提交 09fa31a3 编写于 作者: A Arnd Bergmann

Merge branch 'dt/gic' into highbank/soc

Conflicts:
	arch/arm/Kconfig
* ARM Generic Interrupt Controller
ARM SMP cores are often associated with a GIC, providing per processor
interrupts (PPI), shared processor interrupts (SPI) and software
generated interrupts (SGI).
Primary GIC is attached directly to the CPU and typically has PPIs and SGIs.
Secondary GICs are cascaded into the upward interrupt controller and do not
have PPIs or SGIs.
Main node required properties:
- compatible : should be one of:
"arm,cortex-a9-gic"
"arm,arm11mp-gic"
- interrupt-controller : Identifies the node as an interrupt controller
- #interrupt-cells : Specifies the number of cells needed to encode an
interrupt source. The type shall be a <u32> and the value shall be 3.
The 1st cell is the interrupt type; 0 for SPI interrupts, 1 for PPI
interrupts.
The 2nd cell contains the interrupt number for the interrupt type.
SPI interrupts are in the range [0-987]. PPI interrupts are in the
range [0-15].
The 3rd cell is the flags, encoded as follows:
bits[3:0] trigger type and level flags.
1 = low-to-high edge triggered
2 = high-to-low edge triggered
4 = active high level-sensitive
8 = active low level-sensitive
bits[15:8] PPI interrupt cpu mask. Each bit corresponds to each of
the 8 possible cpus attached to the GIC. A bit set to '1' indicated
the interrupt is wired to that CPU. Only valid for PPI interrupts.
- reg : Specifies base physical address(s) and size of the GIC registers. The
first region is the GIC distributor register base and size. The 2nd region is
the GIC cpu interface register base and size.
Optional
- interrupts : Interrupt source of the parent interrupt controller. Only
present on secondary GICs.
Example:
intc: interrupt-controller@fff11000 {
compatible = "arm,cortex-a9-gic";
#interrupt-cells = <3>;
#address-cells = <1>;
interrupt-controller;
reg = <0xfff11000 0x1000>,
<0xfff10100 0x100>;
};
......@@ -29,6 +29,7 @@ config ARM
select HAVE_GENERIC_HARDIRQS
select HAVE_SPARSE_IRQ
select GENERIC_IRQ_SHOW
select CPU_PM if (SUSPEND || CPU_IDLE)
help
The ARM series is a line of low-power-consumption RISC chip designs
licensed by ARM Ltd and targeted at embedded applications and
......@@ -195,7 +196,8 @@ config VECTORS_BASE
The base address of exception vectors.
config ARM_PATCH_PHYS_VIRT
bool "Patch physical to virtual translations at runtime"
bool "Patch physical to virtual translations at runtime" if EMBEDDED
default y
depends on !XIP_KERNEL && MMU
depends on !ARCH_REALVIEW || !SPARSEMEM
help
......@@ -204,16 +206,25 @@ config ARM_PATCH_PHYS_VIRT
kernel in system memory.
This can only be used with non-XIP MMU kernels where the base
of physical memory is at a 16MB boundary, or theoretically 64K
for the MSM machine class.
of physical memory is at a 16MB boundary.
config ARM_PATCH_PHYS_VIRT_16BIT
def_bool y
depends on ARM_PATCH_PHYS_VIRT && ARCH_MSM
Only disable this option if you know that you do not require
this feature (eg, building a kernel for a single machine) and
you need to shrink the kernel to the minimal size.
config NEED_MACH_MEMORY_H
bool
help
This option extends the physical to virtual translation patching
to allow physical memory down to a theoretical minimum of 64K
boundaries.
Select this when mach/memory.h is required to provide special
definitions for this platform. The need for mach/memory.h should
be avoided when possible.
config PHYS_OFFSET
hex "Physical address of main memory"
depends on !ARM_PATCH_PHYS_VIRT && !NEED_MACH_MEMORY_H
help
Please provide the physical address corresponding to the
location of main memory in your system.
source "init/Kconfig"
......@@ -246,6 +257,7 @@ config ARCH_INTEGRATOR
select GENERIC_CLOCKEVENTS
select PLAT_VERSATILE
select PLAT_VERSATILE_FPGA_IRQ
select NEED_MACH_MEMORY_H
help
Support for ARM's Integrator platform.
......@@ -261,6 +273,7 @@ config ARCH_REALVIEW
select PLAT_VERSATILE_CLCD
select ARM_TIMER_SP804
select GPIO_PL061 if GPIOLIB
select NEED_MACH_MEMORY_H
help
This enables support for ARM Ltd RealView boards.
......@@ -301,7 +314,6 @@ config ARCH_AT91
select ARCH_REQUIRE_GPIOLIB
select HAVE_CLK
select CLKDEV_LOOKUP
select ARM_PATCH_PHYS_VIRT if MMU
help
This enables support for systems based on the Atmel AT91RM9200,
AT91SAM9 and AT91CAP9 processors.
......@@ -322,6 +334,7 @@ config ARCH_CLPS711X
bool "Cirrus Logic CLPS711x/EP721x-based"
select CPU_ARM720T
select ARCH_USES_GETTIMEOFFSET
select NEED_MACH_MEMORY_H
help
Support for Cirrus Logic 711x/721x based boards.
......@@ -362,6 +375,7 @@ config ARCH_EBSA110
select ISA
select NO_IOPORT
select ARCH_USES_GETTIMEOFFSET
select NEED_MACH_MEMORY_H
help
This is an evaluation board for the StrongARM processor available
from Digital. It has limited hardware on-board, including an
......@@ -377,6 +391,7 @@ config ARCH_EP93XX
select ARCH_REQUIRE_GPIOLIB
select ARCH_HAS_HOLES_MEMORYMODEL
select ARCH_USES_GETTIMEOFFSET
select NEED_MEMORY_H
help
This enables support for the Cirrus EP93xx series of CPUs.
......@@ -385,6 +400,7 @@ config ARCH_FOOTBRIDGE
select CPU_SA110
select FOOTBRIDGE
select GENERIC_CLOCKEVENTS
select NEED_MACH_MEMORY_H
help
Support for systems based on the DC21285 companion chip
("FootBridge"), such as the Simtec CATS and the Rebel NetWinder.
......@@ -434,6 +450,7 @@ config ARCH_IOP13XX
select PCI
select ARCH_SUPPORTS_MSI
select VMSPLIT_1G
select NEED_MACH_MEMORY_H
help
Support for Intel's IOP13XX (XScale) family of processors.
......@@ -464,6 +481,7 @@ config ARCH_IXP23XX
select CPU_XSC3
select PCI
select ARCH_USES_GETTIMEOFFSET
select NEED_MACH_MEMORY_H
help
Support for Intel's IXP23xx (XScale) family of processors.
......@@ -473,6 +491,7 @@ config ARCH_IXP2000
select CPU_XSCALE
select PCI
select ARCH_USES_GETTIMEOFFSET
select NEED_MACH_MEMORY_H
help
Support for Intel's IXP2400/2800 (XScale) family of processors.
......@@ -566,6 +585,7 @@ config ARCH_KS8695
select CPU_ARM922T
select ARCH_REQUIRE_GPIOLIB
select ARCH_USES_GETTIMEOFFSET
select NEED_MACH_MEMORY_H
help
Support for Micrel/Kendin KS8695 "Centaur" (ARM922T) based
System-on-Chip devices.
......@@ -657,6 +677,7 @@ config ARCH_SHMOBILE
select SPARSE_IRQ
select MULTI_IRQ_HANDLER
select PM_GENERIC_DOMAINS if PM
select NEED_MACH_MEMORY_H
help
Support for Renesas's SH-Mobile and R-Mobile ARM platforms.
......@@ -671,6 +692,7 @@ config ARCH_RPC
select NO_IOPORT
select ARCH_SPARSEMEM_ENABLE
select ARCH_USES_GETTIMEOFFSET
select NEED_MACH_MEMORY_H
help
On the Acorn Risc-PC, Linux can support the internal IDE disk and
CD-ROM interface, serial and parallel port, and the floppy drive.
......@@ -689,6 +711,7 @@ config ARCH_SA1100
select HAVE_SCHED_CLOCK
select TICK_ONESHOT
select ARCH_REQUIRE_GPIOLIB
select NEED_MACH_MEMORY_H
help
Support for StrongARM 11x0 based boards.
......@@ -781,6 +804,7 @@ config ARCH_S5PV210
select HAVE_S3C2410_I2C if I2C
select HAVE_S3C_RTC if RTC_CLASS
select HAVE_S3C2410_WATCHDOG if WATCHDOG
select NEED_MACH_MEMORY_H
help
Samsung S5PV210/S5PC110 series based systems
......@@ -797,6 +821,7 @@ config ARCH_EXYNOS4
select HAVE_S3C_RTC if RTC_CLASS
select HAVE_S3C2410_I2C if I2C
select HAVE_S3C2410_WATCHDOG if WATCHDOG
select NEED_MACH_MEMORY_H
help
Samsung EXYNOS4 series based systems
......@@ -808,6 +833,7 @@ config ARCH_SHARK
select ZONE_DMA
select PCI
select ARCH_USES_GETTIMEOFFSET
select NEED_MACH_MEMORY_H
help
Support for the StrongARM based Digital DNARD machine, also known
as "Shark" (<http://www.shark-linux.de/shark.html>).
......@@ -836,6 +862,7 @@ config ARCH_U300
select HAVE_MACH_CLKDEV
select GENERIC_GPIO
select ARCH_REQUIRE_GPIOLIB
select NEED_MACH_MEMORY_H
help
Support for ST-Ericsson U300 series mobile platforms.
......@@ -1408,6 +1435,31 @@ config SMP_ON_UP
If you don't know what to do here, say Y.
config ARM_CPU_TOPOLOGY
bool "Support cpu topology definition"
depends on SMP && CPU_V7
default y
help
Support ARM cpu topology definition. The MPIDR register defines
affinity between processors which is then used to describe the cpu
topology of an ARM System.
config SCHED_MC
bool "Multi-core scheduler support"
depends on ARM_CPU_TOPOLOGY
help
Multi-core scheduler support improves the CPU scheduler's decision
making when dealing with multi-core CPU chips at a cost of slightly
increased overhead in some places. If unsure say N here.
config SCHED_SMT
bool "SMT scheduler support"
depends on ARM_CPU_TOPOLOGY
help
Improves the CPU scheduler's decision making when dealing with
MultiThreading at a cost of slightly increased overhead in some
places. If unsure say N here.
config HAVE_ARM_SCU
bool
help
......@@ -1808,6 +1860,38 @@ config ZBOOT_ROM_SH_MOBILE_SDHI
endchoice
config ARM_APPENDED_DTB
bool "Use appended device tree blob to zImage (EXPERIMENTAL)"
depends on OF && !ZBOOT_ROM && EXPERIMENTAL
help
With this option, the boot code will look for a device tree binary
(DTB) appended to zImage
(e.g. cat zImage <filename>.dtb > zImage_w_dtb).
This is meant as a backward compatibility convenience for those
systems with a bootloader that can't be upgraded to accommodate
the documented boot protocol using a device tree.
Beware that there is very little in terms of protection against
this option being confused by leftover garbage in memory that might
look like a DTB header after a reboot if no actual DTB is appended
to zImage. Do not leave this option active in a production kernel
if you don't intend to always append a DTB. Proper passing of the
location into r2 of a bootloader provided DTB is always preferable
to this option.
config ARM_ATAG_DTB_COMPAT
bool "Supplement the appended DTB with traditional ATAG information"
depends on ARM_APPENDED_DTB
help
Some old bootloaders can't be updated to a DTB capable one, yet
they provide ATAGs with memory configuration, the ramdisk address,
the kernel cmdline string, etc. Such information is dynamically
provided by the bootloader and can't always be stored in a static
DTB. To allow a device tree enabled kernel to be used with such
bootloaders, this option allows zImage to extract the information
from the ATAG list and store it at run time into the appended DTB.
config CMDLINE
string "Default kernel command string"
default ""
......
......@@ -158,4 +158,10 @@ config DEBUG_S3C_UART
The uncompressor code port configuration is now handled
by CONFIG_S3C_LOWLEVEL_UART_PORT.
config ARM_KPROBES_TEST
tristate "Kprobes test module"
depends on KPROBES && MODULES
help
Perform tests of kprobes API and instruction set simulation.
endmenu
......@@ -128,6 +128,9 @@ textofs-$(CONFIG_PM_H1940) := 0x00108000
ifeq ($(CONFIG_ARCH_SA1100),y)
textofs-$(CONFIG_SA1111) := 0x00208000
endif
textofs-$(CONFIG_ARCH_MSM7X30) := 0x00208000
textofs-$(CONFIG_ARCH_MSM8X60) := 0x00208000
textofs-$(CONFIG_ARCH_MSM8960) := 0x00208000
# Machine directory name. This list is sorted alphanumerically
# by CONFIG_* macro name.
......
......@@ -5,3 +5,12 @@ piggy.lzo
piggy.lzma
vmlinux
vmlinux.lds
# borrowed libfdt files
fdt.c
fdt.h
fdt_ro.c
fdt_rw.c
fdt_wip.c
libfdt.h
libfdt_internal.h
......@@ -26,6 +26,10 @@ HEAD = head.o
OBJS += misc.o decompress.o
FONTC = $(srctree)/drivers/video/console/font_acorn_8x8.c
# string library code (-Os is enforced to keep it much smaller)
OBJS += string.o
CFLAGS_string.o := -Os
#
# Architecture dependencies
#
......@@ -89,21 +93,41 @@ suffix_$(CONFIG_KERNEL_GZIP) = gzip
suffix_$(CONFIG_KERNEL_LZO) = lzo
suffix_$(CONFIG_KERNEL_LZMA) = lzma
# Borrowed libfdt files for the ATAG compatibility mode
libfdt := fdt_rw.c fdt_ro.c fdt_wip.c fdt.c
libfdt_hdrs := fdt.h libfdt.h libfdt_internal.h
libfdt_objs := $(addsuffix .o, $(basename $(libfdt)))
$(addprefix $(obj)/,$(libfdt) $(libfdt_hdrs)): $(obj)/%: $(srctree)/scripts/dtc/libfdt/%
$(call cmd,shipped)
$(addprefix $(obj)/,$(libfdt_objs) atags_to_fdt.o): \
$(addprefix $(obj)/,$(libfdt_hdrs))
ifeq ($(CONFIG_ARM_ATAG_DTB_COMPAT),y)
OBJS += $(libfdt_objs) atags_to_fdt.o
endif
targets := vmlinux vmlinux.lds \
piggy.$(suffix_y) piggy.$(suffix_y).o \
font.o font.c head.o misc.o $(OBJS)
lib1funcs.o lib1funcs.S font.o font.c head.o misc.o $(OBJS)
# Make sure files are removed during clean
extra-y += piggy.gzip piggy.lzo piggy.lzma lib1funcs.S
extra-y += piggy.gzip piggy.lzo piggy.lzma lib1funcs.S $(libfdt) $(libfdt_hdrs)
ifeq ($(CONFIG_FUNCTION_TRACER),y)
ORIG_CFLAGS := $(KBUILD_CFLAGS)
KBUILD_CFLAGS = $(subst -pg, , $(ORIG_CFLAGS))
endif
ccflags-y := -fpic -fno-builtin
ccflags-y := -fpic -fno-builtin -I$(obj)
asflags-y := -Wa,-march=all
# Supply kernel BSS size to the decompressor via a linker symbol.
KBSS_SZ = $(shell size $(obj)/../../../../vmlinux | awk 'END{print $$3}')
LDFLAGS_vmlinux = --defsym _kernel_bss_size=$(KBSS_SZ)
# Supply ZRELADDR to the decompressor via a linker symbol.
ifneq ($(CONFIG_AUTO_ZRELADDR),y)
LDFLAGS_vmlinux += --defsym zreladdr=$(ZRELADDR)
......@@ -123,7 +147,7 @@ LDFLAGS_vmlinux += -T
# For __aeabi_uidivmod
lib1funcs = $(obj)/lib1funcs.o
$(obj)/lib1funcs.S: $(srctree)/arch/$(SRCARCH)/lib/lib1funcs.S FORCE
$(obj)/lib1funcs.S: $(srctree)/arch/$(SRCARCH)/lib/lib1funcs.S
$(call cmd,shipped)
# We need to prevent any GOTOFF relocs being used with references
......
