提交 0aed55af 编写于 作者: D Dan Williams

x86, uaccess: introduce copy_from_iter_flushcache for pmem / cache-bypass operations

The pmem driver has a need to transfer data with a persistent memory
destination and be able to rely on the fact that the destination writes are not
cached. It is sufficient for the writes to be flushed to a cpu-store-buffer
(non-temporal / "movnt" in x86 terms), as we expect userspace to call fsync()
to ensure data-writes have reached a power-fail-safe zone in the platform. The
fsync() triggers a REQ_FUA or REQ_FLUSH to the pmem driver which will turn
around and fence previous writes with an "sfence".

Implement a __copy_from_user_inatomic_flushcache, memcpy_page_flushcache, and
memcpy_flushcache, that guarantee that the destination buffer is not dirty in
the cpu cache on completion. The new copy_from_iter_flushcache and sub-routines
will be used to replace the "pmem api" (include/linux/pmem.h +
arch/x86/include/asm/pmem.h). The availability of copy_from_iter_flushcache()
and memcpy_flushcache() are gated by the CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
config symbol, and fallback to copy_from_iter_nocache() and plain memcpy()
otherwise.

This is meant to satisfy the concern from Linus that if a driver wants to do
something beyond the normal nocache semantics it should be something private to
that driver [1], and Al's concern that anything uaccess related belongs with
the rest of the uaccess code [2].

The first consumer of this interface is a new 'copy_from_iter' dax operation so
that pmem can inject cache maintenance operations without imposing this
overhead on other dax-capable drivers.

[1]: https://lists.01.org/pipermail/linux-nvdimm/2017-January/008364.html
[2]: https://lists.01.org/pipermail/linux-nvdimm/2017-April/009942.html

