rhashtable.c 20.6 KB
Newer Older
1 2 3
/*
 * Resizable, Scalable, Concurrent Hash Table
 *
4
 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5
 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6 7 8
 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
 *
 * Code partially derived from nft_hash
9 10
 * Rewritten with rehash code from br_multicast plus single list
 * pointer as suggested by Josh Triplett
11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

17
#include <linux/atomic.h>
18 19 20
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/log2.h>
E
Eric Dumazet 已提交
21
#include <linux/sched.h>
22 23 24
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
25
#include <linux/jhash.h>
26 27
#include <linux/random.h>
#include <linux/rhashtable.h>
28
#include <linux/err.h>
29
#include <linux/export.h>
30 31

#define HASH_DEFAULT_SIZE	64UL
32
#define HASH_MIN_SIZE		4U
33
#define BUCKET_LOCKS_PER_CPU	32UL
34

35
static u32 head_hashfn(struct rhashtable *ht,
36 37
		       const struct bucket_table *tbl,
		       const struct rhash_head *he)
38
{
39
	return rht_head_hashfn(ht, tbl, he, ht->p);
40 41
}

42 43 44 45 46 47 48 49 50 51 52
#ifdef CONFIG_PROVE_LOCKING
#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))

int lockdep_rht_mutex_is_held(struct rhashtable *ht)
{
	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
}
EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);

int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
{
53
	spinlock_t *lock = rht_bucket_lock(tbl, hash);
54 55 56 57 58 59 60 61 62

	return (debug_locks) ? lockdep_is_held(lock) : 1;
}
EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
#else
#define ASSERT_RHT_MUTEX(HT)
#endif


63 64
static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
			      gfp_t gfp)
65 66 67 68 69 70 71 72
{
	unsigned int i, size;
#if defined(CONFIG_PROVE_LOCKING)
	unsigned int nr_pcpus = 2;
#else
	unsigned int nr_pcpus = num_possible_cpus();
#endif

73
	nr_pcpus = min_t(unsigned int, nr_pcpus, 64UL);
74 75
	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);

76 77
	/* Never allocate more than 0.5 locks per bucket */
	size = min_t(unsigned int, size, tbl->size >> 1);
78 79

	if (sizeof(spinlock_t) != 0) {
80
		tbl->locks = NULL;
81
#ifdef CONFIG_NUMA
82 83
		if (size * sizeof(spinlock_t) > PAGE_SIZE &&
		    gfp == GFP_KERNEL)
84 85
			tbl->locks = vmalloc(size * sizeof(spinlock_t));
#endif
86 87 88
		if (gfp != GFP_KERNEL)
			gfp |= __GFP_NOWARN | __GFP_NORETRY;

89 90 91
		if (!tbl->locks)
			tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
						   gfp);
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
		if (!tbl->locks)
			return -ENOMEM;
		for (i = 0; i < size; i++)
			spin_lock_init(&tbl->locks[i]);
	}
	tbl->locks_mask = size - 1;

	return 0;
}

static void bucket_table_free(const struct bucket_table *tbl)
{
	if (tbl)
		kvfree(tbl->locks);

	kvfree(tbl);
}

110 111 112 113 114
static void bucket_table_free_rcu(struct rcu_head *head)
{
	bucket_table_free(container_of(head, struct bucket_table, rcu));
}

115
static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
116 117
					       size_t nbuckets,
					       gfp_t gfp)
118
{
119
	struct bucket_table *tbl = NULL;
120
	size_t size;
121
	int i;
122 123

	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
124 125 126 127
	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
	    gfp != GFP_KERNEL)
		tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
	if (tbl == NULL && gfp == GFP_KERNEL)
128 129 130 131 132 133
		tbl = vzalloc(size);
	if (tbl == NULL)
		return NULL;

	tbl->size = nbuckets;

134
	if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
135 136 137
		bucket_table_free(tbl);
		return NULL;
	}
138

139 140
	INIT_LIST_HEAD(&tbl->walkers);

141 142
	get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));

143 144 145
	for (i = 0; i < nbuckets; i++)
		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);