#include <asm/setup.h>
#include <libfdt.h>
static int node_offset(void *fdt, const char *node_path)
{
int offset = fdt_path_offset(fdt, node_path);
if (offset == -FDT_ERR_NOTFOUND)
offset = fdt_add_subnode(fdt, 0, node_path);
return offset;
}
static int setprop(void *fdt, const char *node_path, const char *property,
uint32_t *val_array, int size)
{
int offset = node_offset(fdt, node_path);
if (offset < 0)
return offset;
return fdt_setprop(fdt, offset, property, val_array, size);
}
static int setprop_string(void *fdt, const char *node_path,
const char *property, const char *string)
{
int offset = node_offset(fdt, node_path);
if (offset < 0)
return offset;
return fdt_setprop_string(fdt, offset, property, string);
}
static int setprop_cell(void *fdt, const char *node_path,
const char *property, uint32_t val)
{
int offset = node_offset(fdt, node_path);
if (offset < 0)
return offset;
return fdt_setprop_cell(fdt, offset, property, val);
}
/*
* Convert and fold provided ATAGs into the provided FDT.
*
* REturn values:
* = 0 -> pretend success
* = 1 -> bad ATAG (may retry with another possible ATAG pointer)
* < 0 -> error from libfdt
*/
int atags_to_fdt(void *atag_list, void *fdt, int total_space)
{
struct tag *atag = atag_list;
uint32_t mem_reg_property[2 * NR_BANKS];
int memcount = 0;
int ret;
/* make sure we've got an aligned pointer */
if ((u32)atag_list & 0x3)
return 1;
/* if we get a DTB here we're done already */
if (*(u32 *)atag_list == fdt32_to_cpu(FDT_MAGIC))
return 0;
/* validate the ATAG */
if (atag->hdr.tag != ATAG_CORE ||
(atag->hdr.size != tag_size(tag_core) &&
atag->hdr.size != 2))
return 1;
/* let's give it all the room it could need */
ret = fdt_open_into(fdt, fdt, total_space);
if (ret < 0)
return ret;
for_each_tag(atag, atag_list) {
if (atag->hdr.tag == ATAG_CMDLINE) {
setprop_string(fdt, "/chosen", "bootargs",
atag->u.cmdline.cmdline);
} else if (atag->hdr.tag == ATAG_MEM) {
if (memcount >= sizeof(mem_reg_property)/4)
continue;
mem_reg_property[memcount++] = cpu_to_fdt32(atag->u.mem.start);
mem_reg_property[memcount++] = cpu_to_fdt32(atag->u.mem.size);
} else if (atag->hdr.tag == ATAG_INITRD2) {
uint32_t initrd_start, initrd_size;
initrd_start = atag->u.initrd.start;
initrd_size = atag->u.initrd.size;
setprop_cell(fdt, "/chosen", "linux,initrd-start",
initrd_start);
setprop_cell(fdt, "/chosen", "linux,initrd-end",
initrd_start + initrd_size);
}
}
if (memcount)
setprop(fdt, "/memory", "reg", mem_reg_property, 4*memcount);
return fdt_pack(fdt);
}
......@@ -216,6 +216,103 @@ restart: adr r0, LC0
mov r10, r6
#endif
mov r5, #0 @ init dtb size to 0
#ifdef CONFIG_ARM_APPENDED_DTB
/*
* r0 = delta
* r2 = BSS start
* r3 = BSS end
* r4 = final kernel address
* r5 = appended dtb size (still unknown)
* r6 = _edata
* r7 = architecture ID
* r8 = atags/device tree pointer
* r9 = size of decompressed image
* r10 = end of this image, including bss/stack/malloc space if non XIP
* r11 = GOT start
* r12 = GOT end
* sp = stack pointer
*
* if there are device trees (dtb) appended to zImage, advance r10 so that the
* dtb data will get relocated along with the kernel if necessary.
*/
ldr lr, [r6, #0]
#ifndef __ARMEB__
ldr r1, =0xedfe0dd0 @ sig is 0xd00dfeed big endian
#else
ldr r1, =0xd00dfeed
#endif
cmp lr, r1
bne dtb_check_done @ not found
#ifdef CONFIG_ARM_ATAG_DTB_COMPAT
/*
* OK... Let's do some funky business here.
* If we do have a DTB appended to zImage, and we do have
* an ATAG list around, we want the later to be translated
* and folded into the former here. To be on the safe side,
* let's temporarily move the stack away into the malloc
* area. No GOT fixup has occurred yet, but none of the
* code we're about to call uses any global variable.
*/
add sp, sp, #0x10000
stmfd sp!, {r0-r3, ip, lr}
mov r0, r8
mov r1, r6
sub r2, sp, r6
bl atags_to_fdt
/*
* If returned value is 1, there is no ATAG at the location
* pointed by r8. Try the typical 0x100 offset from start
* of RAM and hope for the best.
*/
cmp r0, #1
sub r0, r4, #(TEXT_OFFSET - 0x100)
mov r1, r6
sub r2, sp, r6
blne atags_to_fdt
ldmfd sp!, {r0-r3, ip, lr}
sub sp, sp, #0x10000
#endif
mov r8, r6 @ use the appended device tree
/*
* Make sure that the DTB doesn't end up in the final
* kernel's .bss area. To do so, we adjust the decompressed
* kernel size to compensate if that .bss size is larger
* than the relocated code.
*/
ldr r5, =_kernel_bss_size
adr r1, wont_overwrite
sub r1, r6, r1
subs r1, r5, r1
addhi r9, r9, r1
/* Get the dtb's size */
ldr r5, [r6, #4]
#ifndef __ARMEB__
/* convert r5 (dtb size) to little endian */
eor r1, r5, r5, ror #16
bic r1, r1, #0x00ff0000
mov r5, r5, ror #8
eor r5, r5, r1, lsr #8
#endif
/* preserve 64-bit alignment */
add r5, r5, #7
bic r5, r5, #7
/* relocate some pointers past the appended dtb */
add r6, r6, r5
add r10, r10, r5
add sp, sp, r5
dtb_check_done:
#endif
/*
* Check to see if we will overwrite ourselves.
* r4 = final kernel address
......@@ -223,15 +320,14 @@ restart: adr r0, LC0
* r10 = end of this image, including bss/stack/malloc space if non XIP
* We basically want:
* r4 - 16k page directory >= r10 -> OK
* r4 + image length <= current position (pc) -> OK
* r4 + image length <= address of wont_overwrite -> OK
*/
add r10, r10, #16384
cmp r4, r10
bhs wont_overwrite
add r10, r4, r9
ARM( cmp r10, pc )
THUMB( mov lr, pc )
THUMB( cmp r10, lr )
adr r9, wont_overwrite
cmp r10, r9
bls wont_overwrite
/*
......@@ -285,14 +381,16 @@ wont_overwrite:
* r2 = BSS start
* r3 = BSS end
* r4 = kernel execution address
* r5 = appended dtb size (0 if not present)
* r7 = architecture ID
* r8 = atags pointer
* r11 = GOT start
* r12 = GOT end
* sp = stack pointer
*/
teq r0, #0
orrs r1, r0, r5
beq not_relocated
add r11, r11, r0
add r12, r12, r0
......@@ -307,12 +405,21 @@ wont_overwrite:
/*
* Relocate all entries in the GOT table.
* Bump bss entries to _edata + dtb size
*/
1: ldr r1, [r11, #0] @ relocate entries in the GOT
add r1, r1, r0 @ table. This fixes up the
str r1, [r11], #4 @ C references.
add r1, r1, r0 @ This fixes up C references
cmp r1, r2 @ if entry >= bss_start &&
cmphs r3, r1 @ bss_end > entry
addhi r1, r1, r5 @ entry += dtb size
str r1, [r11], #4 @ next entry
cmp r11, r12
blo 1b
/* bump our bss pointers too */
add r2, r2, r5
add r3, r3, r5
#else
/*
......
#ifndef _ARM_LIBFDT_ENV_H
#define _ARM_LIBFDT_ENV_H
#include <linux/types.h>
#include <linux/string.h>
#include <asm/byteorder.h>
#define fdt16_to_cpu(x) be16_to_cpu(x)
#define cpu_to_fdt16(x) cpu_to_be16(x)
#define fdt32_to_cpu(x) be32_to_cpu(x)
#define cpu_to_fdt32(x) cpu_to_be32(x)
#define fdt64_to_cpu(x) be64_to_cpu(x)
#define cpu_to_fdt64(x) cpu_to_be64(x)
#endif
......@@ -18,14 +18,9 @@
unsigned int __machine_arch_type;
#define _LINUX_STRING_H_
#include <linux/compiler.h> /* for inline */
#include <linux/types.h> /* for size_t */
#include <linux/stddef.h> /* for NULL */
#include <linux/types.h>
#include <linux/linkage.h>
#include <asm/string.h>
static void putstr(const char *ptr);
extern void error(char *x);
......@@ -101,41 +96,6 @@ static void putstr(const char *ptr)
flush();
}
void *memcpy(void *__dest, __const void *__src, size_t __n)
{
int i = 0;
unsigned char *d = (unsigned char *)__dest, *s = (unsigned char *)__src;
for (i = __n >> 3; i > 0; i--) {
*d++ = *s++;
*d++ = *s++;
*d++ = *s++;
*d++ = *s++;
*d++ = *s++;
*d++ = *s++;
*d++ = *s++;
*d++ = *s++;
}
if (__n & 1 << 2) {
*d++ = *s++;
*d++ = *s++;
*d++ = *s++;
*d++ = *s++;
}
if (__n & 1 << 1) {
*d++ = *s++;
*d++ = *s++;
}
if (__n & 1)
*d++ = *s++;
return __dest;
}
/*
* gzip declarations
*/
......
/*
* arch/arm/boot/compressed/string.c
*
* Small subset of simple string routines
*/
#include <linux/string.h>
void *memcpy(void *__dest, __const void *__src, size_t __n)
{
int i = 0;
unsigned char *d = (unsigned char *)__dest, *s = (unsigned char *)__src;
for (i = __n >> 3; i > 0; i--) {
*d++ = *s++;
*d++ = *s++;
*d++ = *s++;
*d++ = *s++;
*d++ = *s++;
*d++ = *s++;
*d++ = *s++;
*d++ = *s++;
}
if (__n & 1 << 2) {
*d++ = *s++;
*d++ = *s++;
*d++ = *s++;
*d++ = *s++;
}
if (__n & 1 << 1) {
*d++ = *s++;
*d++ = *s++;
}
if (__n & 1)
*d++ = *s++;
return __dest;
}
void *memmove(void *__dest, __const void *__src, size_t count)
{
unsigned char *d = __dest;
const unsigned char *s = __src;
if (__dest == __src)
return __dest;
if (__dest < __src)
return memcpy(__dest, __src, count);
while (count--)
d[count] = s[count];
return __dest;
}
size_t strlen(const char *s)
{
const char *sc = s;
while (*sc != '\0')
sc++;
return sc - s;
}
int memcmp(const void *cs, const void *ct, size_t count)
{
const unsigned char *su1 = cs, *su2 = ct, *end = su1 + count;
int res = 0;
while (su1 < end) {
res = *su1++ - *su2++;
if (res)
break;
}
return res;
}
int strcmp(const char *cs, const char *ct)
{
unsigned char c1, c2;
int res = 0;
do {
c1 = *cs++;
c2 = *ct++;
res = c1 - c2;
if (res)
break;
} while (c1);
return res;
}
void *memchr(const void *s, int c, size_t count)
{
const unsigned char *p = s;
while (count--)
if ((unsigned char)c == *p++)
return (void *)(p - 1);
return NULL;
}
char *strchr(const char *s, int c)
{
while (*s != (char)c)
if (*s++ == '\0')
return NULL;
return (char *)s;
}
#undef memset
void *memset(void *s, int c, size_t count)
{
char *xs = s;
while (count--)
*xs++ = c;
return s;
}
void __memzero(void *s, size_t count)
{
memset(s, 0, count);
}
......@@ -51,6 +51,10 @@ SECTIONS
_got_start = .;
.got : { *(.got) }
_got_end = .;
/* ensure the zImage file size is always a multiple of 64 bits */
/* (without a dummy byte, ld just ignores the empty section) */
.pad : { BYTE(0); . = ALIGN(8); }
_edata = .;
. = BSS_START;
......
config ARM_GIC
select IRQ_DOMAIN
bool
config ARM_VIC
......
......@@ -24,10 +24,20 @@
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/list.h>
#include <linux/smp.h>
#include <linux/cpu_pm.h>
#include <linux/cpumask.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/irqdomain.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/slab.h>
#include <asm/irq.h>
#include <asm/mach/irq.h>
......@@ -71,8 +81,7 @@ static inline void __iomem *gic_cpu_base(struct irq_data *d)
static inline unsigned int gic_irq(struct irq_data *d)
{
struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
return d->irq - gic_data->irq_offset;
return d->hwirq;
}
/*
......@@ -80,7 +89,7 @@ static inline unsigned int gic_irq(struct irq_data *d)
*/
static void gic_mask_irq(struct irq_data *d)
{
u32 mask = 1 << (d->irq % 32);
u32 mask = 1 << (gic_irq(d) % 32);
spin_lock(&irq_controller_lock);
writel_relaxed(mask, gic_dist_base(d) + GIC_DIST_ENABLE_CLEAR + (gic_irq(d) / 32) * 4);
......@@ -91,7 +100,7 @@ static void gic_mask_irq(struct irq_data *d)
static void gic_unmask_irq(struct irq_data *d)
{
u32 mask = 1 << (d->irq % 32);
u32 mask = 1 << (gic_irq(d) % 32);
spin_lock(&irq_controller_lock);
if (gic_arch_extn.irq_unmask)
......@@ -172,7 +181,7 @@ static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
bool force)
{
void __iomem *reg = gic_dist_base(d) + GIC_DIST_TARGET + (gic_irq(d) & ~3);
unsigned int shift = (d->irq % 4) * 8;
unsigned int shift = (gic_irq(d) % 4) * 8;
unsigned int cpu = cpumask_any_and(mask_val, cpu_online_mask);
u32 val, mask, bit;
......@@ -180,7 +189,7 @@ static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
return -EINVAL;
mask = 0xff << shift;
bit = 1 << (cpu + shift);
bit = 1 << (cpu_logical_map(cpu) + shift);
spin_lock(&irq_controller_lock);
val = readl_relaxed(reg) & ~mask;
......@@ -223,7 +232,7 @@ static void gic_handle_cascade_irq(unsigned int irq, struct irq_desc *desc)
if (gic_irq == 1023)
goto out;
cascade_irq = gic_irq + chip_data->irq_offset;
cascade_irq = irq_domain_to_irq(&chip_data->domain, gic_irq);
if (unlikely(gic_irq < 32 || gic_irq > 1020 || cascade_irq >= NR_IRQS))
do_bad_IRQ(cascade_irq, desc);
else
......@@ -255,27 +264,25 @@ void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq)
irq_set_chained_handler(irq, gic_handle_cascade_irq);
}
static void __init gic_dist_init(struct gic_chip_data *gic,
unsigned int irq_start)
static void __init gic_dist_init(struct gic_chip_data *gic)
{
unsigned int gic_irqs, irq_limit, i;
unsigned int i, irq;
u32 cpumask;
unsigned int gic_irqs = gic->gic_irqs;
struct irq_domain *domain = &gic->domain;
void __iomem *base = gic->dist_base;
u32 cpumask = 1 << smp_processor_id();
u32 cpu = 0;
#ifdef CONFIG_SMP
cpu = cpu_logical_map(smp_processor_id());
#endif
cpumask = 1 << cpu;
cpumask |= cpumask << 8;
cpumask |= cpumask << 16;
writel_relaxed(0, base + GIC_DIST_CTRL);
/*
* Find out how many interrupts are supported.
* The GIC only supports up to 1020 interrupt sources.
*/
gic_irqs = readl_relaxed(base + GIC_DIST_CTR) & 0x1f;
gic_irqs = (gic_irqs + 1) * 32;
if (gic_irqs > 1020)
gic_irqs = 1020;
/*
* Set all global interrupts to be level triggered, active low.
