target_core_transport.c 73.7 KB
Newer Older
1 2 3 4 5
/*******************************************************************************
 * Filename:  target_core_transport.c
 *
 * This file contains the Generic Target Engine Core.
 *
6
 * (c) Copyright 2002-2013 Datera, Inc.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 *
 * Nicholas A. Bellinger <nab@kernel.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 ******************************************************************************/

#include <linux/net.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/in.h>
#include <linux/cdrom.h>
35
#include <linux/module.h>
36
#include <linux/ratelimit.h>
37 38 39 40 41
#include <asm/unaligned.h>
#include <net/sock.h>
#include <net/tcp.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
42
#include <scsi/scsi_tcq.h>
43 44

#include <target/target_core_base.h>
45 46
#include <target/target_core_backend.h>
#include <target/target_core_fabric.h>
47 48
#include <target/target_core_configfs.h>

C
Christoph Hellwig 已提交
49
#include "target_core_internal.h"
50 51 52 53
#include "target_core_alua.h"
#include "target_core_pr.h"
#include "target_core_ua.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/target.h>

57
static struct workqueue_struct *target_completion_wq;
58 59 60 61 62 63 64 65 66
static struct kmem_cache *se_sess_cache;
struct kmem_cache *se_ua_cache;
struct kmem_cache *t10_pr_reg_cache;
struct kmem_cache *t10_alua_lu_gp_cache;
struct kmem_cache *t10_alua_lu_gp_mem_cache;
struct kmem_cache *t10_alua_tg_pt_gp_cache;
struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;

static void transport_complete_task_attr(struct se_cmd *cmd);
67
static void transport_handle_queue_full(struct se_cmd *cmd,
68
		struct se_device *dev);
69
static int transport_put_cmd(struct se_cmd *cmd);
70
static void target_complete_ok_work(struct work_struct *work);
71

72
int init_se_kmem_caches(void)
73 74 75 76
{
	se_sess_cache = kmem_cache_create("se_sess_cache",
			sizeof(struct se_session), __alignof__(struct se_session),
			0, NULL);
77 78
	if (!se_sess_cache) {
		pr_err("kmem_cache_create() for struct se_session"
79
				" failed\n");
80
		goto out;
81 82 83 84
	}
	se_ua_cache = kmem_cache_create("se_ua_cache",
			sizeof(struct se_ua), __alignof__(struct se_ua),
			0, NULL);
85 86
	if (!se_ua_cache) {
		pr_err("kmem_cache_create() for struct se_ua failed\n");
87
		goto out_free_sess_cache;
88 89 90 91
	}
	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
			sizeof(struct t10_pr_registration),
			__alignof__(struct t10_pr_registration), 0, NULL);
92 93
	if (!t10_pr_reg_cache) {
		pr_err("kmem_cache_create() for struct t10_pr_registration"
94
				" failed\n");
95
		goto out_free_ua_cache;
96 97 98 99
	}
	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
			0, NULL);
100 101
	if (!t10_alua_lu_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102
				" failed\n");
103
		goto out_free_pr_reg_cache;
104 105 106 107
	}
	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
			sizeof(struct t10_alua_lu_gp_member),
			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 109
	if (!t10_alua_lu_gp_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110
				"cache failed\n");
111
		goto out_free_lu_gp_cache;
112 113 114 115
	}
	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
			sizeof(struct t10_alua_tg_pt_gp),
			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 117
	if (!t10_alua_tg_pt_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118
				"cache failed\n");
119
		goto out_free_lu_gp_mem_cache;
120 121 122 123 124 125
	}
	t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
			"t10_alua_tg_pt_gp_mem_cache",
			sizeof(struct t10_alua_tg_pt_gp_member),
			__alignof__(struct t10_alua_tg_pt_gp_member),
			0, NULL);
126 127
	if (!t10_alua_tg_pt_gp_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
128
				"mem_t failed\n");
129
		goto out_free_tg_pt_gp_cache;
130 131
	}

132 133 134 135 136
	target_completion_wq = alloc_workqueue("target_completion",
					       WQ_MEM_RECLAIM, 0);
	if (!target_completion_wq)
		goto out_free_tg_pt_gp_mem_cache;

137
	return 0;
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

out_free_tg_pt_gp_mem_cache:
	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
out_free_tg_pt_gp_cache:
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
out_free_lu_gp_mem_cache:
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
out_free_lu_gp_cache:
	kmem_cache_destroy(t10_alua_lu_gp_cache);
out_free_pr_reg_cache:
	kmem_cache_destroy(t10_pr_reg_cache);
out_free_ua_cache:
	kmem_cache_destroy(se_ua_cache);
out_free_sess_cache:
	kmem_cache_destroy(se_sess_cache);
153
out:
154
	return -ENOMEM;
155 156
}