146
	return tbl;
147 148
}

149 150 151 152 153 154 155 156 157 158 159 160 161
static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
						  struct bucket_table *tbl)
{
	struct bucket_table *new_tbl;

	do {
		new_tbl = tbl;
		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
	} while (tbl);

	return new_tbl;
}

162
static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
163
{
164
	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
165 166
	struct bucket_table *new_tbl = rhashtable_last_table(ht,
		rht_dereference_rcu(old_tbl->future_tbl, ht));
167 168 169 170
	struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
	int err = -ENOENT;
	struct rhash_head *head, *next, *entry;
	spinlock_t *new_bucket_lock;
171
	unsigned int new_hash;
172 173 174 175 176 177 178

	rht_for_each(entry, old_tbl, old_hash) {
		err = 0;
		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);

		if (rht_is_a_nulls(next))
			break;
179

180 181
		pprev = &entry->next;
	}
182

183 184
	if (err)
		goto out;
185

186
	new_hash = head_hashfn(ht, new_tbl, entry);
187

188
	new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
189

190
	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
191 192
	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
				      new_tbl, new_hash);
193

194
	RCU_INIT_POINTER(entry->next, head);
195

196 197
	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
	spin_unlock(new_bucket_lock);
198

199
	rcu_assign_pointer(*pprev, next);
200

201 202 203
out:
	return err;
}
204

205 206
static void rhashtable_rehash_chain(struct rhashtable *ht,
				    unsigned int old_hash)
207 208 209 210
{
	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
	spinlock_t *old_bucket_lock;

211
	old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
212

213 214 215
	spin_lock_bh(old_bucket_lock);
	while (!rhashtable_rehash_one(ht, old_hash))
		;
216
	old_tbl->rehash++;
217
	spin_unlock_bh(old_bucket_lock);
218 219
}

220 221 222
static int rhashtable_rehash_attach(struct rhashtable *ht,
				    struct bucket_table *old_tbl,
				    struct bucket_table *new_tbl)
223
{
224 225 226 227 228 229 230 231
	/* Protect future_tbl using the first bucket lock. */
	spin_lock_bh(old_tbl->locks);

	/* Did somebody beat us to it? */
	if (rcu_access_pointer(old_tbl->future_tbl)) {
		spin_unlock_bh(old_tbl->locks);
		return -EEXIST;
	}
232

233 234 235
	/* Make insertions go into the new, empty table right away. Deletions
	 * and lookups will be attempted in both tables until we synchronize.
	 */
236
	rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
237

238 239 240 241 242 243 244 245 246 247
	spin_unlock_bh(old_tbl->locks);

	return 0;
}

static int rhashtable_rehash_table(struct rhashtable *ht)
{
	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
	struct bucket_table *new_tbl;
	struct rhashtable_walker *walker;
248
	unsigned int old_hash;
249 250 251 252 253

	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
	if (!new_tbl)
		return 0;

254 255 256 257 258 259
	for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
		rhashtable_rehash_chain(ht, old_hash);

	/* Publish the new table pointer. */
	rcu_assign_pointer(ht->tbl, new_tbl);

260
	spin_lock(&ht->lock);
261 262
	list_for_each_entry(walker, &old_tbl->walkers, list)
		walker->tbl = NULL;
263
	spin_unlock(&ht->lock);
264

265 266 267 268
	/* Wait for readers. All new readers will see the new
	 * table, and thus no references to the old table will
	 * remain.
	 */
269
	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
270 271

	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
272 273 274 275 276 277
}

/**
 * rhashtable_expand - Expand hash table while allowing concurrent lookups
 * @ht:		the hash table to expand
 *
278
 * A secondary bucket array is allocated and the hash entries are migrated.
279 280 281 282
 *
 * This function may only be called in a context where it is safe to call
 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
 *
283 284 285 286 287
 * The caller must ensure that no concurrent resizing occurs by holding
 * ht->mutex.
 *
 * It is valid to have concurrent insertions and deletions protected by per
 * bucket locks or concurrent RCU protected lookups and traversals.
288
 */
289
static int rhashtable_expand(struct rhashtable *ht)
290 291
{
	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
292
	int err;
293 294 295

	ASSERT_RHT_MUTEX(ht);

296 297
	old_tbl = rhashtable_last_table(ht, old_tbl);

298
	new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
299 300 301
	if (new_tbl == NULL)
		return -ENOMEM;