*/
......@@ -301,20 +308,21 @@ static void __init gic_dist_init(struct gic_chip_data *gic,
for (i = 32; i < gic_irqs; i += 32)
writel_relaxed(0xffffffff, base + GIC_DIST_ENABLE_CLEAR + i * 4 / 32);
/*
* Limit number of interrupts registered to the platform maximum
*/
irq_limit = gic->irq_offset + gic_irqs;
if (WARN_ON(irq_limit > NR_IRQS))
irq_limit = NR_IRQS;
/*
* Setup the Linux IRQ subsystem.
*/
for (i = irq_start; i < irq_limit; i++) {
irq_set_chip_and_handler(i, &gic_chip, handle_fasteoi_irq);
irq_set_chip_data(i, gic);
set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
irq_domain_for_each_irq(domain, i, irq) {
if (i < 32) {
irq_set_percpu_devid(irq);
irq_set_chip_and_handler(irq, &gic_chip,
handle_percpu_devid_irq);
set_irq_flags(irq, IRQF_VALID | IRQF_NOAUTOEN);
} else {
irq_set_chip_and_handler(irq, &gic_chip,
handle_fasteoi_irq);
set_irq_flags(irq, IRQF_VALID | IRQF_PROBE);
}
irq_set_chip_data(irq, gic);
}
writel_relaxed(1, base + GIC_DIST_CTRL);
......@@ -343,23 +351,270 @@ static void __cpuinit gic_cpu_init(struct gic_chip_data *gic)
writel_relaxed(1, base + GIC_CPU_CTRL);
}
void __init gic_init(unsigned int gic_nr, unsigned int irq_start,
#ifdef CONFIG_CPU_PM
/*
* Saves the GIC distributor registers during suspend or idle. Must be called
* with interrupts disabled but before powering down the GIC. After calling
* this function, no interrupts will be delivered by the GIC, and another
* platform-specific wakeup source must be enabled.
*/
static void gic_dist_save(unsigned int gic_nr)
{
unsigned int gic_irqs;
void __iomem *dist_base;
int i;
if (gic_nr >= MAX_GIC_NR)
BUG();
gic_irqs = gic_data[gic_nr].gic_irqs;
dist_base = gic_data[gic_nr].dist_base;
if (!dist_base)
return;
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
gic_data[gic_nr].saved_spi_conf[i] =
readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
gic_data[gic_nr].saved_spi_target[i] =
readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
gic_data[gic_nr].saved_spi_enable[i] =
readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
}
/*
* Restores the GIC distributor registers during resume or when coming out of
* idle. Must be called before enabling interrupts. If a level interrupt
* that occured while the GIC was suspended is still present, it will be
* handled normally, but any edge interrupts that occured will not be seen by
* the GIC and need to be handled by the platform-specific wakeup source.
*/
static void gic_dist_restore(unsigned int gic_nr)
{
unsigned int gic_irqs;
unsigned int i;
void __iomem *dist_base;
if (gic_nr >= MAX_GIC_NR)
BUG();
gic_irqs = gic_data[gic_nr].gic_irqs;
dist_base = gic_data[gic_nr].dist_base;
if (!dist_base)
return;
writel_relaxed(0, dist_base + GIC_DIST_CTRL);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
writel_relaxed(gic_data[gic_nr].saved_spi_conf[i],
dist_base + GIC_DIST_CONFIG + i * 4);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
writel_relaxed(0xa0a0a0a0,
dist_base + GIC_DIST_PRI + i * 4);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
writel_relaxed(gic_data[gic_nr].saved_spi_target[i],
dist_base + GIC_DIST_TARGET + i * 4);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
writel_relaxed(gic_data[gic_nr].saved_spi_enable[i],
dist_base + GIC_DIST_ENABLE_SET + i * 4);
writel_relaxed(1, dist_base + GIC_DIST_CTRL);
}
static void gic_cpu_save(unsigned int gic_nr)
{
int i;
u32 *ptr;
void __iomem *dist_base;
void __iomem *cpu_base;
if (gic_nr >= MAX_GIC_NR)
BUG();
dist_base = gic_data[gic_nr].dist_base;
cpu_base = gic_data[gic_nr].cpu_base;
if (!dist_base || !cpu_base)
return;
ptr = __this_cpu_ptr(gic_data[gic_nr].saved_ppi_enable);
for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
ptr[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
ptr = __this_cpu_ptr(gic_data[gic_nr].saved_ppi_conf);
for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
ptr[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
}
static void gic_cpu_restore(unsigned int gic_nr)
{
int i;
u32 *ptr;
void __iomem *dist_base;
void __iomem *cpu_base;
if (gic_nr >= MAX_GIC_NR)
BUG();
dist_base = gic_data[gic_nr].dist_base;
cpu_base = gic_data[gic_nr].cpu_base;
if (!dist_base || !cpu_base)
return;
ptr = __this_cpu_ptr(gic_data[gic_nr].saved_ppi_enable);
for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
writel_relaxed(ptr[i], dist_base + GIC_DIST_ENABLE_SET + i * 4);
ptr = __this_cpu_ptr(gic_data[gic_nr].saved_ppi_conf);
for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
writel_relaxed(ptr[i], dist_base + GIC_DIST_CONFIG + i * 4);
for (i = 0; i < DIV_ROUND_UP(32, 4); i++)
writel_relaxed(0xa0a0a0a0, dist_base + GIC_DIST_PRI + i * 4);
writel_relaxed(0xf0, cpu_base + GIC_CPU_PRIMASK);
writel_relaxed(1, cpu_base + GIC_CPU_CTRL);
}
static int gic_notifier(struct notifier_block *self, unsigned long cmd, void *v)
{
int i;
for (i = 0; i < MAX_GIC_NR; i++) {
switch (cmd) {
case CPU_PM_ENTER:
gic_cpu_save(i);
break;
case CPU_PM_ENTER_FAILED:
case CPU_PM_EXIT:
gic_cpu_restore(i);
break;
case CPU_CLUSTER_PM_ENTER:
gic_dist_save(i);
break;
case CPU_CLUSTER_PM_ENTER_FAILED:
case CPU_CLUSTER_PM_EXIT:
gic_dist_restore(i);
break;
}
}
return NOTIFY_OK;
}
static struct notifier_block gic_notifier_block = {
.notifier_call = gic_notifier,
};
static void __init gic_pm_init(struct gic_chip_data *gic)
{
gic->saved_ppi_enable = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
sizeof(u32));
BUG_ON(!gic->saved_ppi_enable);
gic->saved_ppi_conf = __alloc_percpu(DIV_ROUND_UP(32, 16) * 4,
sizeof(u32));
BUG_ON(!gic->saved_ppi_conf);
cpu_pm_register_notifier(&gic_notifier_block);
}
#else
static void __init gic_pm_init(struct gic_chip_data *gic)
{
}
#endif
#ifdef CONFIG_OF
static int gic_irq_domain_dt_translate(struct irq_domain *d,
struct device_node *controller,
const u32 *intspec, unsigned int intsize,
unsigned long *out_hwirq, unsigned int *out_type)
{
if (d->of_node != controller)
return -EINVAL;
if (intsize < 3)
return -EINVAL;
/* Get the interrupt number and add 16 to skip over SGIs */
*out_hwirq = intspec[1] + 16;
/* For SPIs, we need to add 16 more to get the GIC irq ID number */
if (!intspec[0])
*out_hwirq += 16;
*out_type = intspec[2] & IRQ_TYPE_SENSE_MASK;
return 0;
}
#endif
const struct irq_domain_ops gic_irq_domain_ops = {
#ifdef CONFIG_OF
.dt_translate = gic_irq_domain_dt_translate,
#endif
};
void __init gic_init(unsigned int gic_nr, int irq_start,
void __iomem *dist_base, void __iomem *cpu_base)
{
struct gic_chip_data *gic;
struct irq_domain *domain;
int gic_irqs;
BUG_ON(gic_nr >= MAX_GIC_NR);
gic = &gic_data[gic_nr];
domain = &gic->domain;
gic->dist_base = dist_base;
gic->cpu_base = cpu_base;
gic->irq_offset = (irq_start - 1) & ~31;
if (gic_nr == 0)
/*
* For primary GICs, skip over SGIs.
* For secondary GICs, skip over PPIs, too.
*/
if (gic_nr == 0) {
gic_cpu_base_addr = cpu_base;
domain->hwirq_base = 16;
if (irq_start > 0)
irq_start = (irq_start & ~31) + 16;
} else
domain->hwirq_base = 32;
/*
* Find out how many interrupts are supported.
* The GIC only supports up to 1020 interrupt sources.
*/
gic_irqs = readl_relaxed(dist_base + GIC_DIST_CTR) & 0x1f;
gic_irqs = (gic_irqs + 1) * 32;
if (gic_irqs > 1020)
gic_irqs = 1020;
gic->gic_irqs = gic_irqs;
domain->nr_irq = gic_irqs - domain->hwirq_base;
domain->irq_base = irq_alloc_descs(irq_start, 16, domain->nr_irq,
numa_node_id());
if (IS_ERR_VALUE(domain->irq_base)) {
WARN(1, "Cannot allocate irq_descs @ IRQ%d, assuming pre-allocated\n",
irq_start);
domain->irq_base = irq_start;
}
domain->priv = gic;
domain->ops = &gic_irq_domain_ops;
irq_domain_add(domain);
gic_dist_init(gic, irq_start);
gic_chip.flags |= gic_arch_extn.flags;
gic_dist_init(gic);
gic_cpu_init(gic);
gic_pm_init(gic);
}
void __cpuinit gic_secondary_init(unsigned int gic_nr)
......@@ -369,20 +624,15 @@ void __cpuinit gic_secondary_init(unsigned int gic_nr)
gic_cpu_init(&gic_data[gic_nr]);
}
void __cpuinit gic_enable_ppi(unsigned int irq)
{
unsigned long flags;
local_irq_save(flags);
irq_set_status_flags(irq, IRQ_NOPROBE);
gic_unmask_irq(irq_get_irq_data(irq));
local_irq_restore(flags);
}
#ifdef CONFIG_SMP
void gic_raise_softirq(const struct cpumask *mask, unsigned int irq)
{
unsigned long map = *cpus_addr(*mask);
int cpu;
unsigned long map = 0;
/* Convert our logical CPU mask into a physical one. */
for_each_cpu(cpu, mask)
map |= 1 << cpu_logical_map(cpu);
/*
* Ensure that stores to Normal memory are visible to the
......@@ -394,3 +644,35 @@ void gic_raise_softirq(const struct cpumask *mask, unsigned int irq)
writel_relaxed(map << 16 | irq, gic_data[0].dist_base + GIC_DIST_SOFTINT);
}
#endif
#ifdef CONFIG_OF
static int gic_cnt __initdata = 0;
int __init gic_of_init(struct device_node *node, struct device_node *parent)
{
void __iomem *cpu_base;
void __iomem *dist_base;
int irq;
struct irq_domain *domain = &gic_data[gic_cnt].domain;
if (WARN_ON(!node))
return -ENODEV;
dist_base = of_iomap(node, 0);
WARN(!dist_base, "unable to map gic dist registers\n");
cpu_base = of_iomap(node, 1);
WARN(!cpu_base, "unable to map gic cpu registers\n");
domain->of_node = of_node_get(node);
gic_init(gic_cnt, -1, dist_base, cpu_base);
if (parent) {
irq = irq_of_parse_and_map(node, 0);
gic_cascade_irq(gic_cnt, irq);
}
gic_cnt++;
return 0;
}
#endif
......@@ -8,6 +8,7 @@
#define CPUID_CACHETYPE 1
#define CPUID_TCM 2
#define CPUID_TLBTYPE 3
#define CPUID_MPIDR 5
#define CPUID_EXT_PFR0 "c1, 0"
#define CPUID_EXT_PFR1 "c1, 1"
......@@ -70,6 +71,11 @@ static inline unsigned int __attribute_const__ read_cpuid_tcmstatus(void)
return read_cpuid(CPUID_TCM);
}
static inline unsigned int __attribute_const__ read_cpuid_mpidr(void)
{
return read_cpuid(CPUID_MPIDR);
}
/*
* Intel's XScale3 core supports some v6 features (supersections, L2)
* but advertises itself as v5 as it does not support the v6 ISA. For
......
......@@ -205,6 +205,13 @@ extern void *dma_alloc_writecombine(struct device *, size_t, dma_addr_t *,
int dma_mmap_writecombine(struct device *, struct vm_area_struct *,
void *, dma_addr_t, size_t);
/*
* This can be called during boot to increase the size of the consistent
* DMA region above it's default value of 2MB. It must be called before the
* memory allocator is initialised, i.e. before any core_initcall.
*/
extern void __init init_consistent_dma_size(unsigned long size);
#ifdef CONFIG_DMABOUNCE
/*
......
......@@ -25,13 +25,6 @@
movne r1, sp
adrne lr, BSYM(1b)
bne do_IPI
#ifdef CONFIG_LOCAL_TIMERS
test_for_ltirq r0, r2, r6, lr
movne r0, sp
adrne lr, BSYM(1b)
bne do_local_timer
#endif
#endif
9997:
.endm
......
/*
* Annotations for marking C functions as exception handlers.
*
* These should only be used for C functions that are called from the low
* level exception entry code and not any intervening C code.
*/
#ifndef __ASM_ARM_EXCEPTION_H
#define __ASM_ARM_EXCEPTION_H
#include <linux/ftrace.h>
#define __exception __attribute__((section(".exception.text")))
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
#define __exception_irq_entry __irq_entry
#else
#define __exception_irq_entry __exception
#endif
#endif /* __ASM_ARM_EXCEPTION_H */
......@@ -9,9 +9,6 @@
typedef struct {
unsigned int __softirq_pending;
#ifdef CONFIG_LOCAL_TIMERS
unsigned int local_timer_irqs;
#endif
#ifdef CONFIG_SMP
unsigned int ipi_irqs[NR_IPI];
#endif
......
......@@ -22,15 +22,11 @@
* interrupt controller spec. To wit:
*
* Interrupts 0-15 are IPI
* 16-28 are reserved
* 29-31 are local. We allow 30 to be used for the watchdog.
* 16-31 are local. We allow 30 to be used for the watchdog.
* 32-1020 are global
* 1021-1022 are reserved
* 1023 is "spurious" (no interrupt)
*
* For now, we ignore all local interrupts so only return an interrupt if it's
* between 30 and 1020. The test_for_ipi routine below will pick up on IPIs.
*
* A simple read from the controller will tell us the number of the highest
* priority enabled interrupt. We then just need to check whether it is in the
* valid range for an IRQ (30-1020 inclusive).
......@@ -43,7 +39,7 @@
ldr \tmp, =1021
bic \irqnr, \irqstat, #0x1c00
cmp \irqnr, #29
cmp \irqnr, #15
cmpcc \irqnr, \irqnr
cmpne \irqnr, \tmp
cmpcs \irqnr, \irqnr
......@@ -62,14 +58,3 @@
strcc \irqstat, [\base, #GIC_CPU_EOI]
cmpcs \irqnr, \irqnr
.endm
/* As above, this assumes that irqstat and base are preserved.. */
.macro test_for_ltirq, irqnr, irqstat, base, tmp
bic \irqnr, \irqstat, #0x1c00
mov \tmp, #0
cmp \irqnr, #29
moveq \tmp, #1
streq \irqstat, [\base, #GIC_CPU_EOI]
cmp \tmp, #0
.endm
......@@ -33,19 +33,32 @@
#define GIC_DIST_SOFTINT 0xf00
#ifndef __ASSEMBLY__
#include <linux/irqdomain.h>
struct device_node;
extern void __iomem *gic_cpu_base_addr;
extern struct irq_chip gic_arch_extn;
void gic_init(unsigned int, unsigned int, void __iomem *, void __iomem *);
void gic_init(unsigned int, int, void __iomem *, void __iomem *);
int gic_of_init(struct device_node *node, struct device_node *parent);
void gic_secondary_init(unsigned int);
void gic_cascade_irq(unsigned int gic_nr, unsigned int irq);
void gic_raise_softirq(const struct cpumask *mask, unsigned int irq);
void gic_enable_ppi(unsigned int);
struct gic_chip_data {
unsigned int irq_offset;
void __iomem *dist_base;
void __iomem *cpu_base;
#ifdef CONFIG_CPU_PM
u32 saved_spi_enable[DIV_ROUND_UP(1020, 32)];
u32 saved_spi_conf[DIV_ROUND_UP(1020, 16)];
u32 saved_spi_target[DIV_ROUND_UP(1020, 4)];
u32 __percpu *saved_ppi_enable;
u32 __percpu *saved_ppi_conf;
#endif
#ifdef CONFIG_IRQ_DOMAIN
struct irq_domain domain;
#endif
unsigned int gic_irqs;
};
#endif
......