157
void release_se_kmem_caches(void)
158
{
159
	destroy_workqueue(target_completion_wq);
160 161 162 163 164 165 166 167 168
	kmem_cache_destroy(se_sess_cache);
	kmem_cache_destroy(se_ua_cache);
	kmem_cache_destroy(t10_pr_reg_cache);
	kmem_cache_destroy(t10_alua_lu_gp_cache);
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
}

169 170 171
/* This code ensures unique mib indexes are handed out. */
static DEFINE_SPINLOCK(scsi_mib_index_lock);
static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
172 173 174 175 176 177 178 179

/*
 * Allocate a new row index for the entry type specified
 */
u32 scsi_get_new_index(scsi_index_t type)
{
	u32 new_index;

180
	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
181

182 183 184
	spin_lock(&scsi_mib_index_lock);
	new_index = ++scsi_mib_index[type];
	spin_unlock(&scsi_mib_index_lock);
185 186 187 188

	return new_index;
}

189
void transport_subsystem_check_init(void)
190 191
{
	int ret;
192
	static int sub_api_initialized;
193

194 195 196
	if (sub_api_initialized)
		return;

197 198
	ret = request_module("target_core_iblock");
	if (ret != 0)
199
		pr_err("Unable to load target_core_iblock\n");
200 201 202

	ret = request_module("target_core_file");
	if (ret != 0)
203
		pr_err("Unable to load target_core_file\n");
204 205 206

	ret = request_module("target_core_pscsi");
	if (ret != 0)
207
		pr_err("Unable to load target_core_pscsi\n");
208

209
	sub_api_initialized = 1;
210 211 212 213 214 215 216
}

struct se_session *transport_init_session(void)
{
	struct se_session *se_sess;

	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
217 218
	if (!se_sess) {
		pr_err("Unable to allocate struct se_session from"
219 220 221 222 223
				" se_sess_cache\n");
		return ERR_PTR(-ENOMEM);
	}
	INIT_LIST_HEAD(&se_sess->sess_list);
	INIT_LIST_HEAD(&se_sess->sess_acl_list);
224
	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
225
	INIT_LIST_HEAD(&se_sess->sess_wait_list);
226
	spin_lock_init(&se_sess->sess_cmd_lock);
227
	kref_init(&se_sess->sess_kref);
228 229 230 231 232

	return se_sess;
}
EXPORT_SYMBOL(transport_init_session);

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
int transport_alloc_session_tags(struct se_session *se_sess,
			         unsigned int tag_num, unsigned int tag_size)
{
	int rc;

	se_sess->sess_cmd_map = kzalloc(tag_num * tag_size, GFP_KERNEL);
	if (!se_sess->sess_cmd_map) {
		pr_err("Unable to allocate se_sess->sess_cmd_map\n");
		return -ENOMEM;
	}

	rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
	if (rc < 0) {
		pr_err("Unable to init se_sess->sess_tag_pool,"
			" tag_num: %u\n", tag_num);
		kfree(se_sess->sess_cmd_map);
		se_sess->sess_cmd_map = NULL;
		return -ENOMEM;
	}

	return 0;
}
EXPORT_SYMBOL(transport_alloc_session_tags);

struct se_session *transport_init_session_tags(unsigned int tag_num,
					       unsigned int tag_size)
{
	struct se_session *se_sess;
	int rc;

	se_sess = transport_init_session();
	if (IS_ERR(se_sess))
		return se_sess;

	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
	if (rc < 0) {
		transport_free_session(se_sess);
		return ERR_PTR(-ENOMEM);
	}

	return se_sess;
}
EXPORT_SYMBOL(transport_init_session_tags);

277
/*
278
 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
 */
void __transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
	unsigned char buf[PR_REG_ISID_LEN];

	se_sess->se_tpg = se_tpg;
	se_sess->fabric_sess_ptr = fabric_sess_ptr;
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
	 *
	 * Only set for struct se_session's that will actually be moving I/O.
	 * eg: *NOT* discovery sessions.
	 */
	if (se_nacl) {
		/*
		 * If the fabric module supports an ISID based TransportID,
		 * save this value in binary from the fabric I_T Nexus now.
		 */
301
		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
302
			memset(&buf[0], 0, PR_REG_ISID_LEN);
303
			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
304 305 306
					&buf[0], PR_REG_ISID_LEN);
			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
		}
307 308
		kref_get(&se_nacl->acl_kref);

309 310 311 312 313 314 315 316 317 318 319 320 321
		spin_lock_irq(&se_nacl->nacl_sess_lock);
		/*
		 * The se_nacl->nacl_sess pointer will be set to the
		 * last active I_T Nexus for each struct se_node_acl.
		 */
		se_nacl->nacl_sess = se_sess;

		list_add_tail(&se_sess->sess_acl_list,
			      &se_nacl->acl_sess_list);
		spin_unlock_irq(&se_nacl->nacl_sess_lock);
	}
	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);

322
	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
323
		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
324 325 326 327 328 329 330 331 332
}
EXPORT_SYMBOL(__transport_register_session);

void transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
333 334 335
	unsigned long flags;

	spin_lock_irqsave(&se_tpg->session_lock, flags);
336
	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
337
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
338 339 340
}
EXPORT_SYMBOL(transport_register_session);