302 303 304 305 306
	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
	if (err)
		bucket_table_free(new_tbl);

	return err;
307 308 309 310 311 312
}

/**
 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
 * @ht:		the hash table to shrink
 *
H
Herbert Xu 已提交
313 314
 * This function shrinks the hash table to fit, i.e., the smallest
 * size would not cause it to expand right away automatically.
315
 *
316 317 318
 * The caller must ensure that no concurrent resizing occurs by holding
 * ht->mutex.
 *
319 320
 * The caller must ensure that no concurrent table mutations take place.
 * It is however valid to have concurrent lookups if they are RCU protected.
321 322 323
 *
 * It is valid to have concurrent insertions and deletions protected by per
 * bucket locks or concurrent RCU protected lookups and traversals.
324
 */
325
static int rhashtable_shrink(struct rhashtable *ht)
326
{
327
	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
328 329
	unsigned int nelems = atomic_read(&ht->nelems);
	unsigned int size = 0;
330
	int err;
331 332 333

	ASSERT_RHT_MUTEX(ht);

334 335
	if (nelems)
		size = roundup_pow_of_two(nelems * 3 / 2);
H
Herbert Xu 已提交
336 337 338 339 340 341
	if (size < ht->p.min_size)
		size = ht->p.min_size;

	if (old_tbl->size <= size)
		return 0;

342 343 344
	if (rht_dereference(old_tbl->future_tbl, ht))
		return -EEXIST;

345
	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
346
	if (new_tbl == NULL)
347 348
		return -ENOMEM;

349 350 351 352 353
	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
	if (err)
		bucket_table_free(new_tbl);

	return err;
354 355
}

356 357 358 359
static void rht_deferred_worker(struct work_struct *work)
{
	struct rhashtable *ht;
	struct bucket_table *tbl;
360
	int err = 0;
361

362
	ht = container_of(work, struct rhashtable, run_work);
363
	mutex_lock(&ht->mutex);
364

365
	tbl = rht_dereference(ht->tbl, ht);
366
	tbl = rhashtable_last_table(ht, tbl);
367

368
	if (rht_grow_above_75(ht, tbl))
369
		rhashtable_expand(ht);
370
	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
371
		rhashtable_shrink(ht);
372 373 374

	err = rhashtable_rehash_table(ht);

375
	mutex_unlock(&ht->mutex);
376 377 378

	if (err)
		schedule_work(&ht->run_work);
379 380
}

381 382
static bool rhashtable_check_elasticity(struct rhashtable *ht,
					struct bucket_table *tbl,
383
					unsigned int hash)
384
{
385
	unsigned int elasticity = ht->elasticity;
386 387 388 389 390 391 392 393 394
	struct rhash_head *head;

	rht_for_each(head, tbl, hash)
		if (!--elasticity)
			return true;

	return false;
}

395 396
int rhashtable_insert_rehash(struct rhashtable *ht,
			     struct bucket_table *tbl)
397 398 399 400 401 402 403 404 405 406
{
	struct bucket_table *old_tbl;
	struct bucket_table *new_tbl;
	unsigned int size;
	int err;

	old_tbl = rht_dereference_rcu(ht->tbl, ht);

	size = tbl->size;

407 408
	err = -EBUSY;

409 410
	if (rht_grow_above_75(ht, tbl))
		size *= 2;
411 412
	/* Do not schedule more than one rehash */
	else if (old_tbl != tbl)
413 414 415
		goto fail;

	err = -ENOMEM;
416 417

	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
418 419
	if (new_tbl == NULL)
		goto fail;
420 421 422 423 424 425 426 427 428 429

	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
	if (err) {
		bucket_table_free(new_tbl);
		if (err == -EEXIST)
			err = 0;
	} else
		schedule_work(&ht->run_work);

	return err;
430 431 432 433 434 435 436 437 438 439 440

fail:
	/* Do not fail the insert if someone else did a rehash. */
	if (likely(rcu_dereference_raw(tbl->future_tbl)))
		return 0;

	/* Schedule async rehash to retry allocation in process context. */
	if (err == -ENOMEM)
		schedule_work(&ht->run_work);

	return err;
441 442 443
}
EXPORT_SYMBOL_GPL(rhashtable_insert_rehash);