......@@ -50,6 +50,7 @@ static inline void decode_ctrl_reg(u32 reg,
#define ARM_DEBUG_ARCH_V6_1 2
#define ARM_DEBUG_ARCH_V7_ECP14 3
#define ARM_DEBUG_ARCH_V7_MM 4
#define ARM_DEBUG_ARCH_V7_1 5
/* Breakpoint */
#define ARM_BREAKPOINT_EXECUTE 0
......@@ -57,6 +58,7 @@ static inline void decode_ctrl_reg(u32 reg,
/* Watchpoints */
#define ARM_BREAKPOINT_LOAD 1
#define ARM_BREAKPOINT_STORE 2
#define ARM_FSR_ACCESS_MASK (1 << 11)
/* Privilege Levels */
#define ARM_BREAKPOINT_PRIV 1
......
......@@ -10,6 +10,8 @@
#ifndef __ASM_ARM_LOCALTIMER_H
#define __ASM_ARM_LOCALTIMER_H
#include <linux/interrupt.h>
struct clock_event_device;
/*
......@@ -17,27 +19,20 @@ struct clock_event_device;
*/
void percpu_timer_setup(void);
/*
* Called from assembly, this is the local timer IRQ handler
*/
asmlinkage void do_local_timer(struct pt_regs *);
#ifdef CONFIG_LOCAL_TIMERS
#ifdef CONFIG_HAVE_ARM_TWD
#include "smp_twd.h"
#define local_timer_ack() twd_timer_ack()
#define local_timer_stop(c) twd_timer_stop((c))
#else
/*
* Platform provides this to acknowledge a local timer IRQ.
* Returns true if the local timer IRQ is to be processed.
* Stop the local timer
*/
int local_timer_ack(void);
void local_timer_stop(struct clock_event_device *);
#endif
......@@ -52,6 +47,10 @@ static inline int local_timer_setup(struct clock_event_device *evt)
{
return -ENXIO;
}
static inline void local_timer_stop(struct clock_event_device *evt)
{
}
#endif
#endif
......@@ -17,7 +17,7 @@ struct sys_timer;
struct machine_desc {
unsigned int nr; /* architecture number */
const char *name; /* architecture name */
unsigned long boot_params; /* tagged list */
unsigned long atag_offset; /* tagged list (relative) */
const char **dt_compat; /* array of device tree
* 'compatible' strings */
......
......@@ -29,6 +29,7 @@ struct map_desc {
#define MT_MEMORY_NONCACHED 11
#define MT_MEMORY_DTCM 12
#define MT_MEMORY_ITCM 13
#define MT_MEMORY_SO 14
#ifdef CONFIG_MMU
extern void iotable_init(struct map_desc *, int);
......
......@@ -16,9 +16,12 @@
#include <linux/compiler.h>
#include <linux/const.h>
#include <linux/types.h>
#include <mach/memory.h>
#include <asm/sizes.h>
#ifdef CONFIG_NEED_MACH_MEMORY_H
#include <mach/memory.h>
#endif
/*
* Allow for constants defined here to be used from assembly code
* by prepending the UL suffix only with actual C code compilation.
......@@ -77,16 +80,7 @@
*/
#define IOREMAP_MAX_ORDER 24
/*
* Size of DMA-consistent memory region. Must be multiple of 2M,
* between 2MB and 14MB inclusive.
*/
#ifndef CONSISTENT_DMA_SIZE
#define CONSISTENT_DMA_SIZE SZ_2M
#endif
#define CONSISTENT_END (0xffe00000UL)
#define CONSISTENT_BASE (CONSISTENT_END - CONSISTENT_DMA_SIZE)
#else /* CONFIG_MMU */
......@@ -160,7 +154,6 @@
* so that all we need to do is modify the 8-bit constant field.
*/
#define __PV_BITS_31_24 0x81000000
#define __PV_BITS_23_16 0x00810000
extern unsigned long __pv_phys_offset;
#define PHYS_OFFSET __pv_phys_offset
......@@ -178,9 +171,6 @@ static inline unsigned long __virt_to_phys(unsigned long x)
{
unsigned long t;
__pv_stub(x, t, "add", __PV_BITS_31_24);
#ifdef CONFIG_ARM_PATCH_PHYS_VIRT_16BIT
__pv_stub(t, t, "add", __PV_BITS_23_16);
#endif
return t;
}
......@@ -188,9 +178,6 @@ static inline unsigned long __phys_to_virt(unsigned long x)
{
unsigned long t;
__pv_stub(x, t, "sub", __PV_BITS_31_24);
#ifdef CONFIG_ARM_PATCH_PHYS_VIRT_16BIT
__pv_stub(t, t, "sub", __PV_BITS_23_16);
#endif
return t;
}
#else
......@@ -200,7 +187,11 @@ static inline unsigned long __phys_to_virt(unsigned long x)
#endif
#ifndef PHYS_OFFSET
#ifdef PLAT_PHYS_OFFSET
#define PHYS_OFFSET PLAT_PHYS_OFFSET
#else
#define PHYS_OFFSET UL(CONFIG_PHYS_OFFSET)
#endif
#endif
/*
......
......@@ -31,11 +31,7 @@ struct mod_arch_specific {
/* Add __virt_to_phys patching state as well */
#ifdef CONFIG_ARM_PATCH_PHYS_VIRT
#ifdef CONFIG_ARM_PATCH_PHYS_VIRT_16BIT
#define MODULE_ARCH_VERMAGIC_P2V "p2v16 "
#else
#define MODULE_ARCH_VERMAGIC_P2V "p2v8 "
#endif
#else
#define MODULE_ARCH_VERMAGIC_P2V ""
#endif
......
......@@ -232,6 +232,9 @@ extern pgprot_t pgprot_kernel;
#define pgprot_writecombine(prot) \
__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
#define pgprot_stronglyordered(prot) \
__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
#define pgprot_dmacoherent(prot) \
__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
......
......@@ -13,7 +13,12 @@
#define __ARM_PMU_H__
#include <linux/interrupt.h>
#include <linux/perf_event.h>
/*
* Types of PMUs that can be accessed directly and require mutual
* exclusion between profiling tools.
*/
enum arm_pmu_type {
ARM_PMU_DEVICE_CPU = 0,
ARM_NUM_PMU_DEVICES,
......@@ -37,21 +42,17 @@ struct arm_pmu_platdata {
* reserve_pmu() - reserve the hardware performance counters
*
* Reserve the hardware performance counters in the system for exclusive use.
* The platform_device for the system is returned on success, ERR_PTR()
* encoded error on failure.
* Returns 0 on success or -EBUSY if the lock is already held.
*/
extern struct platform_device *
extern int
reserve_pmu(enum arm_pmu_type type);
/**
* release_pmu() - Relinquish control of the performance counters
*
* Release the performance counters and allow someone else to use them.
* Callers must have disabled the counters and released IRQs before calling
* this. The platform_device returned from reserve_pmu() must be passed as
* a cookie.
*/
extern int
extern void
release_pmu(enum arm_pmu_type type);
/**
......@@ -68,24 +69,78 @@ init_pmu(enum arm_pmu_type type);
#include <linux/err.h>
static inline struct platform_device *
reserve_pmu(enum arm_pmu_type type)
{
return ERR_PTR(-ENODEV);
}
static inline int
release_pmu(enum arm_pmu_type type)
reserve_pmu(enum arm_pmu_type type)
{
return -ENODEV;
}
static inline int
init_pmu(enum arm_pmu_type type)
{
return -ENODEV;
}
static inline void
release_pmu(enum arm_pmu_type type) { }
#endif /* CONFIG_CPU_HAS_PMU */
#ifdef CONFIG_HW_PERF_EVENTS
/* The events for a given PMU register set. */
struct pmu_hw_events {
/*
* The events that are active on the PMU for the given index.
*/
struct perf_event **events;
/*
* A 1 bit for an index indicates that the counter is being used for
* an event. A 0 means that the counter can be used.
*/
unsigned long *used_mask;
/*
* Hardware lock to serialize accesses to PMU registers. Needed for the
* read/modify/write sequences.
*/
raw_spinlock_t pmu_lock;
};
struct arm_pmu {
struct pmu pmu;
enum arm_perf_pmu_ids id;
enum arm_pmu_type type;
cpumask_t active_irqs;
const char *name;
irqreturn_t (*handle_irq)(int irq_num, void *dev);
void (*enable)(struct hw_perf_event *evt, int idx);
void (*disable)(struct hw_perf_event *evt, int idx);
int (*get_event_idx)(struct pmu_hw_events *hw_events,
struct hw_perf_event *hwc);
int (*set_event_filter)(struct hw_perf_event *evt,
struct perf_event_attr *attr);
u32 (*read_counter)(int idx);
void (*write_counter)(int idx, u32 val);
void (*start)(void);
void (*stop)(void);
void (*reset)(void *);
int (*map_event)(struct perf_event *event);
int num_events;
atomic_t active_events;
struct mutex reserve_mutex;
u64 max_period;
struct platform_device *plat_device;
struct pmu_hw_events *(*get_hw_events)(void);
};
#define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type);
u64 armpmu_event_update(struct perf_event *event,
struct hw_perf_event *hwc,
int idx, int overflow);
int armpmu_event_set_period(struct perf_event *event,
struct hw_perf_event *hwc,
int idx);
#endif /* CONFIG_HW_PERF_EVENTS */
#endif /* __ARM_PMU_H__ */
......@@ -81,6 +81,10 @@ extern void cpu_dcache_clean_area(void *, int);
extern void cpu_do_switch_mm(unsigned long pgd_phys, struct mm_struct *mm);
extern void cpu_set_pte_ext(pte_t *ptep, pte_t pte, unsigned int ext);
extern void cpu_reset(unsigned long addr) __attribute__((noreturn));
/* These three are private to arch/arm/kernel/suspend.c */
extern void cpu_do_suspend(void *);
extern void cpu_do_resume(void *);
#else
#define cpu_proc_init processor._proc_init
#define cpu_proc_fin processor._proc_fin
......@@ -89,6 +93,10 @@ extern void cpu_reset(unsigned long addr) __attribute__((noreturn));
#define cpu_dcache_clean_area processor.dcache_clean_area
#define cpu_set_pte_ext processor.set_pte_ext
#define cpu_do_switch_mm processor.switch_mm
/* These three are private to arch/arm/kernel/suspend.c */
#define cpu_do_suspend processor.do_suspend
#define cpu_do_resume processor.do_resume
#endif
extern void cpu_resume(void);
......
......@@ -32,6 +32,11 @@ extern void show_ipi_list(struct seq_file *, int);
*/
asmlinkage void do_IPI(int ipinr, struct pt_regs *regs);
/*
* Called from C code, this handles an IPI.
*/
void handle_IPI(int ipinr, struct pt_regs *regs);
/*
* Setup the set of possible CPUs (via set_cpu_possible)
*/
......@@ -65,6 +70,12 @@ extern void platform_secondary_init(unsigned int cpu);
*/
extern void platform_smp_prepare_cpus(unsigned int);
/*
* Logical CPU mapping.
*/
extern int __cpu_logical_map[NR_CPUS];
#define cpu_logical_map(cpu) __cpu_logical_map[cpu]
/*
* Initial data for bringing up a secondary CPU.
*/
......@@ -88,9 +99,4 @@ extern void platform_cpu_enable(unsigned int cpu);
extern void arch_send_call_function_single_ipi(int cpu);
extern void arch_send_call_function_ipi_mask(const struct cpumask *mask);
/*
* show local interrupt info
*/
extern void show_local_irqs(struct seq_file *, int);
#endif /* ifndef __ASM_ARM_SMP_H */
......@@ -22,7 +22,7 @@ struct clock_event_device;
extern void __iomem *twd_base;
int twd_timer_ack(void);
void twd_timer_setup(struct clock_event_device *);
void twd_timer_stop(struct clock_event_device *);
#endif
#ifndef __ASM_ARM_SUSPEND_H
#define __ASM_ARM_SUSPEND_H
#include <asm/memory.h>
#include <asm/tlbflush.h>
extern void cpu_resume(void);
/*
* Hide the first two arguments to __cpu_suspend - these are an implementation
* detail which platform code shouldn't have to know about.
*/
static inline int cpu_suspend(unsigned long arg, int (*fn)(unsigned long))
{
extern int __cpu_suspend(int, long, unsigned long,
int (*)(unsigned long));
int ret = __cpu_suspend(0, PHYS_OFFSET - PAGE_OFFSET, arg, fn);
flush_tlb_all();
return ret;
}
extern int cpu_suspend(unsigned long, int (*)(unsigned long));
#endif
......@@ -62,13 +62,6 @@
#include <asm/outercache.h>
#define __exception __attribute__((section(".exception.text")))
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
#define __exception_irq_entry __irq_entry
#else
#define __exception_irq_entry __exception
#endif
struct thread_info;
struct task_struct;
......
#ifndef _ASM_ARM_TOPOLOGY_H
#define _ASM_ARM_TOPOLOGY_H
#ifdef CONFIG_ARM_CPU_TOPOLOGY
#include <linux/cpumask.h>
struct cputopo_arm {
int thread_id;
int core_id;
int socket_id;
cpumask_t thread_sibling;
cpumask_t core_sibling;
};
extern struct cputopo_arm cpu_topology[NR_CPUS];
#define topology_physical_package_id(cpu) (cpu_topology[cpu].socket_id)
#define topology_core_id(cpu) (cpu_topology[cpu].core_id)
#define topology_core_cpumask(cpu) (&cpu_topology[cpu].core_sibling)
#define topology_thread_cpumask(cpu) (&cpu_topology[cpu].thread_sibling)
#define mc_capable() (cpu_topology[0].socket_id != -1)
#define smt_capable() (cpu_topology[0].thread_id != -1)
void init_cpu_topology(void);
void store_cpu_topology(unsigned int cpuid);
const struct cpumask *cpu_coregroup_mask(unsigned int cpu);
#else
static inline void init_cpu_topology(void) { }
static inline void store_cpu_topology(unsigned int cpuid) { }
#endif
#include <asm-generic/topology.h>
#endif /* _ASM_ARM_TOPOLOGY_H */
......@@ -29,7 +29,7 @@ obj-$(CONFIG_MODULES) += armksyms.o module.o
obj-$(CONFIG_ARTHUR) += arthur.o
obj-$(CONFIG_ISA_DMA) += dma-isa.o
obj-$(CONFIG_PCI) += bios32.o isa.o
obj-$(CONFIG_PM_SLEEP) += sleep.o
obj-$(CONFIG_PM_SLEEP) += sleep.o suspend.o
obj-$(CONFIG_HAVE_SCHED_CLOCK) += sched_clock.o
obj-$(CONFIG_SMP) += smp.o smp_tlb.o
obj-$(CONFIG_HAVE_ARM_SCU) += smp_scu.o
......@@ -43,6 +43,13 @@ obj-$(CONFIG_KPROBES) += kprobes-thumb.o
else
obj-$(CONFIG_KPROBES) += kprobes-arm.o
endif
obj-$(CONFIG_ARM_KPROBES_TEST) += test-kprobes.o
test-kprobes-objs := kprobes-test.o
ifdef CONFIG_THUMB2_KERNEL
test-kprobes-objs += kprobes-test-thumb.o
else
test-kprobes-objs += kprobes-test-arm.o
endif
obj-$(CONFIG_ATAGS_PROC) += atags.o
obj-$(CONFIG_OABI_COMPAT) += sys_oabi-compat.o
obj-$(CONFIG_ARM_THUMBEE) += thumbee.o
......@@ -66,6 +73,7 @@ obj-$(CONFIG_IWMMXT) += iwmmxt.o
obj-$(CONFIG_CPU_HAS_PMU) += pmu.o
obj-$(CONFIG_HW_PERF_EVENTS) += perf_event.o
AFLAGS_iwmmxt.o := -Wa,-mcpu=iwmmxt
obj-$(CONFIG_ARM_CPU_TOPOLOGY) += topology.o
ifneq ($(CONFIG_ARCH_EBSA110),y)
obj-y += io.o
......