341
static void target_release_session(struct kref *kref)
342 343 344 345 346 347 348 349 350 351 352 353 354 355
{
	struct se_session *se_sess = container_of(kref,
			struct se_session, sess_kref);
	struct se_portal_group *se_tpg = se_sess->se_tpg;

	se_tpg->se_tpg_tfo->close_session(se_sess);
}

void target_get_session(struct se_session *se_sess)
{
	kref_get(&se_sess->sess_kref);
}
EXPORT_SYMBOL(target_get_session);

356
void target_put_session(struct se_session *se_sess)
357
{
358 359 360 361 362 363
	struct se_portal_group *tpg = se_sess->se_tpg;

	if (tpg->se_tpg_tfo->put_session != NULL) {
		tpg->se_tpg_tfo->put_session(se_sess);
		return;
	}
364
	kref_put(&se_sess->sess_kref, target_release_session);
365 366 367
}
EXPORT_SYMBOL(target_put_session);

368 369 370 371 372 373 374 375 376 377 378 379 380
static void target_complete_nacl(struct kref *kref)
{
	struct se_node_acl *nacl = container_of(kref,
				struct se_node_acl, acl_kref);

	complete(&nacl->acl_free_comp);
}

void target_put_nacl(struct se_node_acl *nacl)
{
	kref_put(&nacl->acl_kref, target_complete_nacl);
}

381 382 383
void transport_deregister_session_configfs(struct se_session *se_sess)
{
	struct se_node_acl *se_nacl;
384
	unsigned long flags;
385 386 387 388
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
	 */
	se_nacl = se_sess->se_node_acl;
389
	if (se_nacl) {
390
		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
391 392
		if (se_nacl->acl_stop == 0)
			list_del(&se_sess->sess_acl_list);
393 394 395 396 397 398 399 400 401 402 403 404
		/*
		 * If the session list is empty, then clear the pointer.
		 * Otherwise, set the struct se_session pointer from the tail
		 * element of the per struct se_node_acl active session list.
		 */
		if (list_empty(&se_nacl->acl_sess_list))
			se_nacl->nacl_sess = NULL;
		else {
			se_nacl->nacl_sess = container_of(
					se_nacl->acl_sess_list.prev,
					struct se_session, sess_acl_list);
		}
405
		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
406 407 408 409 410 411
	}
}
EXPORT_SYMBOL(transport_deregister_session_configfs);

void transport_free_session(struct se_session *se_sess)
{
412 413 414 415
	if (se_sess->sess_cmd_map) {
		percpu_ida_destroy(&se_sess->sess_tag_pool);
		kfree(se_sess->sess_cmd_map);
	}
416 417 418 419 420 421 422
	kmem_cache_free(se_sess_cache, se_sess);
}
EXPORT_SYMBOL(transport_free_session);

void transport_deregister_session(struct se_session *se_sess)
{
	struct se_portal_group *se_tpg = se_sess->se_tpg;
423
	struct target_core_fabric_ops *se_tfo;
424
	struct se_node_acl *se_nacl;
425
	unsigned long flags;
426
	bool comp_nacl = true;
427

428
	if (!se_tpg) {
429 430 431
		transport_free_session(se_sess);
		return;
	}
432
	se_tfo = se_tpg->se_tpg_tfo;
433

434
	spin_lock_irqsave(&se_tpg->session_lock, flags);
435 436 437
	list_del(&se_sess->sess_list);
	se_sess->se_tpg = NULL;
	se_sess->fabric_sess_ptr = NULL;
438
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
439 440 441 442 443 444

	/*
	 * Determine if we need to do extra work for this initiator node's
	 * struct se_node_acl if it had been previously dynamically generated.
	 */
	se_nacl = se_sess->se_node_acl;
445 446 447 448 449 450 451 452 453 454 455 456 457

	spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
	if (se_nacl && se_nacl->dynamic_node_acl) {
		if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
			list_del(&se_nacl->acl_list);
			se_tpg->num_node_acls--;
			spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
			core_tpg_wait_for_nacl_pr_ref(se_nacl);
			core_free_device_list_for_node(se_nacl, se_tpg);
			se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);

			comp_nacl = false;
			spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
458 459
		}
	}
460
	spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
461

462
	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
463
		se_tpg->se_tpg_tfo->get_fabric_name());
464
	/*
465 466 467
	 * If last kref is dropping now for an explict NodeACL, awake sleeping
	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
	 * removal context.
468 469
	 */
	if (se_nacl && comp_nacl == true)
470
		target_put_nacl(se_nacl);
471

472
	transport_free_session(se_sess);
473 474 475 476
}
EXPORT_SYMBOL(transport_deregister_session);

/*
477
 * Called with cmd->t_state_lock held.
478
 */
479
static void target_remove_from_state_list(struct se_cmd *cmd)
480
{
481
	struct se_device *dev = cmd->se_dev;
482 483
	unsigned long flags;