444 445 446
struct bucket_table *rhashtable_insert_slow(struct rhashtable *ht,
					    const void *key,
					    struct rhash_head *obj,
447 448
					    struct bucket_table *tbl,
					    void **data)
449 450
{
	struct rhash_head *head;
451
	unsigned int hash;
452
	int err;
453

454
	tbl = rhashtable_last_table(ht, tbl);
455 456 457
	hash = head_hashfn(ht, tbl, obj);
	spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);

458
	err = -EEXIST;
459 460 461 462 463
	if (key) {
		*data = rhashtable_lookup_fast(ht, key, ht->p);
		if (*data)
			goto exit;
	}
464

465 466 467 468
	err = -E2BIG;
	if (unlikely(rht_grow_above_max(ht, tbl)))
		goto exit;

469 470 471 472 473
	err = -EAGAIN;
	if (rhashtable_check_elasticity(ht, tbl, hash) ||
	    rht_grow_above_100(ht, tbl))
		goto exit;

474 475 476 477 478 479 480 481 482 483 484 485 486
	err = 0;

	head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);

	RCU_INIT_POINTER(obj->next, head);

	rcu_assign_pointer(tbl->buckets[hash], obj);

	atomic_inc(&ht->nelems);

exit:
	spin_unlock(rht_bucket_lock(tbl, hash));

487 488 489 490 491 492
	if (err == 0)
		return NULL;
	else if (err == -EAGAIN)
		return tbl;
	else
		return ERR_PTR(err);
493 494 495
}
EXPORT_SYMBOL_GPL(rhashtable_insert_slow);

496
/**
497
 * rhashtable_walk_enter - Initialise an iterator
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
 * @ht:		Table to walk over
 * @iter:	Hash table Iterator
 *
 * This function prepares a hash table walk.
 *
 * Note that if you restart a walk after rhashtable_walk_stop you
 * may see the same object twice.  Also, you may miss objects if
 * there are removals in between rhashtable_walk_stop and the next
 * call to rhashtable_walk_start.
 *
 * For a completely stable walk you should construct your own data
 * structure outside the hash table.
 *
 * This function may sleep so you must not call it from interrupt
 * context or with spin locks held.
 *
514
 * You must call rhashtable_walk_exit after this function returns.
515
 */
516
void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
517 518 519 520 521 522
{
	iter->ht = ht;
	iter->p = NULL;
	iter->slot = 0;
	iter->skip = 0;

523
	spin_lock(&ht->lock);
524
	iter->walker.tbl =
525
		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
526
	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
527
	spin_unlock(&ht->lock);
528
}
529
EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
530 531 532 533 534 535 536 537 538

/**
 * rhashtable_walk_exit - Free an iterator
 * @iter:	Hash table Iterator
 *
 * This function frees resources allocated by rhashtable_walk_init.
 */
void rhashtable_walk_exit(struct rhashtable_iter *iter)
{
539
	spin_lock(&iter->ht->lock);
540 541
	if (iter->walker.tbl)
		list_del(&iter->walker.list);
542
	spin_unlock(&iter->ht->lock);
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
}
EXPORT_SYMBOL_GPL(rhashtable_walk_exit);

/**
 * rhashtable_walk_start - Start a hash table walk
 * @iter:	Hash table iterator
 *
 * Start a hash table walk.  Note that we take the RCU lock in all
 * cases including when we return an error.  So you must always call
 * rhashtable_walk_stop to clean up.
 *
 * Returns zero if successful.
 *
 * Returns -EAGAIN if resize event occured.  Note that the iterator
 * will rewind back to the beginning and you may use it immediately
 * by calling rhashtable_walk_next.
 */
int rhashtable_walk_start(struct rhashtable_iter *iter)
561
	__acquires(RCU)
562
{
563 564
	struct rhashtable *ht = iter->ht;

565
	rcu_read_lock();
566

567
	spin_lock(&ht->lock);
568 569
	if (iter->walker.tbl)
		list_del(&iter->walker.list);
570
	spin_unlock(&ht->lock);
571

572 573
	if (!iter->walker.tbl) {
		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
		return -EAGAIN;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_start);

