rfkill-input.c 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Input layer to RF Kill interface connector
 *
 * Copyright (c) 2007 Dmitry Torokhov
 */

/*
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 */

#include <linux/module.h>
#include <linux/input.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/init.h>
#include <linux/rfkill.h>
19
#include <linux/sched.h>
20

21 22
#include "rfkill-input.h"

23 24 25 26
MODULE_AUTHOR("Dmitry Torokhov <dtor@mail.ru>");
MODULE_DESCRIPTION("Input layer to RF switch connector");
MODULE_LICENSE("GPL");

27 28 29 30 31 32 33
enum rfkill_input_master_mode {
	RFKILL_INPUT_MASTER_DONOTHING = 0,
	RFKILL_INPUT_MASTER_RESTORE = 1,
	RFKILL_INPUT_MASTER_UNBLOCKALL = 2,
	RFKILL_INPUT_MASTER_MAX,	/* marker */
};

34 35 36
/* Delay (in ms) between consecutive switch ops */
#define RFKILL_OPS_DELAY 200

37 38 39 40 41 42 43 44 45 46 47 48 49
static enum rfkill_input_master_mode rfkill_master_switch_mode =
					RFKILL_INPUT_MASTER_UNBLOCKALL;
module_param_named(master_switch_mode, rfkill_master_switch_mode, uint, 0);
MODULE_PARM_DESC(master_switch_mode,
	"SW_RFKILL_ALL ON should: 0=do nothing; 1=restore; 2=unblock all");

enum rfkill_global_sched_op {
	RFKILL_GLOBAL_OP_EPO = 0,
	RFKILL_GLOBAL_OP_RESTORE,
	RFKILL_GLOBAL_OP_UNLOCK,
	RFKILL_GLOBAL_OP_UNBLOCK,
};

50
struct rfkill_task {
51
	struct delayed_work dwork;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

	/* ensures that task is serialized */
	struct mutex mutex;

	/* protects everything below */
	spinlock_t lock;

	/* pending regular switch operations (1=pending) */
	unsigned long sw_pending[BITS_TO_LONGS(RFKILL_TYPE_MAX)];

	/* should the state be complemented (1=yes) */
	unsigned long sw_togglestate[BITS_TO_LONGS(RFKILL_TYPE_MAX)];

	bool global_op_pending;
	enum rfkill_global_sched_op op;
67 68 69

	/* last time it was scheduled */
	unsigned long last_scheduled;
70 71
};

72
static void __rfkill_handle_global_op(enum rfkill_global_sched_op op)
73
{
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
	unsigned int i;

	switch (op) {
	case RFKILL_GLOBAL_OP_EPO:
		rfkill_epo();
		break;
	case RFKILL_GLOBAL_OP_RESTORE:
		rfkill_restore_states();
		break;
	case RFKILL_GLOBAL_OP_UNLOCK:
		rfkill_remove_epo_lock();
		break;
	case RFKILL_GLOBAL_OP_UNBLOCK:
		rfkill_remove_epo_lock();
		for (i = 0; i < RFKILL_TYPE_MAX; i++)
			rfkill_switch_all(i, RFKILL_STATE_UNBLOCKED);
		break;
	default:
		/* memory corruption or bug, fail safely */
		rfkill_epo();
		WARN(1, "Unknown requested operation %d! "
			"rfkill Emergency Power Off activated\n",
			op);
	}
}
99

100 101 102 103 104 105 106 107 108 109 110
static void __rfkill_handle_normal_op(const enum rfkill_type type,
			const bool c)
{
	enum rfkill_state state;

	state = rfkill_get_global_state(type);
	if (c)
		state = rfkill_state_complement(state);

	rfkill_switch_all(type, state);
}
111

112
static void rfkill_task_handler(struct work_struct *work)
113
{
114 115
	struct rfkill_task *task = container_of(work,
					struct rfkill_task, dwork.work);
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	bool doit = true;

	mutex_lock(&task->mutex);

	spin_lock_irq(&task->lock);
	while (doit) {
		if (task->global_op_pending) {
			enum rfkill_global_sched_op op = task->op;
			task->global_op_pending = false;
			memset(task->sw_pending, 0, sizeof(task->sw_pending));
			spin_unlock_irq(&task->lock);

			__rfkill_handle_global_op(op);

			/* make sure we do at least one pass with
			 * !task->global_op_pending */
			spin_lock_irq(&task->lock);
			continue;
		} else if (!rfkill_is_epo_lock_active()) {
			unsigned int i = 0;

			while (!task->global_op_pending &&
						i < RFKILL_TYPE_MAX) {
				if (test_and_clear_bit(i, task->sw_pending)) {
					bool c;
					c = test_and_clear_bit(i,
							task->sw_togglestate);
					spin_unlock_irq(&task->lock);