484 485
	if (!dev)
		return;
486

487 488
	if (cmd->transport_state & CMD_T_BUSY)
		return;
489

490 491 492 493
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (cmd->state_active) {
		list_del(&cmd->state_list);
		cmd->state_active = false;
494
	}
495
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
496 497
}

498 499
static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
				    bool write_pending)
500 501 502
{
	unsigned long flags;

503
	spin_lock_irqsave(&cmd->t_state_lock, flags);
504 505 506
	if (write_pending)
		cmd->t_state = TRANSPORT_WRITE_PENDING;

507 508 509 510 511 512 513 514 515
	if (remove_from_lists) {
		target_remove_from_state_list(cmd);

		/*
		 * Clear struct se_cmd->se_lun before the handoff to FE.
		 */
		cmd->se_lun = NULL;
	}

516 517
	/*
	 * Determine if frontend context caller is requesting the stopping of
518
	 * this command for frontend exceptions.
519
	 */
520 521 522
	if (cmd->transport_state & CMD_T_STOP) {
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
			__func__, __LINE__,
523
			cmd->se_tfo->get_task_tag(cmd));
524

525
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
526

527
		complete(&cmd->t_transport_stop_comp);
528 529
		return 1;
	}
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544

	cmd->transport_state &= ~CMD_T_ACTIVE;
	if (remove_from_lists) {
		/*
		 * Some fabric modules like tcm_loop can release
		 * their internally allocated I/O reference now and
		 * struct se_cmd now.
		 *
		 * Fabric modules are expected to return '1' here if the
		 * se_cmd being passed is released at this point,
		 * or zero if not being released.
		 */
		if (cmd->se_tfo->check_stop_free != NULL) {
			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
			return cmd->se_tfo->check_stop_free(cmd);
545
		}
546
	}
547

548
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
549 550 551 552 553
	return 0;
}

static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
{
554
	return transport_cmd_check_stop(cmd, true, false);
555 556 557 558
}

static void transport_lun_remove_cmd(struct se_cmd *cmd)
{
559
	struct se_lun *lun = cmd->se_lun;
560

561
	if (!lun || !cmd->lun_ref_active)
562 563
		return;

564
	percpu_ref_put(&lun->lun_ref);
565 566 567 568 569 570
}

void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
{
	if (transport_cmd_check_stop_to_fabric(cmd))
		return;
571
	if (remove)
572
		transport_put_cmd(cmd);
573 574
}

575 576 577 578
static void target_complete_failure_work(struct work_struct *work)
{
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);

579 580
	transport_generic_request_failure(cmd,
			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
581 582
}

583
/*
584 585
 * Used when asking transport to copy Sense Data from the underlying
 * Linux/SCSI struct scsi_cmnd
586
 */
587
static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
588 589 590 591 592 593
{
	struct se_device *dev = cmd->se_dev;

	WARN_ON(!cmd->se_lun);

	if (!dev)
594
		return NULL;
595

596 597
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
		return NULL;
598

599
	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
600

601
	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
602
		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
603
	return cmd->sense_buffer;
604 605
}

606
void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
607
{
608
	struct se_device *dev = cmd->se_dev;
609
	int success = scsi_status == GOOD;
610 611
	unsigned long flags;

612 613 614
	cmd->scsi_status = scsi_status;


615
	spin_lock_irqsave(&cmd->t_state_lock, flags);
616
	cmd->transport_state &= ~CMD_T_BUSY;
617 618

	if (dev && dev->transport->transport_complete) {
619 620 621 622
		dev->transport->transport_complete(cmd,
				cmd->t_data_sg,
				transport_get_sense_buffer(cmd));
		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
623 624 625 626
			success = 1;
	}

	/*
627
	 * See if we are waiting to complete for an exception condition.
628
	 */
629
	if (cmd->transport_state & CMD_T_REQUEST_STOP) {
630
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
631
		complete(&cmd->task_stop_comp);
632 633
		return;
	}
634 635

	if (!success)
636
		cmd->transport_state |= CMD_T_FAILED;
637

638 639 640 641 642 643 644 645 646 647
	/*
	 * Check for case where an explict ABORT_TASK has been received
	 * and transport_wait_for_tasks() will be waiting for completion..
	 */
	if (cmd->transport_state & CMD_T_ABORTED &&
	    cmd->transport_state & CMD_T_STOP) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		complete(&cmd->t_transport_stop_comp);
		return;
	} else if (cmd->transport_state & CMD_T_FAILED) {
648
		INIT_WORK(&cmd->work, target_complete_failure_work);
649
	} else {
650
		INIT_WORK(&cmd->work, target_complete_ok_work);
651
	}
652 653

	cmd->t_state = TRANSPORT_COMPLETE;
654
	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
655
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
656

657
	queue_work(target_completion_wq, &cmd->work);
658
}
659 660
EXPORT_SYMBOL(target_complete_cmd);