......@@ -22,7 +22,7 @@
#if defined(CONFIG_DEBUG_ICEDCC)
@@ debug using ARM EmbeddedICE DCC channel
.macro addruart, rp, rv
.macro addruart, rp, rv, tmp
.endm
#if defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K) || defined(CONFIG_CPU_V7)
......@@ -106,7 +106,7 @@
#ifdef CONFIG_MMU
.macro addruart_current, rx, tmp1, tmp2
addruart \tmp1, \tmp2
addruart \tmp1, \tmp2, \rx
mrc p15, 0, \rx, c1, c0
tst \rx, #1
moveq \rx, \tmp1
......
......@@ -95,7 +95,7 @@ ENTRY(stext)
sub r4, r3, r4 @ (PHYS_OFFSET - PAGE_OFFSET)
add r8, r8, r4 @ PHYS_OFFSET
#else
ldr r8, =PLAT_PHYS_OFFSET
ldr r8, =PHYS_OFFSET @ always constant in this case
#endif
/*
......@@ -234,7 +234,7 @@ __create_page_tables:
* This allows debug messages to be output
* via a serial console before paging_init.
*/
addruart r7, r3
addruart r7, r3, r0
mov r3, r3, lsr #20
mov r3, r3, lsl #2
......@@ -488,13 +488,8 @@ __fixup_pv_table:
add r5, r5, r3 @ adjust table end address
add r7, r7, r3 @ adjust __pv_phys_offset address
str r8, [r7] @ save computed PHYS_OFFSET to __pv_phys_offset
#ifndef CONFIG_ARM_PATCH_PHYS_VIRT_16BIT
mov r6, r3, lsr #24 @ constant for add/sub instructions
teq r3, r6, lsl #24 @ must be 16MiB aligned
#else
mov r6, r3, lsr #16 @ constant for add/sub instructions
teq r3, r6, lsl #16 @ must be 64kiB aligned
#endif
THUMB( it ne @ cross section branch )
bne __error
str r6, [r7, #4] @ save to __pv_offset
......@@ -510,20 +505,8 @@ ENDPROC(__fixup_pv_table)
.text
__fixup_a_pv_table:
#ifdef CONFIG_THUMB2_KERNEL
#ifdef CONFIG_ARM_PATCH_PHYS_VIRT_16BIT
lsls r0, r6, #24
lsr r6, #8
beq 1f
clz r7, r0
lsr r0, #24
lsl r0, r7
bic r0, 0x0080
lsrs r7, #1
orrcs r0, #0x0080
orr r0, r0, r7, lsl #12
#endif
1: lsls r6, #24
beq 4f
lsls r6, #24
beq 2f
clz r7, r6
lsr r6, #24
lsl r6, r7
......@@ -532,43 +515,25 @@ __fixup_a_pv_table:
orrcs r6, #0x0080
orr r6, r6, r7, lsl #12
orr r6, #0x4000
b 4f
2: @ at this point the C flag is always clear
add r7, r3
#ifdef CONFIG_ARM_PATCH_PHYS_VIRT_16BIT
ldrh ip, [r7]
tst ip, 0x0400 @ the i bit tells us LS or MS byte
beq 3f
cmp r0, #0 @ set C flag, and ...
biceq ip, 0x0400 @ immediate zero value has a special encoding
streqh ip, [r7] @ that requires the i bit cleared
#endif
3: ldrh ip, [r7, #2]
b 2f
1: add r7, r3
ldrh ip, [r7, #2]
and ip, 0x8f00
orrcc ip, r6 @ mask in offset bits 31-24
orrcs ip, r0 @ mask in offset bits 23-16
orr ip, r6 @ mask in offset bits 31-24
strh ip, [r7, #2]
4: cmp r4, r5
2: cmp r4, r5
ldrcc r7, [r4], #4 @ use branch for delay slot
bcc 2b
bcc 1b
bx lr
#else
#ifdef CONFIG_ARM_PATCH_PHYS_VIRT_16BIT
and r0, r6, #255 @ offset bits 23-16
mov r6, r6, lsr #8 @ offset bits 31-24
#else
mov r0, #0 @ just in case...
#endif
b 3f
2: ldr ip, [r7, r3]
b 2f
1: ldr ip, [r7, r3]
bic ip, ip, #0x000000ff
tst ip, #0x400 @ rotate shift tells us LS or MS byte
orrne ip, ip, r6 @ mask in offset bits 31-24
orreq ip, ip, r0 @ mask in offset bits 23-16
orr ip, ip, r6 @ mask in offset bits 31-24
str ip, [r7, r3]
3: cmp r4, r5
2: cmp r4, r5
ldrcc r7, [r4], #4 @ use branch for delay slot
bcc 2b
bcc 1b
mov pc, lr
#endif
ENDPROC(__fixup_a_pv_table)
......
......@@ -45,7 +45,6 @@ static DEFINE_PER_CPU(struct perf_event *, wp_on_reg[ARM_MAX_WRP]);
/* Number of BRP/WRP registers on this CPU. */
static int core_num_brps;
static int core_num_reserved_brps;
static int core_num_wrps;
/* Debug architecture version. */
......@@ -137,10 +136,11 @@ static u8 get_debug_arch(void)
u32 didr;
/* Do we implement the extended CPUID interface? */
if (WARN_ONCE((((read_cpuid_id() >> 16) & 0xf) != 0xf),
"CPUID feature registers not supported. "
"Assuming v6 debug is present.\n"))
if (((read_cpuid_id() >> 16) & 0xf) != 0xf) {
pr_warning("CPUID feature registers not supported. "
"Assuming v6 debug is present.\n");
return ARM_DEBUG_ARCH_V6;
}
ARM_DBG_READ(c0, 0, didr);
return (didr >> 16) & 0xf;
......@@ -154,10 +154,21 @@ u8 arch_get_debug_arch(void)
static int debug_arch_supported(void)
{
u8 arch = get_debug_arch();
return arch >= ARM_DEBUG_ARCH_V6 && arch <= ARM_DEBUG_ARCH_V7_ECP14;
/* We don't support the memory-mapped interface. */
return (arch >= ARM_DEBUG_ARCH_V6 && arch <= ARM_DEBUG_ARCH_V7_ECP14) ||
arch >= ARM_DEBUG_ARCH_V7_1;
}
/* Determine number of WRP registers available. */
static int get_num_wrp_resources(void)
{
u32 didr;
ARM_DBG_READ(c0, 0, didr);
return ((didr >> 28) & 0xf) + 1;
}
/* Determine number of BRP register available. */
/* Determine number of BRP registers available. */
static int get_num_brp_resources(void)
{
u32 didr;
......@@ -176,9 +187,10 @@ static int core_has_mismatch_brps(void)
static int get_num_wrps(void)
{
/*
* FIXME: When a watchpoint fires, the only way to work out which
* watchpoint it was is by disassembling the faulting instruction
* and working out the address of the memory access.
* On debug architectures prior to 7.1, when a watchpoint fires, the
* only way to work out which watchpoint it was is by disassembling
* the faulting instruction and working out the address of the memory
* access.
*
* Furthermore, we can only do this if the watchpoint was precise
* since imprecise watchpoints prevent us from calculating register
......@@ -192,36 +204,17 @@ static int get_num_wrps(void)
* [the ARM ARM states that the DFAR is UNKNOWN, but experience shows
* that it is set on some implementations].
*/
if (get_debug_arch() < ARM_DEBUG_ARCH_V7_1)
return 1;
#if 0
int wrps;
u32 didr;
ARM_DBG_READ(c0, 0, didr);
wrps = ((didr >> 28) & 0xf) + 1;
#endif
int wrps = 1;
if (core_has_mismatch_brps() && wrps >= get_num_brp_resources())
wrps = get_num_brp_resources() - 1;
return wrps;
}
/* We reserve one breakpoint for each watchpoint. */
static int get_num_reserved_brps(void)
{
if (core_has_mismatch_brps())
return get_num_wrps();
return 0;
return get_num_wrp_resources();
}
/* Determine number of usable BRPs available. */
static int get_num_brps(void)
{
int brps = get_num_brp_resources();
if (core_has_mismatch_brps())
brps -= get_num_reserved_brps();
return brps;
return core_has_mismatch_brps() ? brps - 1 : brps;
}
/*
......@@ -239,7 +232,7 @@ static int enable_monitor_mode(void)
/* Ensure that halting mode is disabled. */
if (WARN_ONCE(dscr & ARM_DSCR_HDBGEN,
"halting debug mode enabled. Unable to access hardware resources.\n")) {
"halting debug mode enabled. Unable to access hardware resources.\n")) {
ret = -EPERM;
goto out;
}
......@@ -255,6 +248,7 @@ static int enable_monitor_mode(void)
ARM_DBG_WRITE(c1, 0, (dscr | ARM_DSCR_MDBGEN));
break;
case ARM_DEBUG_ARCH_V7_ECP14:
case ARM_DEBUG_ARCH_V7_1:
ARM_DBG_WRITE(c2, 2, (dscr | ARM_DSCR_MDBGEN));
break;
default:
......@@ -346,24 +340,10 @@ int arch_install_hw_breakpoint(struct perf_event *bp)
val_base = ARM_BASE_BVR;
slots = (struct perf_event **)__get_cpu_var(bp_on_reg);
max_slots = core_num_brps;
if (info->step_ctrl.enabled) {
/* Override the breakpoint data with the step data. */
addr = info->trigger & ~0x3;
ctrl = encode_ctrl_reg(info->step_ctrl);
}
} else {
/* Watchpoint */
if (info->step_ctrl.enabled) {
/* Install into the reserved breakpoint region. */
ctrl_base = ARM_BASE_BCR + core_num_brps;
val_base = ARM_BASE_BVR + core_num_brps;
/* Override the watchpoint data with the step data. */
addr = info->trigger & ~0x3;
ctrl = encode_ctrl_reg(info->step_ctrl);
} else {
ctrl_base = ARM_BASE_WCR;
val_base = ARM_BASE_WVR;
}
ctrl_base = ARM_BASE_WCR;
val_base = ARM_BASE_WVR;
slots = (struct perf_event **)__get_cpu_var(wp_on_reg);
max_slots = core_num_wrps;
}
......@@ -382,6 +362,17 @@ int arch_install_hw_breakpoint(struct perf_event *bp)
goto out;
}
/* Override the breakpoint data with the step data. */
if (info->step_ctrl.enabled) {
addr = info->trigger & ~0x3;
ctrl = encode_ctrl_reg(info->step_ctrl);
if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE) {
i = 0;
ctrl_base = ARM_BASE_BCR + core_num_brps;
val_base = ARM_BASE_BVR + core_num_brps;
}
}
/* Setup the address register. */
write_wb_reg(val_base + i, addr);
......@@ -405,10 +396,7 @@ void arch_uninstall_hw_breakpoint(struct perf_event *bp)
max_slots = core_num_brps;
} else {
/* Watchpoint */
if (info->step_ctrl.enabled)
base = ARM_BASE_BCR + core_num_brps;
else
base = ARM_BASE_WCR;
base = ARM_BASE_WCR;
slots = (struct perf_event **)__get_cpu_var(wp_on_reg);
max_slots = core_num_wrps;
}
......@@ -426,6 +414,13 @@ void arch_uninstall_hw_breakpoint(struct perf_event *bp)
if (WARN_ONCE(i == max_slots, "Can't find any breakpoint slot\n"))
return;
/* Ensure that we disable the mismatch breakpoint. */
if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE &&
info->step_ctrl.enabled) {
i = 0;
base = ARM_BASE_BCR + core_num_brps;
}
/* Reset the control register. */
write_wb_reg(base + i, 0);
}
......@@ -632,10 +627,9 @@ int arch_validate_hwbkpt_settings(struct perf_event *bp)
* we can use the mismatch feature as a poor-man's hardware
* single-step, but this only works for per-task breakpoints.
*/
if (WARN_ONCE(!bp->overflow_handler &&
(arch_check_bp_in_kernelspace(bp) || !core_has_mismatch_brps()
|| !bp->hw.bp_target),
"overflow handler required but none found\n")) {
if (!bp->overflow_handler && (arch_check_bp_in_kernelspace(bp) ||
!core_has_mismatch_brps() || !bp->hw.bp_target)) {
pr_warning("overflow handler required but none found\n");
ret = -EINVAL;
}
out:
......@@ -666,34 +660,62 @@ static void disable_single_step(struct perf_event *bp)
arch_install_hw_breakpoint(bp);
}
static void watchpoint_handler(unsigned long unknown, struct pt_regs *regs)
static void watchpoint_handler(unsigned long addr, unsigned int fsr,
struct pt_regs *regs)
{
int i;
int i, access;
u32 val, ctrl_reg, alignment_mask;
struct perf_event *wp, **slots;
struct arch_hw_breakpoint *info;
struct arch_hw_breakpoint_ctrl ctrl;
slots = (struct perf_event **)__get_cpu_var(wp_on_reg);
/* Without a disassembler, we can only handle 1 watchpoint. */
BUG_ON(core_num_wrps > 1);
for (i = 0; i < core_num_wrps; ++i) {
rcu_read_lock();
wp = slots[i];
if (wp == NULL) {
rcu_read_unlock();
continue;
}
if (wp == NULL)
goto unlock;
info = counter_arch_bp(wp);
/*
* The DFAR is an unknown value. Since we only allow a
* single watchpoint, we can set the trigger to the lowest
* possible faulting address.
* The DFAR is an unknown value on debug architectures prior
* to 7.1. Since we only allow a single watchpoint on these
* older CPUs, we can set the trigger to the lowest possible
* faulting address.
*/
info = counter_arch_bp(wp);
info->trigger = wp->attr.bp_addr;
if (debug_arch < ARM_DEBUG_ARCH_V7_1) {
BUG_ON(i > 0);
info->trigger = wp->attr.bp_addr;
} else {
if (info->ctrl.len == ARM_BREAKPOINT_LEN_8)
alignment_mask = 0x7;
else
alignment_mask = 0x3;
/* Check if the watchpoint value matches. */
val = read_wb_reg(ARM_BASE_WVR + i);
if (val != (addr & ~alignment_mask))
goto unlock;
/* Possible match, check the byte address select. */
ctrl_reg = read_wb_reg(ARM_BASE_WCR + i);
decode_ctrl_reg(ctrl_reg, &ctrl);
if (!((1 << (addr & alignment_mask)) & ctrl.len))
goto unlock;
/* Check that the access type matches. */
access = (fsr & ARM_FSR_ACCESS_MASK) ? HW_BREAKPOINT_W :
HW_BREAKPOINT_R;
if (!(access & hw_breakpoint_type(wp)))
goto unlock;
/* We have a winner. */
info->trigger = addr;
}
pr_debug("watchpoint fired: address = 0x%x\n", info->trigger);
perf_bp_event(wp, regs);
......@@ -705,6 +727,7 @@ static void watchpoint_handler(unsigned long unknown, struct pt_regs *regs)
if (!wp->overflow_handler)
enable_single_step(wp, instruction_pointer(regs));
unlock:
rcu_read_unlock();
}
}
......@@ -717,7 +740,7 @@ static void watchpoint_single_step_handler(unsigned long pc)
slots = (struct perf_event **)__get_cpu_var(wp_on_reg);
for (i = 0; i < core_num_reserved_brps; ++i) {
for (i = 0; i < core_num_wrps; ++i) {
rcu_read_lock();
wp = slots[i];
......@@ -820,7 +843,7 @@ static int hw_breakpoint_pending(unsigned long addr, unsigned int fsr,
case ARM_ENTRY_ASYNC_WATCHPOINT:
WARN(1, "Asynchronous watchpoint exception taken. Debugging results may be unreliable\n");
case ARM_ENTRY_SYNC_WATCHPOINT:
watchpoint_handler(addr, regs);
watchpoint_handler(addr, fsr, regs);
break;
default:
ret = 1; /* Unhandled fault. */
......@@ -834,11 +857,31 @@ static int hw_breakpoint_pending(unsigned long addr, unsigned int fsr,
/*
* One-time initialisation.