					__rfkill_handle_normal_op(i, c);

					spin_lock_irq(&task->lock);
				}
				i++;
			}
		}
		doit = task->global_op_pending;
	}
	spin_unlock_irq(&task->lock);

	mutex_unlock(&task->mutex);
157 158
}

159
static struct rfkill_task rfkill_task = {
160
	.dwork = __DELAYED_WORK_INITIALIZER(rfkill_task.dwork,
161 162 163 164
				rfkill_task_handler),
	.mutex = __MUTEX_INITIALIZER(rfkill_task.mutex),
	.lock = __SPIN_LOCK_UNLOCKED(rfkill_task.lock),
};
165

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
static unsigned long rfkill_ratelimit(const unsigned long last)
{
	const unsigned long delay = msecs_to_jiffies(RFKILL_OPS_DELAY);
	return (time_after(jiffies, last + delay)) ? 0 : delay;
}

static void rfkill_schedule_ratelimited(void)
{
	if (!delayed_work_pending(&rfkill_task.dwork)) {
		schedule_delayed_work(&rfkill_task.dwork,
				rfkill_ratelimit(rfkill_task.last_scheduled));
		rfkill_task.last_scheduled = jiffies;
	}
}

181
static void rfkill_schedule_global_op(enum rfkill_global_sched_op op)
182
{
183 184 185 186 187
	unsigned long flags;

	spin_lock_irqsave(&rfkill_task.lock, flags);
	rfkill_task.op = op;
	rfkill_task.global_op_pending = true;
188 189 190 191 192 193 194
	if (op == RFKILL_GLOBAL_OP_EPO && !rfkill_is_epo_lock_active()) {
		/* bypass the limiter for EPO */
		cancel_delayed_work(&rfkill_task.dwork);
		schedule_delayed_work(&rfkill_task.dwork, 0);
		rfkill_task.last_scheduled = jiffies;
	} else
		rfkill_schedule_ratelimited();
195
	spin_unlock_irqrestore(&rfkill_task.lock, flags);
196 197
}

198
static void rfkill_schedule_toggle(enum rfkill_type type)
199
{
200
	unsigned long flags;
201

202
	if (rfkill_is_epo_lock_active())
203 204
		return;

205 206 207 208
	spin_lock_irqsave(&rfkill_task.lock, flags);
	if (!rfkill_task.global_op_pending) {
		set_bit(type, rfkill_task.sw_pending);
		change_bit(type, rfkill_task.sw_togglestate);
209
		rfkill_schedule_ratelimited();
210
	}
211
	spin_unlock_irqrestore(&rfkill_task.lock, flags);
212 213
}

214 215 216
static void rfkill_schedule_evsw_rfkillall(int state)
{
	if (state) {
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
		switch (rfkill_master_switch_mode) {
		case RFKILL_INPUT_MASTER_UNBLOCKALL:
			rfkill_schedule_global_op(RFKILL_GLOBAL_OP_UNBLOCK);
			break;
		case RFKILL_INPUT_MASTER_RESTORE:
			rfkill_schedule_global_op(RFKILL_GLOBAL_OP_RESTORE);
			break;
		case RFKILL_INPUT_MASTER_DONOTHING:
			rfkill_schedule_global_op(RFKILL_GLOBAL_OP_UNLOCK);
			break;
		default:
			/* memory corruption or driver bug! fail safely */
			rfkill_schedule_global_op(RFKILL_GLOBAL_OP_EPO);
			WARN(1, "Unknown rfkill_master_switch_mode (%d), "
				"driver bug or memory corruption detected!\n",
				rfkill_master_switch_mode);
			break;
		}
235
	} else
236
		rfkill_schedule_global_op(RFKILL_GLOBAL_OP_EPO);
237 238
}

239
static void rfkill_event(struct input_handle *handle, unsigned int type,
240
			unsigned int code, int data)
241
{
242
	if (type == EV_KEY && data == 1) {
243 244
		enum rfkill_type t;