661
static void target_add_to_state_list(struct se_cmd *cmd)
662
{
663 664
	struct se_device *dev = cmd->se_dev;
	unsigned long flags;
665

666 667 668 669
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (!cmd->state_active) {
		list_add_tail(&cmd->state_list, &dev->state_list);
		cmd->state_active = true;
670
	}
671
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
672 673
}

674
/*
675
 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
676
 */
677 678
static void transport_write_pending_qf(struct se_cmd *cmd);
static void transport_complete_qf(struct se_cmd *cmd);
679

680
void target_qf_do_work(struct work_struct *work)
681 682 683
{
	struct se_device *dev = container_of(work, struct se_device,
					qf_work_queue);
684
	LIST_HEAD(qf_cmd_list);
685 686 687
	struct se_cmd *cmd, *cmd_tmp;

	spin_lock_irq(&dev->qf_cmd_lock);
688 689
	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
	spin_unlock_irq(&dev->qf_cmd_lock);
690

691
	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
692 693 694 695
		list_del(&cmd->se_qf_node);
		atomic_dec(&dev->dev_qf_count);
		smp_mb__after_atomic_dec();

696
		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
697
			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
698
			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
699 700
			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
			: "UNKNOWN");
701

702 703 704 705
		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
			transport_write_pending_qf(cmd);
		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
			transport_complete_qf(cmd);
706 707 708
	}
}

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
{
	switch (cmd->data_direction) {
	case DMA_NONE:
		return "NONE";
	case DMA_FROM_DEVICE:
		return "READ";
	case DMA_TO_DEVICE:
		return "WRITE";
	case DMA_BIDIRECTIONAL:
		return "BIDI";
	default:
		break;
	}

	return "UNKNOWN";
}

void transport_dump_dev_state(
	struct se_device *dev,
	char *b,
	int *bl)
{
	*bl += sprintf(b + *bl, "Status: ");
733
	if (dev->export_count)
734
		*bl += sprintf(b + *bl, "ACTIVATED");
735
	else
736 737
		*bl += sprintf(b + *bl, "DEACTIVATED");

738
	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
739
	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
740 741
		dev->dev_attrib.block_size,
		dev->dev_attrib.hw_max_sectors);
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
	*bl += sprintf(b + *bl, "        ");
}

void transport_dump_vpd_proto_id(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int len;

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Protocol Identifier: ");

	switch (vpd->protocol_identifier) {
	case 0x00:
		sprintf(buf+len, "Fibre Channel\n");
		break;
	case 0x10:
		sprintf(buf+len, "Parallel SCSI\n");
		break;
	case 0x20:
		sprintf(buf+len, "SSA\n");
		break;
	case 0x30:
		sprintf(buf+len, "IEEE 1394\n");
		break;
	case 0x40:
		sprintf(buf+len, "SCSI Remote Direct Memory Access"
				" Protocol\n");
		break;
	case 0x50:
		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
		break;
	case 0x60:
		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
		break;
	case 0x70:
		sprintf(buf+len, "Automation/Drive Interface Transport"
				" Protocol\n");
		break;
	case 0x80:
		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n",
				vpd->protocol_identifier);
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
795
		pr_debug("%s", buf);
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
}

void
transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * Check if the Protocol Identifier Valid (PIV) bit is set..
	 *
	 * from spc3r23.pdf section 7.5.1
	 */
	 if (page_83[1] & 0x80) {
		vpd->protocol_identifier = (page_83[0] & 0xf0);
		vpd->protocol_identifier_set = 1;
		transport_dump_vpd_proto_id(vpd, NULL, 0);
	}
}
EXPORT_SYMBOL(transport_set_vpd_proto_id);

int transport_dump_vpd_assoc(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
820 821
	int ret = 0;
	int len;
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Association: ");

	switch (vpd->association) {
	case 0x00:
		sprintf(buf+len, "addressed logical unit\n");
		break;
	case 0x10:
		sprintf(buf+len, "target port\n");
		break;
	case 0x20:
		sprintf(buf+len, "SCSI target device\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
838
		ret = -EINVAL;
839 840 841 842 843 844
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
845
		pr_debug("%s", buf);
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867

	return ret;
}

int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identification association..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 297
	 */
	vpd->association = (page_83[1] & 0x30);
	return transport_dump_vpd_assoc(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_assoc);

int transport_dump_vpd_ident_type(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
868 869
	int ret = 0;
	int len;
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Type: ");

	switch (vpd->device_identifier_type) {
	case 0x00:
		sprintf(buf+len, "Vendor specific\n");
		break;
	case 0x01:
		sprintf(buf+len, "T10 Vendor ID based\n");
		break;
	case 0x02:
		sprintf(buf+len, "EUI-64 based\n");
		break;
	case 0x03:
		sprintf(buf+len, "NAA\n");
		break;
	case 0x04:
		sprintf(buf+len, "Relative target port identifier\n");
		break;
	case 0x08:
		sprintf(buf+len, "SCSI name string\n");
		break;
	default:
		sprintf(buf+len, "Unsupported: 0x%02x\n",
				vpd->device_identifier_type);
896
		ret = -EINVAL;
897 898 899
		break;
	}