*/
static void reset_ctrl_regs(void *info)
static cpumask_t debug_err_mask;
static int debug_reg_trap(struct pt_regs *regs, unsigned int instr)
{
int i, cpu = smp_processor_id();
int cpu = smp_processor_id();
pr_warning("Debug register access (0x%x) caused undefined instruction on CPU %d\n",
instr, cpu);
/* Set the error flag for this CPU and skip the faulting instruction. */
cpumask_set_cpu(cpu, &debug_err_mask);
instruction_pointer(regs) += 4;
return 0;
}
static struct undef_hook debug_reg_hook = {
.instr_mask = 0x0fe80f10,
.instr_val = 0x0e000e10,
.fn = debug_reg_trap,
};
static void reset_ctrl_regs(void *unused)
{
int i, raw_num_brps, err = 0, cpu = smp_processor_id();
u32 dbg_power;
cpumask_t *cpumask = info;
/*
* v7 debug contains save and restore registers so that debug state
......@@ -848,38 +891,57 @@ static void reset_ctrl_regs(void *info)
* Access Register to avoid taking undefined instruction exceptions
* later on.
*/
if (debug_arch >= ARM_DEBUG_ARCH_V7_ECP14) {
switch (debug_arch) {
case ARM_DEBUG_ARCH_V6:
case ARM_DEBUG_ARCH_V6_1:
/* ARMv6 cores just need to reset the registers. */
goto reset_regs;
case ARM_DEBUG_ARCH_V7_ECP14:
/*
* Ensure sticky power-down is clear (i.e. debug logic is
* powered up).
*/
asm volatile("mrc p14, 0, %0, c1, c5, 4" : "=r" (dbg_power));
if ((dbg_power & 0x1) == 0) {
pr_warning("CPU %d debug is powered down!\n", cpu);
cpumask_or(cpumask, cpumask, cpumask_of(cpu));
return;
}
if ((dbg_power & 0x1) == 0)
err = -EPERM;
break;
case ARM_DEBUG_ARCH_V7_1:
/*
* Unconditionally clear the lock by writing a value
* other than 0xC5ACCE55 to the access register.
* Ensure the OS double lock is clear.
*/
asm volatile("mcr p14, 0, %0, c1, c0, 4" : : "r" (0));
isb();
asm volatile("mrc p14, 0, %0, c1, c3, 4" : "=r" (dbg_power));
if ((dbg_power & 0x1) == 1)
err = -EPERM;
break;
}
/*
* Clear any configured vector-catch events before
* enabling monitor mode.
*/
asm volatile("mcr p14, 0, %0, c0, c7, 0" : : "r" (0));
isb();
if (err) {
pr_warning("CPU %d debug is powered down!\n", cpu);
cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu));
return;
}
/*
* Unconditionally clear the lock by writing a value
* other than 0xC5ACCE55 to the access register.
*/
asm volatile("mcr p14, 0, %0, c1, c0, 4" : : "r" (0));
isb();
/*
* Clear any configured vector-catch events before
* enabling monitor mode.
*/
asm volatile("mcr p14, 0, %0, c0, c7, 0" : : "r" (0));
isb();
reset_regs:
if (enable_monitor_mode())
return;
/* We must also reset any reserved registers. */
for (i = 0; i < core_num_brps + core_num_reserved_brps; ++i) {
raw_num_brps = get_num_brp_resources();
for (i = 0; i < raw_num_brps; ++i) {
write_wb_reg(ARM_BASE_BCR + i, 0UL);
write_wb_reg(ARM_BASE_BVR + i, 0UL);
}
......@@ -895,6 +957,7 @@ static int __cpuinit dbg_reset_notify(struct notifier_block *self,
{
if (action == CPU_ONLINE)
smp_call_function_single((int)cpu, reset_ctrl_regs, NULL, 1);
return NOTIFY_OK;
}
......@@ -905,7 +968,6 @@ static struct notifier_block __cpuinitdata dbg_reset_nb = {
static int __init arch_hw_breakpoint_init(void)
{
u32 dscr;
cpumask_t cpumask = { CPU_BITS_NONE };
debug_arch = get_debug_arch();
......@@ -916,28 +978,31 @@ static int __init arch_hw_breakpoint_init(void)
/* Determine how many BRPs/WRPs are available. */
core_num_brps = get_num_brps();
core_num_reserved_brps = get_num_reserved_brps();
core_num_wrps = get_num_wrps();
pr_info("found %d breakpoint and %d watchpoint registers.\n",
core_num_brps + core_num_reserved_brps, core_num_wrps);
if (core_num_reserved_brps)
pr_info("%d breakpoint(s) reserved for watchpoint "
"single-step.\n", core_num_reserved_brps);
/*
* We need to tread carefully here because DBGSWENABLE may be
* driven low on this core and there isn't an architected way to
* determine that.
*/
register_undef_hook(&debug_reg_hook);
/*
* Reset the breakpoint resources. We assume that a halting
* debugger will leave the world in a nice state for us.
*/
on_each_cpu(reset_ctrl_regs, &cpumask, 1);
if (!cpumask_empty(&cpumask)) {
on_each_cpu(reset_ctrl_regs, NULL, 1);
unregister_undef_hook(&debug_reg_hook);
if (!cpumask_empty(&debug_err_mask)) {
core_num_brps = 0;
core_num_reserved_brps = 0;
core_num_wrps = 0;
return 0;
}
pr_info("found %d " "%s" "breakpoint and %d watchpoint registers.\n",
core_num_brps, core_has_mismatch_brps() ? "(+1 reserved) " :
"", core_num_wrps);
ARM_DBG_READ(c1, 0, dscr);
if (dscr & ARM_DSCR_HDBGEN) {
max_watchpoint_len = 4;
......
......@@ -35,8 +35,8 @@
#include <linux/list.h>
#include <linux/kallsyms.h>
#include <linux/proc_fs.h>
#include <linux/ftrace.h>
#include <asm/exception.h>
#include <asm/system.h>
#include <asm/mach/arch.h>
#include <asm/mach/irq.h>
......@@ -58,9 +58,6 @@ int arch_show_interrupts(struct seq_file *p, int prec)
#endif
#ifdef CONFIG_SMP
show_ipi_list(p, prec);
#endif
#ifdef CONFIG_LOCAL_TIMERS
show_local_irqs(p, prec);
#endif
seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
return 0;
......
......@@ -60,6 +60,7 @@
#include <linux/kernel.h>
#include <linux/kprobes.h>
#include <linux/module.h>
#include "kprobes.h"
......@@ -971,6 +972,9 @@ const union decode_item kprobe_decode_arm_table[] = {
DECODE_END
};
#ifdef CONFIG_ARM_KPROBES_TEST_MODULE
EXPORT_SYMBOL_GPL(kprobe_decode_arm_table);
#endif
static void __kprobes arm_singlestep(struct kprobe *p, struct pt_regs *regs)
{
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
/*
* arch/arm/kernel/kprobes-test.h
*
* Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define VERBOSE 0 /* Set to '1' for more logging of test cases */
#ifdef CONFIG_THUMB2_KERNEL
#define NORMAL_ISA "16"
#else
#define NORMAL_ISA "32"
#endif
/* Flags used in kprobe_test_flags */
#define TEST_FLAG_NO_ITBLOCK (1<<0)
#define TEST_FLAG_FULL_ITBLOCK (1<<1)
#define TEST_FLAG_NARROW_INSTR (1<<2)
extern int kprobe_test_flags;
extern int kprobe_test_cc_position;
#define TEST_MEMORY_SIZE 256
/*
* Test case structures.
*
* The arguments given to test cases can be one of three types.
*
* ARG_TYPE_REG
* Load a register with the given value.
*
* ARG_TYPE_PTR
* Load a register with a pointer into the stack buffer (SP + given value).
*
* ARG_TYPE_MEM
* Store the given value into the stack buffer at [SP+index].
*
*/
#define ARG_TYPE_END 0
#define ARG_TYPE_REG 1
#define ARG_TYPE_PTR 2
#define ARG_TYPE_MEM 3
#define ARG_FLAG_UNSUPPORTED 0x01
#define ARG_FLAG_SUPPORTED 0x02
#define ARG_FLAG_THUMB 0x10 /* Must be 16 so TEST_ISA can be used */
#define ARG_FLAG_ARM 0x20 /* Must be 32 so TEST_ISA can be used */
struct test_arg {
u8 type; /* ARG_TYPE_x */
u8 _padding[7];
};
struct test_arg_regptr {
u8 type; /* ARG_TYPE_REG or ARG_TYPE_PTR */
u8 reg;
u8 _padding[2];
u32 val;
};
struct test_arg_mem {
u8 type; /* ARG_TYPE_MEM */
u8 index;
u8 _padding[2];
u32 val;
};
struct test_arg_end {
u8 type; /* ARG_TYPE_END */
u8 flags; /* ARG_FLAG_x */
u16 code_offset;
u16 branch_offset;
u16 end_offset;
};
/*
* Building blocks for test cases.
*
* Each test case is wrapped between TESTCASE_START and TESTCASE_END.
*
* To specify arguments for a test case the TEST_ARG_{REG,PTR,MEM} macros are
* used followed by a terminating TEST_ARG_END.
*
* After this, the instruction to be tested is defined with TEST_INSTRUCTION.
* Or for branches, TEST_BRANCH_B and TEST_BRANCH_F (branch forwards/backwards).
*
* Some specific test cases may make use of other custom constructs.
*/
#if VERBOSE
#define verbose(fmt, ...) pr_info(fmt, ##__VA_ARGS__)
#else
#define verbose(fmt, ...)
#endif
#define TEST_GROUP(title) \
verbose("\n"); \
verbose(title"\n"); \
verbose("---------------------------------------------------------\n");
#define TESTCASE_START(title) \
__asm__ __volatile__ ( \
"bl __kprobes_test_case_start \n\t" \
/* don't use .asciz here as 'title' may be */ \
/* multiple strings to be concatenated. */ \
".ascii "#title" \n\t" \
".byte 0 \n\t" \
".align 2 \n\t"
#define TEST_ARG_REG(reg, val) \
".byte "__stringify(ARG_TYPE_REG)" \n\t" \
".byte "#reg" \n\t" \
".short 0 \n\t" \
".word "#val" \n\t"
#define TEST_ARG_PTR(reg, val) \
".byte "__stringify(ARG_TYPE_PTR)" \n\t" \
".byte "#reg" \n\t" \
".short 0 \n\t" \
".word "#val" \n\t"
#define TEST_ARG_MEM(index, val) \
".byte "__stringify(ARG_TYPE_MEM)" \n\t" \
".byte "#index" \n\t" \
".short 0 \n\t" \
".word "#val" \n\t"
#define TEST_ARG_END(flags) \
".byte "__stringify(ARG_TYPE_END)" \n\t" \
".byte "TEST_ISA flags" \n\t" \
".short 50f-0f \n\t" \
".short 2f-0f \n\t" \
".short 99f-0f \n\t" \
".code "TEST_ISA" \n\t" \
"0: \n\t"
#define TEST_INSTRUCTION(instruction) \
"50: nop \n\t" \
"1: "instruction" \n\t" \
" nop \n\t"
#define TEST_BRANCH_F(instruction, xtra_dist) \
TEST_INSTRUCTION(instruction) \
".if "#xtra_dist" \n\t" \
" b 99f \n\t" \
".space "#xtra_dist" \n\t" \
".endif \n\t" \
" b 99f \n\t" \
"2: nop \n\t"
#define TEST_BRANCH_B(instruction, xtra_dist) \
" b 50f \n\t" \
" b 99f \n\t" \
"2: nop \n\t" \
" b 99f \n\t" \
".if "#xtra_dist" \n\t" \
".space "#xtra_dist" \n\t" \
".endif \n\t" \
TEST_INSTRUCTION(instruction)
#define TESTCASE_END \
"2: \n\t" \
"99: \n\t" \
" bl __kprobes_test_case_end_"TEST_ISA" \n\t" \
".code "NORMAL_ISA" \n\t" \
: : \
: "r0", "r1", "r2", "r3", "ip", "lr", "memory", "cc" \
);
/*
* Macros to define test cases.
*
* Those of the form TEST_{R,P,M}* can be used to define test cases
* which take combinations of the three basic types of arguments. E.g.
*
* TEST_R One register argument
* TEST_RR Two register arguments
* TEST_RPR A register, a pointer, then a register argument
*
* For testing instructions which may branch, there are macros TEST_BF_*
* and TEST_BB_* for branching forwards and backwards.
*
* TEST_SUPPORTED and TEST_UNSUPPORTED don't cause the code to be executed,
* the just verify that a kprobe is or is not allowed on the given instruction.