/**
 * rhashtable_walk_next - Return the next object and advance the iterator
 * @iter:	Hash table iterator
 *
 * Note that you must call rhashtable_walk_stop when you are finished
 * with the walk.
 *
 * Returns the next object or NULL when the end of the table is reached.
 *
 * Returns -EAGAIN if resize event occured.  Note that the iterator
 * will rewind back to the beginning and you may continue to use it.
 */
void *rhashtable_walk_next(struct rhashtable_iter *iter)
{
595
	struct bucket_table *tbl = iter->walker.tbl;
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
	struct rhashtable *ht = iter->ht;
	struct rhash_head *p = iter->p;

	if (p) {
		p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
		goto next;
	}

	for (; iter->slot < tbl->size; iter->slot++) {
		int skip = iter->skip;

		rht_for_each_rcu(p, tbl, iter->slot) {
			if (!skip)
				break;
			skip--;
		}

next:
		if (!rht_is_a_nulls(p)) {
			iter->skip++;
			iter->p = p;
T
Thomas Graf 已提交
617
			return rht_obj(ht, p);
618 619 620 621 622
		}

		iter->skip = 0;
	}

623 624
	iter->p = NULL;

625 626 627
	/* Ensure we see any new tables. */
	smp_rmb();

628 629
	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
	if (iter->walker.tbl) {
630 631 632 633 634
		iter->slot = 0;
		iter->skip = 0;
		return ERR_PTR(-EAGAIN);
	}

T
Thomas Graf 已提交
635
	return NULL;
636 637 638 639 640 641 642 643 644 645
}
EXPORT_SYMBOL_GPL(rhashtable_walk_next);

/**
 * rhashtable_walk_stop - Finish a hash table walk
 * @iter:	Hash table iterator
 *
 * Finish a hash table walk.
 */
void rhashtable_walk_stop(struct rhashtable_iter *iter)
646
	__releases(RCU)
647
{
648
	struct rhashtable *ht;
649
	struct bucket_table *tbl = iter->walker.tbl;
650 651

	if (!tbl)
652
		goto out;
653 654 655

	ht = iter->ht;

656
	spin_lock(&ht->lock);
657
	if (tbl->rehash < tbl->size)
658
		list_add(&iter->walker.list, &tbl->walkers);
659
	else
660
		iter->walker.tbl = NULL;
661
	spin_unlock(&ht->lock);
662

663
	iter->p = NULL;
664 665 666

out:
	rcu_read_unlock();
667 668 669
}
EXPORT_SYMBOL_GPL(rhashtable_walk_stop);

670
static size_t rounded_hashtable_size(const struct rhashtable_params *params)
671
{
672
	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
673
		   (unsigned long)params->min_size);
674 675
}

676 677 678 679 680
static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
{
	return jhash2(key, length, seed);
}

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
/**
 * rhashtable_init - initialize a new hash table
 * @ht:		hash table to be initialized
 * @params:	configuration parameters
 *
 * Initializes a new hash table based on the provided configuration
 * parameters. A table can be configured either with a variable or
 * fixed length key:
 *
 * Configuration Example 1: Fixed length keys
 * struct test_obj {
 *	int			key;
 *	void *			my_member;
 *	struct rhash_head	node;
 * };
 *
 * struct rhashtable_params params = {
 *	.head_offset = offsetof(struct test_obj, node),
 *	.key_offset = offsetof(struct test_obj, key),
 *	.key_len = sizeof(int),
701
 *	.hashfn = jhash,
702
 *	.nulls_base = (1U << RHT_BASE_SHIFT),
703 704 705 706 707 708 709 710
 * };
 *
 * Configuration Example 2: Variable length keys
 * struct test_obj {
 *	[...]
 *	struct rhash_head	node;
 * };
 *
711
 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
712 713 714 715 716 717 718 719
 * {
 *	struct test_obj *obj = data;
 *
 *	return [... hash ...];
 * }
 *
 * struct rhashtable_params params = {
 *	.head_offset = offsetof(struct test_obj, node),
720
 *	.hashfn = jhash,
721 722 723
 *	.obj_hashfn = my_hash_fn,
 * };
 */
724 725
int rhashtable_init(struct rhashtable *ht,
		    const struct rhashtable_params *params)
726 727 728 729 730 731
{
	struct bucket_table *tbl;
	size_t size;

	size = HASH_DEFAULT_SIZE;

732
	if ((!params->key_len && !params->obj_hashfn) ||
733
	    (params->obj_hashfn && !params->obj_cmpfn))
734 735
		return -EINVAL;