900 901 902
	if (p_buf) {
		if (p_buf_len < strlen(buf)+1)
			return -EINVAL;
903
		strncpy(p_buf, buf, p_buf_len);
904
	} else {
905
		pr_debug("%s", buf);
906
	}
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934

	return ret;
}

int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identifier type..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 298
	 */
	vpd->device_identifier_type = (page_83[1] & 0x0f);
	return transport_dump_vpd_ident_type(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident_type);

int transport_dump_vpd_ident(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int ret = 0;

	memset(buf, 0, VPD_TMP_BUF_SIZE);

	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
935 936
		snprintf(buf, sizeof(buf),
			"T10 VPD Binary Device Identifier: %s\n",
937 938 939
			&vpd->device_identifier[0]);
		break;
	case 0x02: /* ASCII */
940 941
		snprintf(buf, sizeof(buf),
			"T10 VPD ASCII Device Identifier: %s\n",
942 943 944
			&vpd->device_identifier[0]);
		break;
	case 0x03: /* UTF-8 */
945 946
		snprintf(buf, sizeof(buf),
			"T10 VPD UTF-8 Device Identifier: %s\n",
947 948 949 950 951
			&vpd->device_identifier[0]);
		break;
	default:
		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
			" 0x%02x", vpd->device_identifier_code_set);
952
		ret = -EINVAL;
953 954 955 956 957 958
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
959
		pr_debug("%s", buf);
960 961 962 963 964 965 966 967

	return ret;
}

int
transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
{
	static const char hex_str[] = "0123456789abcdef";
968
	int j = 0, i = 4; /* offset to start of the identifier */
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000

	/*
	 * The VPD Code Set (encoding)
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 296
	 */
	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
		vpd->device_identifier[j++] =
				hex_str[vpd->device_identifier_type];
		while (i < (4 + page_83[3])) {
			vpd->device_identifier[j++] =
				hex_str[(page_83[i] & 0xf0) >> 4];
			vpd->device_identifier[j++] =
				hex_str[page_83[i] & 0x0f];
			i++;
		}
		break;
	case 0x02: /* ASCII */
	case 0x03: /* UTF-8 */
		while (i < (4 + page_83[3]))
			vpd->device_identifier[j++] = page_83[i++];
		break;
	default:
		break;
	}

	return transport_dump_vpd_ident(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident);

1001 1002
sense_reason_t
target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
{
	struct se_device *dev = cmd->se_dev;

	if (cmd->unknown_data_length) {
		cmd->data_length = size;
	} else if (size != cmd->data_length) {
		pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
				cmd->data_length, size, cmd->t_task_cdb[0]);

		if (cmd->data_direction == DMA_TO_DEVICE) {
			pr_err("Rejecting underflow/overflow"
					" WRITE data\n");
1017
			return TCM_INVALID_CDB_FIELD;
1018 1019 1020 1021 1022
		}
		/*
		 * Reject READ_* or WRITE_* with overflow/underflow for
		 * type SCF_SCSI_DATA_CDB.
		 */
1023
		if (dev->dev_attrib.block_size != 512)  {
1024 1025 1026 1027
			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
				" CDB on non 512-byte sector setup subsystem"
				" plugin: %s\n", dev->transport->name);
			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1028
			return TCM_INVALID_CDB_FIELD;
1029
		}
1030 1031 1032 1033 1034 1035
		/*
		 * For the overflow case keep the existing fabric provided
		 * ->data_length.  Otherwise for the underflow case, reset
		 * ->data_length to the smaller SCSI expected data transfer
		 * length.
		 */
1036 1037 1038 1039 1040 1041
		if (size > cmd->data_length) {
			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
			cmd->residual_count = (size - cmd->data_length);
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = (cmd->data_length - size);
1042
			cmd->data_length = size;
1043 1044 1045 1046 1047 1048 1049
		}
	}

	return 0;

}

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
/*
 * Used by fabric modules containing a local struct se_cmd within their
 * fabric dependent per I/O descriptor.
 */
void transport_init_se_cmd(
	struct se_cmd *cmd,
	struct target_core_fabric_ops *tfo,
	struct se_session *se_sess,
	u32 data_length,
	int data_direction,
	int task_attr,
	unsigned char *sense_buffer)
{
1063
	INIT_LIST_HEAD(&cmd->se_delayed_node);
1064
	INIT_LIST_HEAD(&cmd->se_qf_node);
1065
	INIT_LIST_HEAD(&cmd->se_cmd_list);
1066
	INIT_LIST_HEAD(&cmd->state_list);
1067
	init_completion(&cmd->t_transport_stop_comp);
1068
	init_completion(&cmd->cmd_wait_comp);
1069
	init_completion(&cmd->task_stop_comp);
1070
	spin_lock_init(&cmd->t_state_lock);
1071
	cmd->transport_state = CMD_T_DEV_ACTIVE;
1072 1073 1074 1075 1076 1077 1078

	cmd->se_tfo = tfo;
	cmd->se_sess = se_sess;
	cmd->data_length = data_length;
	cmd->data_direction = data_direction;
	cmd->sam_task_attr = task_attr;
	cmd->sense_buffer = sense_buffer;
1079 1080

	cmd->state_active = false;
1081 1082 1083
}
EXPORT_SYMBOL(transport_init_se_cmd);