Cc: <x86@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: NDan Williams <dan.j.williams@intel.com>
上级 3c2993b8
...@@ -54,6 +54,7 @@ config X86 ...@@ -54,6 +54,7 @@ config X86
select ARCH_HAS_KCOV if X86_64 select ARCH_HAS_KCOV if X86_64
select ARCH_HAS_MMIO_FLUSH select ARCH_HAS_MMIO_FLUSH
select ARCH_HAS_PMEM_API if X86_64 select ARCH_HAS_PMEM_API if X86_64
select ARCH_HAS_UACCESS_FLUSHCACHE if X86_64
select ARCH_HAS_SET_MEMORY select ARCH_HAS_SET_MEMORY
select ARCH_HAS_SG_CHAIN select ARCH_HAS_SG_CHAIN
select ARCH_HAS_STRICT_KERNEL_RWX select ARCH_HAS_STRICT_KERNEL_RWX
......
...@@ -109,6 +109,11 @@ memcpy_mcsafe(void *dst, const void *src, size_t cnt) ...@@ -109,6 +109,11 @@ memcpy_mcsafe(void *dst, const void *src, size_t cnt)
return 0; return 0;
} }
#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
#define __HAVE_ARCH_MEMCPY_FLUSHCACHE 1
void memcpy_flushcache(void *dst, const void *src, size_t cnt);
#endif
#endif /* __KERNEL__ */ #endif /* __KERNEL__ */
#endif /* _ASM_X86_STRING_64_H */ #endif /* _ASM_X86_STRING_64_H */
...@@ -171,6 +171,10 @@ unsigned long raw_copy_in_user(void __user *dst, const void __user *src, unsigne ...@@ -171,6 +171,10 @@ unsigned long raw_copy_in_user(void __user *dst, const void __user *src, unsigne
extern long __copy_user_nocache(void *dst, const void __user *src, extern long __copy_user_nocache(void *dst, const void __user *src,
unsigned size, int zerorest); unsigned size, int zerorest);
extern long __copy_user_flushcache(void *dst, const void __user *src, unsigned size);
extern void memcpy_page_flushcache(char *to, struct page *page, size_t offset,
size_t len);
static inline int static inline int
__copy_from_user_inatomic_nocache(void *dst, const void __user *src, __copy_from_user_inatomic_nocache(void *dst, const void __user *src,
unsigned size) unsigned size)
...@@ -179,6 +183,13 @@ __copy_from_user_inatomic_nocache(void *dst, const void __user *src, ...@@ -179,6 +183,13 @@ __copy_from_user_inatomic_nocache(void *dst, const void __user *src,
return __copy_user_nocache(dst, src, size, 0); return __copy_user_nocache(dst, src, size, 0);
} }
static inline int
__copy_from_user_flushcache(void *dst, const void __user *src, unsigned size)
{
kasan_check_write(dst, size);
return __copy_user_flushcache(dst, src, size);
}
unsigned long unsigned long
copy_user_handle_tail(char *to, char *from, unsigned len); copy_user_handle_tail(char *to, char *from, unsigned len);
......
...@@ -7,6 +7,7 @@ ...@@ -7,6 +7,7 @@
*/ */
#include <linux/export.h> #include <linux/export.h>
#include <linux/uaccess.h> #include <linux/uaccess.h>
#include <linux/highmem.h>
/* /*
* Zero Userspace * Zero Userspace
...@@ -73,3 +74,130 @@ copy_user_handle_tail(char *to, char *from, unsigned len) ...@@ -73,3 +74,130 @@ copy_user_handle_tail(char *to, char *from, unsigned len)
clac(); clac();
return len; return len;
} }
#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
/**
* clean_cache_range - write back a cache range with CLWB
* @vaddr: virtual start address
* @size: number of bytes to write back
*
* Write back a cache range using the CLWB (cache line write back)
* instruction. Note that @size is internally rounded up to be cache
* line size aligned.
*/
static void clean_cache_range(void *addr, size_t size)
{
u16 x86_clflush_size = boot_cpu_data.x86_clflush_size;
unsigned long clflush_mask = x86_clflush_size - 1;
void *vend = addr + size;
void *p;
for (p = (void *)((unsigned long)addr & ~clflush_mask);
p < vend; p += x86_clflush_size)
clwb(p);
}
long __copy_user_flushcache(void *dst, const void __user *src, unsigned size)
{
unsigned long flushed, dest = (unsigned long) dst;
long rc = __copy_user_nocache(dst, src, size, 0);
/*
* __copy_user_nocache() uses non-temporal stores for the bulk
* of the transfer, but we need to manually flush if the
* transfer is unaligned. A cached memory copy is used when
* destination or size is not naturally aligned. That is:
* - Require 8-byte alignment when size is 8 bytes or larger.
* - Require 4-byte alignment when size is 4 bytes.
*/
if (size < 8) {
if (!IS_ALIGNED(dest, 4) || size != 4)
clean_cache_range(dst, 1);
} else {
if (!IS_ALIGNED(dest, 8)) {
dest = ALIGN(dest, boot_cpu_data.x86_clflush_size);
clean_cache_range(dst, 1);
}
flushed = dest - (unsigned long) dst;
if (size > flushed && !IS_ALIGNED(size - flushed, 8))
clean_cache_range(dst + size - 1, 1);
}
return rc;
}
void memcpy_flushcache(void *_dst, const void *_src, size_t size)
{
unsigned long dest = (unsigned long) _dst;
unsigned long source = (unsigned long) _src;
