n", qpn);
return err;
}
rule_header = (struct _rule_hw *)(ctrl + 1); rule_header = (struct _rule_hw *)(ctrl + 1);
header_id = map_hw_to_sw_id(be16_to_cpu(rule_header->id)); header_id = map_hw_to_sw_id(be16_to_cpu(rule_header->id));
switch (header_id) { switch (header_id) {
case MLX4_NET_TRANS_RULE_ID_ETH: case MLX4_NET_TRANS_RULE_ID_ETH:
if (validate_eth_header_mac(slave, rule_header, rlist)) if (validate_eth_header_mac(slave, rule_header, rlist)) {
return -EINVAL; err = -EINVAL;
goto err_put;
}
break; break;
case MLX4_NET_TRANS_RULE_ID_IB: case MLX4_NET_TRANS_RULE_ID_IB:
break; break;
...@@ -3094,14 +3103,17 @@ int mlx4_QP_FLOW_STEERING_ATTACH_wrapper(struct mlx4_dev *dev, int slave, ...@@ -3094,14 +3103,17 @@ int mlx4_QP_FLOW_STEERING_ATTACH_wrapper(struct mlx4_dev *dev, int slave,
case MLX4_NET_TRANS_RULE_ID_TCP: case MLX4_NET_TRANS_RULE_ID_TCP:
case MLX4_NET_TRANS_RULE_ID_UDP: case MLX4_NET_TRANS_RULE_ID_UDP:
pr_warn("Can't attach FS rule without L2 headers, adding L2 header.\n"); pr_warn("Can't attach FS rule without L2 headers, adding L2 header.\n");
if (add_eth_header(dev, slave, inbox, rlist, header_id)) if (add_eth_header(dev, slave, inbox, rlist, header_id)) {
return -EINVAL; err = -EINVAL;
goto err_put;
}
vhcr->in_modifier += vhcr->in_modifier +=
sizeof(struct mlx4_net_trans_rule_hw_eth) >> 2; sizeof(struct mlx4_net_trans_rule_hw_eth) >> 2;
break; break;
default: default:
pr_err("Corrupted mailbox.\n"); pr_err("Corrupted mailbox.\n");
return -EINVAL; err = -EINVAL;
goto err_put;
} }
err = mlx4_cmd_imm(dev, inbox->dma, &vhcr->out_param, err = mlx4_cmd_imm(dev, inbox->dma, &vhcr->out_param,
...@@ -3109,16 +3121,18 @@ int mlx4_QP_FLOW_STEERING_ATTACH_wrapper(struct mlx4_dev *dev, int slave, ...@@ -3109,16 +3121,18 @@ int mlx4_QP_FLOW_STEERING_ATTACH_wrapper(struct mlx4_dev *dev, int slave,
MLX4_QP_FLOW_STEERING_ATTACH, MLX4_CMD_TIME_CLASS_A, MLX4_QP_FLOW_STEERING_ATTACH, MLX4_CMD_TIME_CLASS_A,
MLX4_CMD_NATIVE); MLX4_CMD_NATIVE);
if (err) if (err)
return err; goto err_put;
err = add_res_range(dev, slave, vhcr->out_param, 1, RES_FS_RULE, 0); err = add_res_range(dev, slave, vhcr->out_param, 1, RES_FS_RULE, 0);
if (err) { if (err) {
mlx4_err(dev, "Fail to add flow steering resources.\n "); mlx4_err(dev, "Fail to add flow steering resources.\n ");
/* detach rule*/ /* detach rule*/
mlx4_cmd(dev, vhcr->out_param, 0, 0, mlx4_cmd(dev, vhcr->out_param, 0, 0,
MLX4_QP_FLOW_STEERING_ATTACH, MLX4_CMD_TIME_CLASS_A, MLX4_QP_FLOW_STEERING_DETACH, MLX4_CMD_TIME_CLASS_A,
MLX4_CMD_NATIVE); MLX4_CMD_NATIVE);
} }
err_put:
put_res(dev, slave, qpn, RES_QP);
return err; return err;
} }
......
...@@ -40,45 +40,6 @@ ...@@ -40,45 +40,6 @@
* R E T U R N V A L U E S * R E T U R N V A L U E S
********************************/ ********************************/
enum fw_retval {
FW_SUCCESS = 0, /* completed sucessfully */
FW_EPERM = 1, /* operation not permitted */
FW_ENOENT = 2, /* no such file or directory */
FW_EIO = 5, /* input/output error; hw bad */
FW_ENOEXEC = 8, /* exec format error; inv microcode */
FW_EAGAIN = 11, /* try again */
FW_ENOMEM = 12, /* out of memory */
FW_EFAULT = 14, /* bad address; fw bad */
FW_EBUSY = 16, /* resource busy */
FW_EEXIST = 17, /* file exists */
FW_EINVAL = 22, /* invalid argument */
FW_ENOSPC = 28, /* no space left on device */
FW_ENOSYS = 38, /* functionality not implemented */
FW_EPROTO = 71, /* protocol error */
FW_EADDRINUSE = 98, /* address already in use */
FW_EADDRNOTAVAIL = 99, /* cannot assigned requested address */
FW_ENETDOWN = 100, /* network is down */
FW_ENETUNREACH = 101, /* network is unreachable */
FW_ENOBUFS = 105, /* no buffer space available */
FW_ETIMEDOUT = 110, /* timeout */
FW_EINPROGRESS = 115, /* fw internal */
FW_SCSI_ABORT_REQUESTED = 128, /* */
FW_SCSI_ABORT_TIMEDOUT = 129, /* */
FW_SCSI_ABORTED = 130, /* */
FW_SCSI_CLOSE_REQUESTED = 131, /* */
FW_ERR_LINK_DOWN = 132, /* */
FW_RDEV_NOT_READY = 133, /* */
FW_ERR_RDEV_LOST = 134, /* */
FW_ERR_RDEV_LOGO = 135, /* */
FW_FCOE_NO_XCHG = 136, /* */
FW_SCSI_RSP_ERR = 137, /* */
FW_ERR_RDEV_IMPL_LOGO = 138, /* */
FW_SCSI_UNDER_FLOW_ERR = 139, /* */
FW_SCSI_OVER_FLOW_ERR = 140, /* */
FW_SCSI_DDP_ERR = 141, /* DDP error*/
FW_SCSI_TASK_ERR = 142, /* No SCSI tasks available */
};
enum fw_fcoe_link_sub_op { enum fw_fcoe_link_sub_op {
FCOE_LINK_DOWN = 0x0, FCOE_LINK_DOWN = 0x0,
FCOE_LINK_UP = 0x1, FCOE_LINK_UP = 0x1,
......
...@@ -625,6 +625,7 @@ struct mlx4_dev { ...@@ -625,6 +625,7 @@ struct mlx4_dev {
u8 rev_id; u8 rev_id;
char board_id[MLX4_BOARD_ID_LEN]; char board_id[MLX4_BOARD_ID_LEN];
int num_vfs; int num_vfs;
int oper_log_mgm_entry_size;
u64 regid_promisc_array[MLX4_MAX_PORTS + 1]; u64 regid_promisc_array[MLX4_MAX_PORTS + 1];
u64 regid_allmulti_array[MLX4_MAX_PORTS + 1]; u64 regid_allmulti_array[MLX4_MAX_PORTS + 1];
}; };
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册