1084 1085
static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd *cmd)
1086
{
1087 1088
	struct se_device *dev = cmd->se_dev;

1089 1090 1091 1092
	/*
	 * Check if SAM Task Attribute emulation is enabled for this
	 * struct se_device storage object
	 */
1093
	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1094 1095
		return 0;

1096
	if (cmd->sam_task_attr == MSG_ACA_TAG) {
1097
		pr_debug("SAM Task Attribute ACA"
1098
			" emulation is not supported\n");
1099
		return TCM_INVALID_CDB_FIELD;
1100 1101 1102 1103 1104
	}
	/*
	 * Used to determine when ORDERED commands should go from
	 * Dormant to Active status.
	 */
1105
	cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1106
	smp_mb__after_atomic_inc();
1107
	pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1108
			cmd->se_ordered_id, cmd->sam_task_attr,
1109
			dev->transport->name);
1110 1111 1112
	return 0;
}

1113 1114
sense_reason_t
target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1115
{
1116
	struct se_device *dev = cmd->se_dev;
1117
	sense_reason_t ret;
1118 1119 1120 1121 1122 1123

	/*
	 * Ensure that the received CDB is less than the max (252 + 8) bytes
	 * for VARIABLE_LENGTH_CMD
	 */
	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1124
		pr_err("Received SCSI CDB with command_size: %d that"
1125 1126
			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1127
		return TCM_INVALID_CDB_FIELD;
1128 1129 1130 1131 1132 1133
	}
	/*
	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
	 * allocate the additional extended CDB buffer now..  Otherwise
	 * setup the pointer from __t_task_cdb to t_task_cdb.
	 */
1134 1135
	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1136
						GFP_KERNEL);
1137 1138
		if (!cmd->t_task_cdb) {
			pr_err("Unable to allocate cmd->t_task_cdb"
1139
				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1140
				scsi_command_size(cdb),
1141
				(unsigned long)sizeof(cmd->__t_task_cdb));
1142
			return TCM_OUT_OF_RESOURCES;
1143 1144
		}
	} else
1145
		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1146
	/*
1147
	 * Copy the original CDB into cmd->
1148
	 */
1149
	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1150

1151 1152
	trace_target_sequencer_start(cmd);

1153 1154 1155
	/*
	 * Check for an existing UNIT ATTENTION condition
	 */
1156 1157 1158
	ret = target_scsi3_ua_check(cmd);
	if (ret)
		return ret;
1159

C
Christoph Hellwig 已提交
1160
	ret = target_alua_state_check(cmd);
1161 1162
	if (ret)
		return ret;
1163

1164
	ret = target_check_reservation(cmd);
1165 1166
	if (ret) {
		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1167
		return ret;
1168
	}
1169

1170
	ret = dev->transport->parse_cdb(cmd);
1171 1172 1173 1174 1175
	if (ret)
		return ret;

	ret = transport_check_alloc_task_attr(cmd);
	if (ret)
1176
		return ret;
1177 1178 1179

	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;

1180 1181 1182 1183 1184 1185
	spin_lock(&cmd->se_lun->lun_sep_lock);
	if (cmd->se_lun->lun_sep)
		cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
	spin_unlock(&cmd->se_lun->lun_sep_lock);
	return 0;
}
1186
EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1187

1188 1189 1190 1191 1192 1193 1194
/*
 * Used by fabric module frontends to queue tasks directly.
 * Many only be used from process context only
 */
int transport_handle_cdb_direct(
	struct se_cmd *cmd)
{
1195
	sense_reason_t ret;
1196

1197 1198
	if (!cmd->se_lun) {
		dump_stack();
1199
		pr_err("cmd->se_lun is NULL\n");
1200 1201 1202 1203
		return -EINVAL;
	}
	if (in_interrupt()) {
		dump_stack();
1204
		pr_err("transport_generic_handle_cdb cannot be called"
1205 1206 1207
				" from interrupt context\n");
		return -EINVAL;
	}
1208
	/*
1209 1210 1211
	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
	 * outstanding descriptors are handled correctly during shutdown via
	 * transport_wait_for_tasks()
1212 1213 1214 1215 1216
	 *
	 * Also, we don't take cmd->t_state_lock here as we only expect
	 * this to be called for initial descriptor submission.
	 */
	cmd->t_state = TRANSPORT_NEW_CMD;
1217 1218
	cmd->transport_state |= CMD_T_ACTIVE;