245 246
		switch (code) {
		case KEY_WLAN:
247
			t = RFKILL_TYPE_WLAN;
248 249
			break;
		case KEY_BLUETOOTH:
250
			t = RFKILL_TYPE_BLUETOOTH;
251
			break;
252
		case KEY_UWB:
253
			t = RFKILL_TYPE_UWB;
254
			break;
255
		case KEY_WIMAX:
256
			t = RFKILL_TYPE_WIMAX;
257
			break;
258
		default:
259
			return;
260
		}
261 262
		rfkill_schedule_toggle(t);
		return;
263 264 265
	} else if (type == EV_SW) {
		switch (code) {
		case SW_RFKILL_ALL:
266
			rfkill_schedule_evsw_rfkillall(data);
267
			return;
268
		default:
269
			return;
270
		}
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
	}
}

static int rfkill_connect(struct input_handler *handler, struct input_dev *dev,
			  const struct input_device_id *id)
{
	struct input_handle *handle;
	int error;

	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
	if (!handle)
		return -ENOMEM;

	handle->dev = dev;
	handle->handler = handler;
	handle->name = "rfkill";

288
	/* causes rfkill_start() to be called */
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
	error = input_register_handle(handle);
	if (error)
		goto err_free_handle;

	error = input_open_device(handle);
	if (error)
		goto err_unregister_handle;

	return 0;

 err_unregister_handle:
	input_unregister_handle(handle);
 err_free_handle:
	kfree(handle);
	return error;
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
static void rfkill_start(struct input_handle *handle)
{
	/* Take event_lock to guard against configuration changes, we
	 * should be able to deal with concurrency with rfkill_event()
	 * just fine (which event_lock will also avoid). */
	spin_lock_irq(&handle->dev->event_lock);

	if (test_bit(EV_SW, handle->dev->evbit)) {
		if (test_bit(SW_RFKILL_ALL, handle->dev->swbit))
			rfkill_schedule_evsw_rfkillall(test_bit(SW_RFKILL_ALL,
							handle->dev->sw));
		/* add resync for further EV_SW events here */
	}

	spin_unlock_irq(&handle->dev->event_lock);
}

323 324 325 326 327 328 329 330 331 332
static void rfkill_disconnect(struct input_handle *handle)
{
	input_close_device(handle);
	input_unregister_handle(handle);
	kfree(handle);
}

static const struct input_device_id rfkill_ids[] = {
	{
		.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
333 334
		.evbit = { BIT_MASK(EV_KEY) },
		.keybit = { [BIT_WORD(KEY_WLAN)] = BIT_MASK(KEY_WLAN) },
335 336 337
	},
	{
		.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
338 339
		.evbit = { BIT_MASK(EV_KEY) },
		.keybit = { [BIT_WORD(KEY_BLUETOOTH)] = BIT_MASK(KEY_BLUETOOTH) },
340
	},
341 342
	{
		.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
343 344
		.evbit = { BIT_MASK(EV_KEY) },
		.keybit = { [BIT_WORD(KEY_UWB)] = BIT_MASK(KEY_UWB) },
345
	},
346 347 348 349 350
	{
		.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
		.evbit = { BIT_MASK(EV_KEY) },
		.keybit = { [BIT_WORD(KEY_WIMAX)] = BIT_MASK(KEY_WIMAX) },
	},
351 352 353 354 355
	{
		.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_SWBIT,
		.evbit = { BIT(EV_SW) },
		.swbit = { [BIT_WORD(SW_RFKILL_ALL)] = BIT_MASK(SW_RFKILL_ALL) },
	},
356 357 358 359 360 361 362
	{ }
};

static struct input_handler rfkill_handler = {
	.event =	rfkill_event,
	.connect =	rfkill_connect,
	.disconnect =	rfkill_disconnect,
363
	.start =	rfkill_start,
364 365 366 367 368 369
	.name =		"rfkill",
	.id_table =	rfkill_ids,
};

static int __init rfkill_handler_init(void)
{
370 371 372
	if (rfkill_master_switch_mode >= RFKILL_INPUT_MASTER_MAX)
		return -EINVAL;

373 374 375 376 377 378
	/*
	 * The penalty to not doing this is a possible RFKILL_OPS_DELAY delay
	 * at the first use.  Acceptable, but if we can avoid it, why not?
	 */
	rfkill_task.last_scheduled =
			jiffies - msecs_to_jiffies(RFKILL_OPS_DELAY) - 1;
379 380 381 382 383 384
	return input_register_handler(&rfkill_handler);
}

static void __exit rfkill_handler_exit(void)
{
	input_unregister_handler(&rfkill_handler);
385
	cancel_delayed_work_sync(&rfkill_task.dwork);
386
	rfkill_remove_epo_lock();
387 388 389 390
}

module_init(rfkill_handler_init);
module_exit(rfkill_handler_exit);