/* cache copy and flush to align dest */
if (!IS_ALIGNED(dest, 8)) {
unsigned len = min_t(unsigned, size, ALIGN(dest, 8) - dest);
memcpy((void *) dest, (void *) source, len);
clean_cache_range((void *) dest, len);
dest += len;
source += len;
size -= len;
if (!size)
return;
}
/* 4x8 movnti loop */
while (size >= 32) {
asm("movq (%0), %%r8\n"
"movq 8(%0), %%r9\n"
"movq 16(%0), %%r10\n"
"movq 24(%0), %%r11\n"
"movnti %%r8, (%1)\n"
"movnti %%r9, 8(%1)\n"
"movnti %%r10, 16(%1)\n"
"movnti %%r11, 24(%1)\n"
:: "r" (source), "r" (dest)
: "memory", "r8", "r9", "r10", "r11");
dest += 32;
source += 32;
size -= 32;
}
/* 1x8 movnti loop */
while (size >= 8) {
asm("movq (%0), %%r8\n"
"movnti %%r8, (%1)\n"
:: "r" (source), "r" (dest)
: "memory", "r8");
dest += 8;
source += 8;
size -= 8;
}
/* 1x4 movnti loop */
while (size >= 4) {
asm("movl (%0), %%r8d\n"
"movnti %%r8d, (%1)\n"
:: "r" (source), "r" (dest)
: "memory", "r8");
dest += 4;
source += 4;
size -= 4;
}
/* cache copy for remaining bytes */
if (size) {
memcpy((void *) dest, (void *) source, size);
clean_cache_range((void *) dest, size);
}
}
EXPORT_SYMBOL_GPL(memcpy_flushcache);
void memcpy_page_flushcache(char *to, struct page *page, size_t offset,
size_t len)
{
char *from = kmap_atomic(page);
memcpy_flushcache(to, from + offset, len);
kunmap_atomic(from);
}
#endif
...@@ -1842,8 +1842,7 @@ static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk, ...@@ -1842,8 +1842,7 @@ static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
} }
if (rw) if (rw)
memcpy_to_pmem(mmio->addr.aperture + offset, memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c);
iobuf + copied, c);
else { else {
if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH) if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
mmio_flush_range((void __force *) mmio_flush_range((void __force *)
......
...@@ -277,7 +277,7 @@ static int nsio_rw_bytes(struct nd_namespace_common *ndns, ...@@ -277,7 +277,7 @@ static int nsio_rw_bytes(struct nd_namespace_common *ndns,
rc = -EIO; rc = -EIO;
} }
memcpy_to_pmem(nsio->addr + offset, buf, size); memcpy_flushcache(nsio->addr + offset, buf, size);
nvdimm_flush(to_nd_region(ndns->dev.parent)); nvdimm_flush(to_nd_region(ndns->dev.parent));
return rc; return rc;
......
...@@ -29,6 +29,7 @@ ...@@ -29,6 +29,7 @@
#include <linux/pfn_t.h> #include <linux/pfn_t.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/pmem.h> #include <linux/pmem.h>
#include <linux/uio.h>
#include <linux/dax.h> #include <linux/dax.h>
#include <linux/nd.h> #include <linux/nd.h>
#include "pmem.h" #include "pmem.h"
...@@ -80,7 +81,7 @@ static void write_pmem(void *pmem_addr, struct page *page, ...@@ -80,7 +81,7 @@ static void write_pmem(void *pmem_addr, struct page *page,
{ {
void *mem = kmap_atomic(page); void *mem = kmap_atomic(page);
memcpy_to_pmem(pmem_addr, mem + off, len); memcpy_flushcache(pmem_addr, mem + off, len);
kunmap_atomic(mem); kunmap_atomic(mem);
} }
...@@ -235,8 +236,15 @@ static long pmem_dax_direct_access(struct dax_device *dax_dev, ...@@ -235,8 +236,15 @@ static long pmem_dax_direct_access(struct dax_device *dax_dev,
return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn); return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
} }
static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
void *addr, size_t bytes, struct iov_iter *i)
{
return copy_from_iter_flushcache(addr, bytes, i);
}
static const struct dax_operations pmem_dax_ops = { static const struct dax_operations pmem_dax_ops = {
.direct_access = pmem_dax_direct_access, .direct_access = pmem_dax_direct_access,
.copy_from_iter = pmem_copy_from_iter,
}; };
static void pmem_release_queue(void *q) static void pmem_release_queue(void *q)
...@@ -294,7 +302,8 @@ static int pmem_attach_disk(struct device *dev, ...@@ -294,7 +302,8 @@ static int pmem_attach_disk(struct device *dev,
dev_set_drvdata(dev, pmem); dev_set_drvdata(dev, pmem);
pmem->phys_addr = res->start; pmem->phys_addr = res->start;
pmem->size = resource_size(res); pmem->size = resource_size(res);
if (nvdimm_has_flush(nd_region) < 0) if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE)
|| nvdimm_has_flush(nd_region) < 0)
dev_warn(dev, "unable to guarantee persistence of writes\n"); dev_warn(dev, "unable to guarantee persistence of writes\n");
if (!devm_request_mem_region(dev, res->start, resource_size(res), if (!devm_request_mem_region(dev, res->start, resource_size(res),
......
...@@ -1015,8 +1015,8 @@ void nvdimm_flush(struct nd_region *nd_region) ...@@ -1015,8 +1015,8 @@ void nvdimm_flush(struct nd_region *nd_region)