*/
#define TEST(code) \
TESTCASE_START(code) \
TEST_ARG_END("") \
TEST_INSTRUCTION(code) \
TESTCASE_END
#define TEST_UNSUPPORTED(code) \
TESTCASE_START(code) \
TEST_ARG_END("|"__stringify(ARG_FLAG_UNSUPPORTED)) \
TEST_INSTRUCTION(code) \
TESTCASE_END
#define TEST_SUPPORTED(code) \
TESTCASE_START(code) \
TEST_ARG_END("|"__stringify(ARG_FLAG_SUPPORTED)) \
TEST_INSTRUCTION(code) \
TESTCASE_END
#define TEST_R(code1, reg, val, code2) \
TESTCASE_START(code1 #reg code2) \
TEST_ARG_REG(reg, val) \
TEST_ARG_END("") \
TEST_INSTRUCTION(code1 #reg code2) \
TESTCASE_END
#define TEST_RR(code1, reg1, val1, code2, reg2, val2, code3) \
TESTCASE_START(code1 #reg1 code2 #reg2 code3) \
TEST_ARG_REG(reg1, val1) \
TEST_ARG_REG(reg2, val2) \
TEST_ARG_END("") \
TEST_INSTRUCTION(code1 #reg1 code2 #reg2 code3) \
TESTCASE_END
#define TEST_RRR(code1, reg1, val1, code2, reg2, val2, code3, reg3, val3, code4)\
TESTCASE_START(code1 #reg1 code2 #reg2 code3 #reg3 code4) \
TEST_ARG_REG(reg1, val1) \
TEST_ARG_REG(reg2, val2) \
TEST_ARG_REG(reg3, val3) \
TEST_ARG_END("") \
TEST_INSTRUCTION(code1 #reg1 code2 #reg2 code3 #reg3 code4) \
TESTCASE_END
#define TEST_RRRR(code1, reg1, val1, code2, reg2, val2, code3, reg3, val3, code4, reg4, val4) \
TESTCASE_START(code1 #reg1 code2 #reg2 code3 #reg3 code4 #reg4) \
TEST_ARG_REG(reg1, val1) \
TEST_ARG_REG(reg2, val2) \
TEST_ARG_REG(reg3, val3) \
TEST_ARG_REG(reg4, val4) \
TEST_ARG_END("") \
TEST_INSTRUCTION(code1 #reg1 code2 #reg2 code3 #reg3 code4 #reg4) \
TESTCASE_END
#define TEST_P(code1, reg1, val1, code2) \
TESTCASE_START(code1 #reg1 code2) \
TEST_ARG_PTR(reg1, val1) \
TEST_ARG_END("") \
TEST_INSTRUCTION(code1 #reg1 code2) \
TESTCASE_END
#define TEST_PR(code1, reg1, val1, code2, reg2, val2, code3) \
TESTCASE_START(code1 #reg1 code2 #reg2 code3) \
TEST_ARG_PTR(reg1, val1) \
TEST_ARG_REG(reg2, val2) \
TEST_ARG_END("") \
TEST_INSTRUCTION(code1 #reg1 code2 #reg2 code3) \
TESTCASE_END
#define TEST_RP(code1, reg1, val1, code2, reg2, val2, code3) \
TESTCASE_START(code1 #reg1 code2 #reg2 code3) \
TEST_ARG_REG(reg1, val1) \
TEST_ARG_PTR(reg2, val2) \
TEST_ARG_END("") \
TEST_INSTRUCTION(code1 #reg1 code2 #reg2 code3) \
TESTCASE_END
#define TEST_PRR(code1, reg1, val1, code2, reg2, val2, code3, reg3, val3, code4)\
TESTCASE_START(code1 #reg1 code2 #reg2 code3 #reg3 code4) \
TEST_ARG_PTR(reg1, val1) \
TEST_ARG_REG(reg2, val2) \
TEST_ARG_REG(reg3, val3) \
TEST_ARG_END("") \
TEST_INSTRUCTION(code1 #reg1 code2 #reg2 code3 #reg3 code4) \
TESTCASE_END
#define TEST_RPR(code1, reg1, val1, code2, reg2, val2, code3, reg3, val3, code4)\
TESTCASE_START(code1 #reg1 code2 #reg2 code3 #reg3 code4) \
TEST_ARG_REG(reg1, val1) \
TEST_ARG_PTR(reg2, val2) \
TEST_ARG_REG(reg3, val3) \
TEST_ARG_END("") \
TEST_INSTRUCTION(code1 #reg1 code2 #reg2 code3 #reg3 code4) \
TESTCASE_END
#define TEST_RRP(code1, reg1, val1, code2, reg2, val2, code3, reg3, val3, code4)\
TESTCASE_START(code1 #reg1 code2 #reg2 code3 #reg3 code4) \
TEST_ARG_REG(reg1, val1) \
TEST_ARG_REG(reg2, val2) \
TEST_ARG_PTR(reg3, val3) \
TEST_ARG_END("") \
TEST_INSTRUCTION(code1 #reg1 code2 #reg2 code3 #reg3 code4) \
TESTCASE_END
#define TEST_BF_P(code1, reg1, val1, code2) \
TESTCASE_START(code1 #reg1 code2) \
TEST_ARG_PTR(reg1, val1) \
TEST_ARG_END("") \
TEST_BRANCH_F(code1 #reg1 code2, 0) \
TESTCASE_END
#define TEST_BF_X(code, xtra_dist) \
TESTCASE_START(code) \
TEST_ARG_END("") \
TEST_BRANCH_F(code, xtra_dist) \
TESTCASE_END
#define TEST_BB_X(code, xtra_dist) \
TESTCASE_START(code) \
TEST_ARG_END("") \
TEST_BRANCH_B(code, xtra_dist) \
TESTCASE_END
#define TEST_BF_RX(code1, reg, val, code2, xtra_dist) \
TESTCASE_START(code1 #reg code2) \
TEST_ARG_REG(reg, val) \
TEST_ARG_END("") \
TEST_BRANCH_F(code1 #reg code2, xtra_dist) \
TESTCASE_END
#define TEST_BB_RX(code1, reg, val, code2, xtra_dist) \
TESTCASE_START(code1 #reg code2) \
TEST_ARG_REG(reg, val) \
TEST_ARG_END("") \
TEST_BRANCH_B(code1 #reg code2, xtra_dist) \
TESTCASE_END
#define TEST_BF(code) TEST_BF_X(code, 0)
#define TEST_BB(code) TEST_BB_X(code, 0)
#define TEST_BF_R(code1, reg, val, code2) TEST_BF_RX(code1, reg, val, code2, 0)
#define TEST_BB_R(code1, reg, val, code2) TEST_BB_RX(code1, reg, val, code2, 0)
#define TEST_BF_RR(code1, reg1, val1, code2, reg2, val2, code3) \
TESTCASE_START(code1 #reg1 code2 #reg2 code3) \
TEST_ARG_REG(reg1, val1) \
TEST_ARG_REG(reg2, val2) \
TEST_ARG_END("") \
TEST_BRANCH_F(code1 #reg1 code2 #reg2 code3, 0) \
TESTCASE_END
#define TEST_X(code, codex) \
TESTCASE_START(code) \
TEST_ARG_END("") \
TEST_INSTRUCTION(code) \
" b 99f \n\t" \
" "codex" \n\t" \
TESTCASE_END
#define TEST_RX(code1, reg, val, code2, codex) \
TESTCASE_START(code1 #reg code2) \
TEST_ARG_REG(reg, val) \
TEST_ARG_END("") \
TEST_INSTRUCTION(code1 __stringify(reg) code2) \
" b 99f \n\t" \
" "codex" \n\t" \
TESTCASE_END
#define TEST_RRX(code1, reg1, val1, code2, reg2, val2, code3, codex) \
TESTCASE_START(code1 #reg1 code2 #reg2 code3) \
TEST_ARG_REG(reg1, val1) \
TEST_ARG_REG(reg2, val2) \
TEST_ARG_END("") \
TEST_INSTRUCTION(code1 __stringify(reg1) code2 __stringify(reg2) code3) \
" b 99f \n\t" \
" "codex" \n\t" \
TESTCASE_END
/* Various values used in test cases... */
#define N(val) (val ^ 0xffffffff)
#define VAL1 0x12345678
#define VAL2 N(VAL1)
#define VAL3 0xa5f801
#define VAL4 N(VAL3)
#define VALM 0x456789ab
#define VALR 0xdeaddead
#define HH1 0x0123fecb
#define HH2 0xa9874567
#ifdef CONFIG_THUMB2_KERNEL
void kprobe_thumb16_test_cases(void);
void kprobe_thumb32_test_cases(void);
#else
void kprobe_arm_test_cases(void);
#endif
......@@ -10,6 +10,7 @@
#include <linux/kernel.h>
#include <linux/kprobes.h>
#include <linux/module.h>
#include "kprobes.h"
......@@ -943,6 +944,9 @@ const union decode_item kprobe_decode_thumb32_table[] = {
*/
DECODE_END
};
#ifdef CONFIG_ARM_KPROBES_TEST_MODULE
EXPORT_SYMBOL_GPL(kprobe_decode_thumb32_table);
#endif
static void __kprobes
t16_simulate_bxblx(struct kprobe *p, struct pt_regs *regs)
......@@ -1423,6 +1427,9 @@ const union decode_item kprobe_decode_thumb16_table[] = {
DECODE_END
};
#ifdef CONFIG_ARM_KPROBES_TEST_MODULE
EXPORT_SYMBOL_GPL(kprobe_decode_thumb16_table);
#endif
static unsigned long __kprobes thumb_check_cc(unsigned long cpsr)
{
......
......@@ -413,6 +413,14 @@ struct decode_reject {
DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0)
#ifdef CONFIG_THUMB2_KERNEL
extern const union decode_item kprobe_decode_thumb16_table[];
extern const union decode_item kprobe_decode_thumb32_table[];
#else
extern const union decode_item kprobe_decode_arm_table[];
#endif
int kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi,
const union decode_item *table, bool thumb16);
......
此差异已折叠。
......@@ -54,7 +54,7 @@ enum armv6_perf_types {
};
enum armv6_counters {
ARMV6_CYCLE_COUNTER = 1,
ARMV6_CYCLE_COUNTER = 0,
ARMV6_COUNTER0,
ARMV6_COUNTER1,
};
......@@ -433,6 +433,7 @@ armv6pmu_enable_event(struct hw_perf_event *hwc,
int idx)
{
unsigned long val, mask, evt, flags;
struct pmu_hw_events *events = cpu_pmu->get_hw_events();
if (ARMV6_CYCLE_COUNTER == idx) {
mask = 0;
......@@ -454,12 +455,29 @@ armv6pmu_enable_event(struct hw_perf_event *hwc,
* Mask out the current event and set the counter to count the event
* that we're interested in.
*/
raw_spin_lock_irqsave(&pmu_lock, flags);
raw_spin_lock_irqsave(&events->pmu_lock, flags);
val = armv6_pmcr_read();
val &= ~mask;
val |= evt;
armv6_pmcr_write(val);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static int counter_is_active(unsigned long pmcr, int idx)
{
unsigned long mask = 0;
if (idx == ARMV6_CYCLE_COUNTER)
mask = ARMV6_PMCR_CCOUNT_IEN;
else if (idx == ARMV6_COUNTER0)
mask = ARMV6_PMCR_COUNT0_IEN;
else if (idx == ARMV6_COUNTER1)
mask = ARMV6_PMCR_COUNT1_IEN;
if (mask)
return pmcr & mask;
WARN_ONCE(1, "invalid counter number (%d)\n", idx);
return 0;
}
static irqreturn_t
......@@ -468,7 +486,7 @@ armv6pmu_handle_irq(int irq_num,
{
unsigned long pmcr = armv6_pmcr_read();
struct perf_sample_data data;
struct cpu_hw_events *cpuc;
struct pmu_hw_events *cpuc;
struct pt_regs *regs;
int idx;
......@@ -487,11 +505,11 @@ armv6pmu_handle_irq(int irq_num,
perf_sample_data_init(&data, 0);
cpuc = &__get_cpu_var(cpu_hw_events);
for (idx = 0; idx <= armpmu->num_events; ++idx) {
for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
struct perf_event *event = cpuc->events[idx];
struct hw_perf_event *hwc;
if (!test_bit(idx, cpuc->active_mask))
if (!counter_is_active(pmcr, idx))
continue;
/*
......@@ -508,7 +526,7 @@ armv6pmu_handle_irq(int irq_num,
continue;
if (perf_event_overflow(event, &data, regs))
armpmu->disable(hwc, idx);
cpu_pmu->disable(hwc, idx);
}
/*
......@@ -527,28 +545,30 @@ static void
armv6pmu_start(void)
{
unsigned long flags, val;
struct pmu_hw_events *events = cpu_pmu->get_hw_events();
raw_spin_lock_irqsave(&pmu_lock, flags);
raw_spin_lock_irqsave(&events->pmu_lock, flags);
val = armv6_pmcr_read();
val |= ARMV6_PMCR_ENABLE;
armv6_pmcr_write(val);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static void
armv6pmu_stop(void)
{
unsigned long flags, val;
struct pmu_hw_events *events = cpu_pmu->get_hw_events();
raw_spin_lock_irqsave(&pmu_lock, flags);
raw_spin_lock_irqsave(&events->pmu_lock, flags);
val = armv6_pmcr_read();
val &= ~ARMV6_PMCR_ENABLE;
armv6_pmcr_write(val);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static int
armv6pmu_get_event_idx(struct cpu_hw_events *cpuc,
armv6pmu_get_event_idx(struct pmu_hw_events *cpuc,
struct hw_perf_event *event)
{
/* Always place a cycle counter into the cycle counter. */
......@@ -578,6 +598,7 @@ armv6pmu_disable_event(struct hw_perf_event *hwc,
int idx)
{
unsigned long val, mask, evt, flags;
struct pmu_hw_events *events = cpu_pmu->get_hw_events();
if (ARMV6_CYCLE_COUNTER == idx) {
mask = ARMV6_PMCR_CCOUNT_IEN;
......@@ -598,12 +619,12 @@ armv6pmu_disable_event(struct hw_perf_event *hwc,
* of ETM bus signal assertion cycles. The external reporting should
* be disabled and so this should never increment.
*/
raw_spin_lock_irqsave(&pmu_lock, flags);
raw_spin_lock_irqsave(&events->pmu_lock, flags);
val = armv6_pmcr_read();
val &= ~mask;
val |= evt;
armv6_pmcr_write(val);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static void
......@@ -611,6 +632,7 @@ armv6mpcore_pmu_disable_event(struct hw_perf_event *hwc,
int idx)
{
unsigned long val, mask, flags, evt = 0;
struct pmu_hw_events *events = cpu_pmu->get_hw_events();
if (ARMV6_CYCLE_COUNTER == idx) {
mask = ARMV6_PMCR_CCOUNT_IEN;
......@@ -627,15 +649,21 @@ armv6mpcore_pmu_disable_event(struct hw_perf_event *hwc,
* Unlike UP ARMv6, we don't have a way of stopping the counters. We
* simply disable the interrupt reporting.
*/
raw_spin_lock_irqsave(&pmu_lock, flags);
raw_spin_lock_irqsave(&events->pmu_lock, flags);
val = armv6_pmcr_read();
val &= ~mask;
val |= evt;
armv6_pmcr_write(val);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static int armv6_map_event(struct perf_event *event)
{
return map_cpu_event(event, &armv6_perf_map,
&armv6_perf_cache_map, 0xFF);
}
static const struct arm_pmu armv6pmu = {
static struct arm_pmu armv6pmu = {
.id = ARM_PERF_PMU_ID_V6,
.name = "v6",
.handle_irq = armv6pmu_handle_irq,
......@@ -646,14 +674,12 @@ static const struct arm_pmu armv6pmu = {
.get_event_idx = armv6pmu_get_event_idx,
.start = armv6pmu_start,
.stop = armv6pmu_stop,
.cache_map = &armv6_perf_cache_map,
.event_map = &armv6_perf_map,
.raw_event_mask = 0xFF,
.map_event = armv6_map_event,
.num_events = 3,
.max_period = (1LLU << 32) - 1,
};
static const struct arm_pmu *__init armv6pmu_init(void)
static struct arm_pmu *__init armv6pmu_init(void)
{
return &armv6pmu;
}
......@@ -665,7 +691,14 @@ static const struct arm_pmu *__init armv6pmu_init(void)
* disable the interrupt reporting and update the event. When unthrottling we
* reset the period and enable the interrupt reporting.
*/
static const struct arm_pmu armv6mpcore_pmu = {
static int armv6mpcore_map_event(struct perf_event *event)
{
return map_cpu_event(event, &armv6mpcore_perf_map,
&armv6mpcore_perf_cache_map, 0xFF);
}
static struct arm_pmu armv6mpcore_pmu = {
.id = ARM_PERF_PMU_ID_V6MP,
.name = "v6mpcore",
.handle_irq = armv6pmu_handle_irq,
......@@ -676,24 +709,22 @@ static const struct arm_pmu armv6mpcore_pmu = {
.get_event_idx = armv6pmu_get_event_idx,
.start = armv6pmu_start,
.stop = armv6pmu_stop,
.cache_map = &armv6mpcore_perf_cache_map,
.event_map = &armv6mpcore_perf_map,
.raw_event_mask = 0xFF,
.map_event = armv6mpcore_map_event,
.num_events = 3,
.max_period = (1LLU << 32) - 1,
};
static const struct arm_pmu *__init armv6mpcore_pmu_init(void)
static struct arm_pmu *__init armv6mpcore_pmu_init(void)
{
return &armv6mpcore_pmu;
}
#else
static const struct arm_pmu *__init armv6pmu_init(void)
static struct arm_pmu *__init armv6pmu_init(void)
{
return NULL;
}
static const struct arm_pmu *__init armv6mpcore_pmu_init(void)
static struct arm_pmu *__init armv6mpcore_pmu_init(void)
{
return NULL;
}
......