736 737 738
	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
		return -EINVAL;

739 740
	memset(ht, 0, sizeof(*ht));
	mutex_init(&ht->mutex);
741
	spin_lock_init(&ht->lock);
742 743
	memcpy(&ht->p, params, sizeof(*params));

744 745 746 747 748 749
	if (params->min_size)
		ht->p.min_size = roundup_pow_of_two(params->min_size);

	if (params->max_size)
		ht->p.max_size = rounddown_pow_of_two(params->max_size);

750 751 752 753 754 755
	if (params->insecure_max_entries)
		ht->p.insecure_max_entries =
			rounddown_pow_of_two(params->insecure_max_entries);
	else
		ht->p.insecure_max_entries = ht->p.max_size * 2;

756
	ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
757

758 759 760
	if (params->nelem_hint)
		size = rounded_hashtable_size(&ht->p);

761 762 763 764 765 766 767 768 769 770 771 772
	/* The maximum (not average) chain length grows with the
	 * size of the hash table, at a rate of (log N)/(log log N).
	 * The value of 16 is selected so that even if the hash
	 * table grew to 2^32 you would not expect the maximum
	 * chain length to exceed it unless we are under attack
	 * (or extremely unlucky).
	 *
	 * As this limit is only to detect attacks, we don't need
	 * to set it to a lower value as you'd need the chain
	 * length to vastly exceed 16 to have any real effect
	 * on the system.
	 */
773 774 775
	if (!params->insecure_elasticity)
		ht->elasticity = 16;

776 777 778 779 780
	if (params->locks_mul)
		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
	else
		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;

781 782 783 784 785 786 787 788 789 790
	ht->key_len = ht->p.key_len;
	if (!params->hashfn) {
		ht->p.hashfn = jhash;

		if (!(ht->key_len & (sizeof(u32) - 1))) {
			ht->key_len /= sizeof(u32);
			ht->p.hashfn = rhashtable_jhash2;
		}
	}

791
	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
792 793 794
	if (tbl == NULL)
		return -ENOMEM;

795
	atomic_set(&ht->nelems, 0);
796

797 798
	RCU_INIT_POINTER(ht->tbl, tbl);

799
	INIT_WORK(&ht->run_work, rht_deferred_worker);
800

801 802 803 804 805
	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_init);

/**
806
 * rhashtable_free_and_destroy - free elements and destroy hash table
807
 * @ht:		the hash table to destroy
808 809
 * @free_fn:	callback to release resources of element
 * @arg:	pointer passed to free_fn
810
 *
811 812 813 814 815 816 817 818
 * Stops an eventual async resize. If defined, invokes free_fn for each
 * element to releasal resources. Please note that RCU protected
 * readers may still be accessing the elements. Releasing of resources
 * must occur in a compatible manner. Then frees the bucket array.
 *
 * This function will eventually sleep to wait for an async resize
 * to complete. The caller is responsible that no further write operations
 * occurs in parallel.
819
 */
820 821 822
void rhashtable_free_and_destroy(struct rhashtable *ht,
				 void (*free_fn)(void *ptr, void *arg),
				 void *arg)
823
{
824 825
	const struct bucket_table *tbl;
	unsigned int i;
826

827
	cancel_work_sync(&ht->run_work);
828

829
	mutex_lock(&ht->mutex);
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
	tbl = rht_dereference(ht->tbl, ht);
	if (free_fn) {
		for (i = 0; i < tbl->size; i++) {
			struct rhash_head *pos, *next;

			for (pos = rht_dereference(tbl->buckets[i], ht),
			     next = !rht_is_a_nulls(pos) ?
					rht_dereference(pos->next, ht) : NULL;
			     !rht_is_a_nulls(pos);
			     pos = next,
			     next = !rht_is_a_nulls(pos) ?
					rht_dereference(pos->next, ht) : NULL)
				free_fn(rht_obj(ht, pos), arg);
		}
	}

	bucket_table_free(tbl);
847
	mutex_unlock(&ht->mutex);
848
}
849 850 851 852 853 854
EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);

void rhashtable_destroy(struct rhashtable *ht)
{
	return rhashtable_free_and_destroy(ht, NULL, NULL);
}
855
EXPORT_SYMBOL_GPL(rhashtable_destroy);