* The first wmb() is needed to 'sfence' all previous writes * The first wmb() is needed to 'sfence' all previous writes
* such that they are architecturally visible for the platform * such that they are architecturally visible for the platform
* buffer flush. Note that we've already arranged for pmem * buffer flush. Note that we've already arranged for pmem
* writes to avoid the cache via arch_memcpy_to_pmem(). The * writes to avoid the cache via memcpy_flushcache(). The final
* final wmb() ensures ordering for the NVDIMM flush write. * wmb() ensures ordering for the NVDIMM flush write.
*/ */
wmb(); wmb();
for (i = 0; i < nd_region->ndr_mappings; i++) for (i = 0; i < nd_region->ndr_mappings; i++)
......
...@@ -16,6 +16,9 @@ struct dax_operations { ...@@ -16,6 +16,9 @@ struct dax_operations {
*/ */
long (*direct_access)(struct dax_device *, pgoff_t, long, long (*direct_access)(struct dax_device *, pgoff_t, long,
void **, pfn_t *); void **, pfn_t *);
/* copy_from_iter: dax-driver override for default copy_from_iter */
size_t (*copy_from_iter)(struct dax_device *, pgoff_t, void *, size_t,
struct iov_iter *);
}; };
#if IS_ENABLED(CONFIG_DAX) #if IS_ENABLED(CONFIG_DAX)
......
...@@ -122,6 +122,12 @@ static inline __must_check int memcpy_mcsafe(void *dst, const void *src, ...@@ -122,6 +122,12 @@ static inline __must_check int memcpy_mcsafe(void *dst, const void *src,
return 0; return 0;
} }
#endif #endif
#ifndef __HAVE_ARCH_MEMCPY_FLUSHCACHE
static inline void memcpy_flushcache(void *dst, const void *src, size_t cnt)
{
memcpy(dst, src, cnt);
}
#endif
void *memchr_inv(const void *s, int c, size_t n); void *memchr_inv(const void *s, int c, size_t n);
char *strreplace(char *s, char old, char new); char *strreplace(char *s, char old, char new);
......
...@@ -95,6 +95,21 @@ size_t copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i); ...@@ -95,6 +95,21 @@ size_t copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i);
size_t copy_from_iter(void *addr, size_t bytes, struct iov_iter *i); size_t copy_from_iter(void *addr, size_t bytes, struct iov_iter *i);
bool copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i); bool copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i);
size_t copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i); size_t copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i);
#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
/*
* Note, users like pmem that depend on the stricter semantics of
* copy_from_iter_flushcache() than copy_from_iter_nocache() must check for
* IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) before assuming that the
* destination is flushed from the cache on return.
*/
size_t copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i);
#else
static inline size_t copy_from_iter_flushcache(void *addr, size_t bytes,
struct iov_iter *i)
{
return copy_from_iter_nocache(addr, bytes, i);
}
#endif
bool copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i); bool copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i);
size_t iov_iter_zero(size_t bytes, struct iov_iter *); size_t iov_iter_zero(size_t bytes, struct iov_iter *);
unsigned long iov_iter_alignment(const struct iov_iter *i); unsigned long iov_iter_alignment(const struct iov_iter *i);
......
...@@ -548,6 +548,9 @@ config ARCH_HAS_SG_CHAIN ...@@ -548,6 +548,9 @@ config ARCH_HAS_SG_CHAIN
config ARCH_HAS_PMEM_API config ARCH_HAS_PMEM_API
bool bool
config ARCH_HAS_UACCESS_FLUSHCACHE
bool
config ARCH_HAS_MMIO_FLUSH config ARCH_HAS_MMIO_FLUSH
bool bool
......
...@@ -615,6 +615,28 @@ size_t copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) ...@@ -615,6 +615,28 @@ size_t copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
} }
EXPORT_SYMBOL(copy_from_iter_nocache); EXPORT_SYMBOL(copy_from_iter_nocache);
#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
size_t copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
{
char *to = addr;
if (unlikely(i->type & ITER_PIPE)) {
WARN_ON(1);
return 0;
}
iterate_and_advance(i, bytes, v,
__copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
v.iov_base, v.iov_len),
memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
v.bv_offset, v.bv_len),
memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
v.iov_len)
)
return bytes;
}
EXPORT_SYMBOL_GPL(copy_from_iter_flushcache);
#endif
bool copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i) bool copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
{ {
char *to = addr; char *to = addr;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册