此差异已折叠。
......@@ -40,7 +40,7 @@ enum xscale_perf_types {
};
enum xscale_counters {
XSCALE_CYCLE_COUNTER = 1,
XSCALE_CYCLE_COUNTER = 0,
XSCALE_COUNTER0,
XSCALE_COUNTER1,
XSCALE_COUNTER2,
......@@ -222,7 +222,7 @@ xscale1pmu_handle_irq(int irq_num, void *dev)
{
unsigned long pmnc;
struct perf_sample_data data;
struct cpu_hw_events *cpuc;
struct pmu_hw_events *cpuc;
struct pt_regs *regs;
int idx;
......@@ -249,13 +249,10 @@ xscale1pmu_handle_irq(int irq_num, void *dev)
perf_sample_data_init(&data, 0);
cpuc = &__get_cpu_var(cpu_hw_events);
for (idx = 0; idx <= armpmu->num_events; ++idx) {
for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
struct perf_event *event = cpuc->events[idx];
struct hw_perf_event *hwc;
if (!test_bit(idx, cpuc->active_mask))
continue;
if (!xscale1_pmnc_counter_has_overflowed(pmnc, idx))
continue;
......@@ -266,7 +263,7 @@ xscale1pmu_handle_irq(int irq_num, void *dev)
continue;
if (perf_event_overflow(event, &data, regs))
armpmu->disable(hwc, idx);
cpu_pmu->disable(hwc, idx);
}
irq_work_run();
......@@ -284,6 +281,7 @@ static void
xscale1pmu_enable_event(struct hw_perf_event *hwc, int idx)
{
unsigned long val, mask, evt, flags;
struct pmu_hw_events *events = cpu_pmu->get_hw_events();
switch (idx) {
case XSCALE_CYCLE_COUNTER:
......@@ -305,18 +303,19 @@ xscale1pmu_enable_event(struct hw_perf_event *hwc, int idx)
return;
}
raw_spin_lock_irqsave(&pmu_lock, flags);
raw_spin_lock_irqsave(&events->pmu_lock, flags);
val = xscale1pmu_read_pmnc();
val &= ~mask;
val |= evt;
xscale1pmu_write_pmnc(val);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static void
xscale1pmu_disable_event(struct hw_perf_event *hwc, int idx)
{
unsigned long val, mask, evt, flags;
struct pmu_hw_events *events = cpu_pmu->get_hw_events();
switch (idx) {
case XSCALE_CYCLE_COUNTER:
......@@ -336,16 +335,16 @@ xscale1pmu_disable_event(struct hw_perf_event *hwc, int idx)
return;
}
raw_spin_lock_irqsave(&pmu_lock, flags);
raw_spin_lock_irqsave(&events->pmu_lock, flags);
val = xscale1pmu_read_pmnc();
val &= ~mask;
val |= evt;
xscale1pmu_write_pmnc(val);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static int
xscale1pmu_get_event_idx(struct cpu_hw_events *cpuc,
xscale1pmu_get_event_idx(struct pmu_hw_events *cpuc,
struct hw_perf_event *event)
{
if (XSCALE_PERFCTR_CCNT == event->config_base) {
......@@ -368,24 +367,26 @@ static void
xscale1pmu_start(void)
{
unsigned long flags, val;
struct pmu_hw_events *events = cpu_pmu->get_hw_events();
raw_spin_lock_irqsave(&pmu_lock, flags);
raw_spin_lock_irqsave(&events->pmu_lock, flags);
val = xscale1pmu_read_pmnc();
val |= XSCALE_PMU_ENABLE;
xscale1pmu_write_pmnc(val);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static void
xscale1pmu_stop(void)
{
unsigned long flags, val;
struct pmu_hw_events *events = cpu_pmu->get_hw_events();
raw_spin_lock_irqsave(&pmu_lock, flags);
raw_spin_lock_irqsave(&events->pmu_lock, flags);
val = xscale1pmu_read_pmnc();
val &= ~XSCALE_PMU_ENABLE;
xscale1pmu_write_pmnc(val);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static inline u32
......@@ -424,7 +425,13 @@ xscale1pmu_write_counter(int counter, u32 val)
}
}
static const struct arm_pmu xscale1pmu = {
static int xscale_map_event(struct perf_event *event)
{
return map_cpu_event(event, &xscale_perf_map,
&xscale_perf_cache_map, 0xFF);
}
static struct arm_pmu xscale1pmu = {
.id = ARM_PERF_PMU_ID_XSCALE1,
.name = "xscale1",
.handle_irq = xscale1pmu_handle_irq,
......@@ -435,14 +442,12 @@ static const struct arm_pmu xscale1pmu = {
.get_event_idx = xscale1pmu_get_event_idx,
.start = xscale1pmu_start,
.stop = xscale1pmu_stop,
.cache_map = &xscale_perf_cache_map,
.event_map = &xscale_perf_map,
.raw_event_mask = 0xFF,
.map_event = xscale_map_event,
.num_events = 3,
.max_period = (1LLU << 32) - 1,
};
static const struct arm_pmu *__init xscale1pmu_init(void)
static struct arm_pmu *__init xscale1pmu_init(void)
{
return &xscale1pmu;
}
......@@ -560,7 +565,7 @@ xscale2pmu_handle_irq(int irq_num, void *dev)
{
unsigned long pmnc, of_flags;
struct perf_sample_data data;
struct cpu_hw_events *cpuc;
struct pmu_hw_events *cpuc;
struct pt_regs *regs;
int idx;
......@@ -581,13 +586,10 @@ xscale2pmu_handle_irq(int irq_num, void *dev)
perf_sample_data_init(&data, 0);
cpuc = &__get_cpu_var(cpu_hw_events);
for (idx = 0; idx <= armpmu->num_events; ++idx) {
for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
struct perf_event *event = cpuc->events[idx];
struct hw_perf_event *hwc;
if (!test_bit(idx, cpuc->active_mask))
continue;
if (!xscale2_pmnc_counter_has_overflowed(pmnc, idx))
continue;
......@@ -598,7 +600,7 @@ xscale2pmu_handle_irq(int irq_num, void *dev)
continue;
if (perf_event_overflow(event, &data, regs))
armpmu->disable(hwc, idx);
cpu_pmu->disable(hwc, idx);
}
irq_work_run();
......@@ -616,6 +618,7 @@ static void
xscale2pmu_enable_event(struct hw_perf_event *hwc, int idx)
{
unsigned long flags, ien, evtsel;
struct pmu_hw_events *events = cpu_pmu->get_hw_events();
ien = xscale2pmu_read_int_enable();
evtsel = xscale2pmu_read_event_select();
......@@ -649,16 +652,17 @@ xscale2pmu_enable_event(struct hw_perf_event *hwc, int idx)
return;
}
raw_spin_lock_irqsave(&pmu_lock, flags);
raw_spin_lock_irqsave(&events->pmu_lock, flags);
xscale2pmu_write_event_select(evtsel);
xscale2pmu_write_int_enable(ien);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static void
xscale2pmu_disable_event(struct hw_perf_event *hwc, int idx)
{
unsigned long flags, ien, evtsel;
struct pmu_hw_events *events = cpu_pmu->get_hw_events();
ien = xscale2pmu_read_int_enable();
evtsel = xscale2pmu_read_event_select();
......@@ -692,14 +696,14 @@ xscale2pmu_disable_event(struct hw_perf_event *hwc, int idx)
return;
}
raw_spin_lock_irqsave(&pmu_lock, flags);
raw_spin_lock_irqsave(&events->pmu_lock, flags);
xscale2pmu_write_event_select(evtsel);
xscale2pmu_write_int_enable(ien);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static int
xscale2pmu_get_event_idx(struct cpu_hw_events *cpuc,
xscale2pmu_get_event_idx(struct pmu_hw_events *cpuc,
struct hw_perf_event *event)
{
int idx = xscale1pmu_get_event_idx(cpuc, event);
......@@ -718,24 +722,26 @@ static void
xscale2pmu_start(void)
{
unsigned long flags, val;
struct pmu_hw_events *events = cpu_pmu->get_hw_events();
raw_spin_lock_irqsave(&pmu_lock, flags);
raw_spin_lock_irqsave(&events->pmu_lock, flags);
val = xscale2pmu_read_pmnc() & ~XSCALE_PMU_CNT64;
val |= XSCALE_PMU_ENABLE;
xscale2pmu_write_pmnc(val);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static void
xscale2pmu_stop(void)
{
unsigned long flags, val;
struct pmu_hw_events *events = cpu_pmu->get_hw_events();
raw_spin_lock_irqsave(&pmu_lock, flags);
raw_spin_lock_irqsave(&events->pmu_lock, flags);
val = xscale2pmu_read_pmnc();
val &= ~XSCALE_PMU_ENABLE;
xscale2pmu_write_pmnc(val);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static inline u32
......@@ -786,7 +792,7 @@ xscale2pmu_write_counter(int counter, u32 val)
}
}
static const struct arm_pmu xscale2pmu = {
static struct arm_pmu xscale2pmu = {
.id = ARM_PERF_PMU_ID_XSCALE2,
.name = "xscale2",
.handle_irq = xscale2pmu_handle_irq,
......@@ -797,24 +803,22 @@ static const struct arm_pmu xscale2pmu = {
.get_event_idx = xscale2pmu_get_event_idx,
.start = xscale2pmu_start,
.stop = xscale2pmu_stop,
.cache_map = &xscale_perf_cache_map,
.event_map = &xscale_perf_map,
.raw_event_mask = 0xFF,
.map_event = xscale_map_event,
.num_events = 5,
.max_period = (1LLU << 32) - 1,
};
static const struct arm_pmu *__init xscale2pmu_init(void)
static struct arm_pmu *__init xscale2pmu_init(void)
{
return &xscale2pmu;
}
#else
static const struct arm_pmu *__init xscale1pmu_init(void)
static struct arm_pmu *__init xscale1pmu_init(void)
{
return NULL;
}
static const struct arm_pmu *__init xscale2pmu_init(void)
static struct arm_pmu *__init xscale2pmu_init(void)
{
return NULL;
}
......
此差异已折叠。
......@@ -820,25 +820,8 @@ static struct machine_desc * __init setup_machine_tags(unsigned int nr)
if (__atags_pointer)
tags = phys_to_virt(__atags_pointer);
else if (mdesc->boot_params) {
#ifdef CONFIG_MMU
/*
* We still are executing with a minimal MMU mapping created
* with the presumption that the machine default for this
* is located in the first MB of RAM. Anything else will
* fault and silently hang the kernel at this point.
*/
if (mdesc->boot_params < PHYS_OFFSET ||
mdesc->boot_params >= PHYS_OFFSET + SZ_1M) {
printk(KERN_WARNING
"Default boot params at physical 0x%08lx out of reach\n",
mdesc->boot_params);
} else
#endif
{
tags = phys_to_virt(mdesc->boot_params);
}
}
else if (mdesc->atag_offset)
tags = (void *)(PAGE_OFFSET + mdesc->atag_offset);
#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
/*
......
......@@ -8,92 +8,61 @@
.text
/*
* Save CPU state for a suspend
* r1 = v:p offset
* r2 = suspend function arg0
* r3 = suspend function
* Save CPU state for a suspend. This saves the CPU general purpose
* registers, and allocates space on the kernel stack to save the CPU
* specific registers and some other data for resume.
* r0 = suspend function arg0
* r1 = suspend function
*/
ENTRY(__cpu_suspend)
stmfd sp!, {r4 - r11, lr}
#ifdef MULTI_CPU
ldr r10, =processor
ldr r5, [r10, #CPU_SLEEP_SIZE] @ size of CPU sleep state
ldr ip, [r10, #CPU_DO_RESUME] @ virtual resume function
ldr r4, [r10, #CPU_SLEEP_SIZE] @ size of CPU sleep state
#else
ldr r5, =cpu_suspend_size
ldr ip, =cpu_do_resume
ldr r4, =cpu_suspend_size
#endif
mov r6, sp @ current virtual SP
sub sp, sp, r5 @ allocate CPU state on stack
mov r0, sp @ save pointer to CPU save block
add ip, ip, r1 @ convert resume fn to phys
stmfd sp!, {r1, r6, ip} @ save v:p, virt SP, phys resume fn
ldr r5, =sleep_save_sp
add r6, sp, r1 @ convert SP to phys
stmfd sp!, {r2, r3} @ save suspend func arg and pointer
mov r5, sp @ current virtual SP
add r4, r4, #12 @ Space for pgd, virt sp, phys resume fn
sub sp, sp, r4 @ allocate CPU state on stack
stmfd sp!, {r0, r1} @ save suspend func arg and pointer
add r0, sp, #8 @ save pointer to save block
mov r1, r4 @ size of save block
mov r2, r5 @ virtual SP
ldr r3, =sleep_save_sp
#ifdef CONFIG_SMP
ALT_SMP(mrc p15, 0, lr, c0, c0, 5)
ALT_UP(mov lr, #0)
and lr, lr, #15
str r6, [r5, lr, lsl #2] @ save phys SP
#else
str r6, [r5] @ save phys SP
#endif
#ifdef MULTI_CPU
mov lr, pc
ldr pc, [r10, #CPU_DO_SUSPEND] @ save CPU state
#else
bl cpu_do_suspend
#endif
@ flush data cache
#ifdef MULTI_CACHE
ldr r10, =cpu_cache
mov lr, pc
ldr pc, [r10, #CACHE_FLUSH_KERN_ALL]
#else
bl __cpuc_flush_kern_all
add r3, r3, lr, lsl #2
#endif
bl __cpu_suspend_save
adr lr, BSYM(cpu_suspend_abort)
ldmfd sp!, {r0, pc} @ call suspend fn
ENDPROC(__cpu_suspend)
.ltorg
cpu_suspend_abort:
ldmia sp!, {r1 - r3} @ pop v:p, virt SP, phys resume fn
ldmia sp!, {r1 - r3} @ pop phys pgd, virt SP, phys resume fn
teq r0, #0
moveq r0, #1 @ force non-zero value
mov sp, r2
ldmfd sp!, {r4 - r11, pc}
ENDPROC(cpu_suspend_abort)
/*
* r0 = control register value
* r1 = v:p offset (preserved by cpu_do_resume)
* r2 = phys page table base
* r3 = L1 section flags
*/
.align 5
ENTRY(cpu_resume_mmu)
adr r4, cpu_resume_turn_mmu_on
mov r4, r4, lsr #20
orr r3, r3, r4, lsl #20
ldr r5, [r2, r4, lsl #2] @ save old mapping
str r3, [r2, r4, lsl #2] @ setup 1:1 mapping for mmu code
sub r2, r2, r1
ldr r3, =cpu_resume_after_mmu
bic r1, r0, #CR_C @ ensure D-cache is disabled
b cpu_resume_turn_mmu_on
ENDPROC(cpu_resume_mmu)
.ltorg
.align 5
cpu_resume_turn_mmu_on:
mcr p15, 0, r1, c1, c0, 0 @ turn on MMU, I-cache, etc
mrc p15, 0, r1, c0, c0, 0 @ read id reg
mov r1, r1
mov r1, r1
mcr p15, 0, r0, c1, c0, 0 @ turn on MMU, I-cache, etc
mrc p15, 0, r0, c0, c0, 0 @ read id reg
mov r0, r0
mov r0, r0
mov pc, r3 @ jump to virtual address
ENDPROC(cpu_resume_turn_mmu_on)
ENDPROC(cpu_resume_mmu)
cpu_resume_after_mmu:
str r5, [r2, r4, lsl #2] @ restore old mapping
mcr p15, 0, r0, c1, c0, 0 @ turn on D-cache
bl cpu_init @ restore the und/abt/irq banked regs
mov r0, #0 @ return zero on success
ldmfd sp!, {r4 - r11, pc}
......@@ -119,7 +88,7 @@ ENTRY(cpu_resume)
ldr r0, sleep_save_sp @ stack phys addr
#endif
setmode PSR_I_BIT | PSR_F_BIT | SVC_MODE, r1 @ set SVC, irqs off
@ load v:p, stack, resume fn
@ load phys pgd, stack, resume fn
ARM( ldmia r0!, {r1, sp, pc} )
THUMB( ldmia r0!, {r1, r2, r3} )
THUMB( mov sp, r2 )
......
此差异已折叠。
......@@ -34,7 +34,7 @@ unsigned int __init scu_get_core_count(void __iomem *scu_base)
/*
* Enable the SCU
*/
void __init scu_enable(void __iomem *scu_base)
void scu_enable(void __iomem *scu_base)
{
u32 scu_ctrl;
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
......@@ -27,6 +27,7 @@
#include <linux/atomic.h>
#include <asm/cacheflush.h>
#include <asm/exception.h>
#include <asm/system.h>
#include <asm/unistd.h>
#include <asm/traps.h>
......
......@@ -12,6 +12,7 @@
#include <linux/module.h>
#include <linux/pm.h>
#include <linux/dma-mapping.h>
#include <asm/irq.h>
#include <asm/mach/arch.h>
......@@ -319,6 +320,7 @@ static void at91sam9g45_poweroff(void)
static void __init at91sam9g45_map_io(void)
{
at91_init_sram(0, AT91SAM9G45_SRAM_BASE, AT91SAM9G45_SRAM_SIZE);
init_consistent_dma_size(SZ_4M);
}
static void __init at91sam9g45_initialize(void)
......
......@@ -128,8 +128,6 @@
#define AT91SAM9G45_EHCI_BASE 0x00800000 /* USB Host controller (EHCI) */
#define AT91SAM9G45_VDEC_BASE 0x00900000 /* Video Decoder Controller */
#define CONSISTENT_DMA_SIZE SZ_4M
/*
* DMA peripheral identifiers
* for hardware handshaking interface
......
......@@ -14,7 +14,7 @@
#include <mach/hardware.h>
#include <mach/at91_dbgu.h>
.macro addruart, rp, rv
.macro addruart, rp, rv, tmp
ldr \rp, =(AT91_BASE_SYS + AT91_DBGU) @ System peripherals (phys address)
ldr \rv, =(AT91_VA_BASE_SYS + AT91_DBGU) @ System peripherals (virt address)
.endm
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册