1219 1220 1221 1222 1223 1224
	/*
	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
	 * so follow TRANSPORT_NEW_CMD processing thread context usage
	 * and call transport_generic_request_failure() if necessary..
	 */
	ret = transport_generic_new_cmd(cmd);
1225 1226
	if (ret)
		transport_generic_request_failure(cmd, ret);
1227
	return 0;
1228 1229 1230
}
EXPORT_SYMBOL(transport_handle_cdb_direct);

1231
sense_reason_t
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
{
	if (!sgl || !sgl_count)
		return 0;

	/*
	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
	 * scatterlists already have been set to follow what the fabric
	 * passes for the original expected data transfer length.
	 */
	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
		pr_warn("Rejecting SCSI DATA overflow for fabric using"
			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
		return TCM_INVALID_CDB_FIELD;
	}

	cmd->t_data_sg = sgl;
	cmd->t_data_nents = sgl_count;

	if (sgl_bidi && sgl_bidi_count) {
		cmd->t_bidi_data_sg = sgl_bidi;
		cmd->t_bidi_data_nents = sgl_bidi_count;
	}
	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
	return 0;
}

1260 1261 1262
/*
 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
 * 			 se_cmd + use pre-allocated SGL memory.
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
 * @task_addr: SAM task attribute
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
1273 1274 1275 1276
 * @sgl: struct scatterlist memory for unidirectional mapping
 * @sgl_count: scatterlist count for unidirectional mapping
 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1277
 *
1278 1279 1280 1281
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
1282 1283
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
1284 1285
 */
int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1286
		unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1287 1288 1289
		u32 data_length, int task_attr, int data_dir, int flags,
		struct scatterlist *sgl, u32 sgl_count,
		struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1290 1291
{
	struct se_portal_group *se_tpg;
1292 1293
	sense_reason_t rc;
	int ret;
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);
	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
	BUG_ON(in_interrupt());
	/*
	 * Initialize se_cmd for target operation.  From this point
	 * exceptions are handled by sending exception status via
	 * target_core_fabric_ops->queue_status() callback
	 */
	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
				data_length, data_dir, task_attr, sense);
1306 1307
	if (flags & TARGET_SCF_UNKNOWN_SIZE)
		se_cmd->unknown_data_length = 1;
1308 1309 1310 1311 1312 1313
	/*
	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
	 * kref_put() to happen during fabric packet acknowledgement.
	 */
1314 1315 1316
	ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
	if (ret)
		return ret;
1317 1318 1319 1320 1321 1322 1323 1324
	/*
	 * Signal bidirectional data payloads to target-core
	 */
	if (flags & TARGET_SCF_BIDI_OP)
		se_cmd->se_cmd_flags |= SCF_BIDI;
	/*
	 * Locate se_lun pointer and attach it to struct se_cmd
	 */
1325 1326 1327
	rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
	if (rc) {
		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1328
		target_put_sess_cmd(se_sess, se_cmd);
1329
		return 0;
1330
	}
1331

1332
	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1333
	if (rc != 0) {
1334
		transport_generic_request_failure(se_cmd, rc);
1335
		return 0;
1336
	}
1337 1338 1339 1340 1341 1342 1343 1344
	/*
	 * When a non zero sgl_count has been passed perform SGL passthrough
	 * mapping for pre-allocated fabric memory instead of having target
	 * core perform an internal SGL allocation..
	 */
	if (sgl_count != 0) {
		BUG_ON(!sgl);

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
		/*
		 * A work-around for tcm_loop as some userspace code via
		 * scsi-generic do not memset their associated read buffers,
		 * so go ahead and do that here for type non-data CDBs.  Also
		 * note that this is currently guaranteed to be a single SGL
		 * for this case by target core in target_setup_cmd_from_cdb()
		 * -> transport_generic_cmd_sequencer().
		 */
		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
		     se_cmd->data_direction == DMA_FROM_DEVICE) {
			unsigned char *buf = NULL;

			if (sgl)
				buf = kmap(sg_page(sgl)) + sgl->offset;

			if (buf) {
				memset(buf, 0, sgl->length);
				kunmap(sg_page(sgl));
			}
		}

1366 1367 1368
		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
				sgl_bidi, sgl_bidi_count);
		if (rc != 0) {
1369
			transport_generic_request_failure(se_cmd, rc);
1370 1371 1372
			return 0;
		}
	}
1373 1374 1375 1376 1377 1378
	/*
	 * Check if we need to delay processing because of ALUA
	 * Active/NonOptimized primary access state..
	 */
	core_alua_check_nonop_delay(se_cmd);

1379
	transport_handle_cdb_direct(se_cmd);
1380
	return 0;
1381
}
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
EXPORT_SYMBOL(target_submit_cmd_map_sgls);

/*
 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
 * @task_addr: SAM task attribute
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
 *
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
 *
 * It also assumes interal target core SGL memory allocation.
 */
int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
		unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
		u32 data_length, int task_attr, int data_dir, int flags)
{
	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
			unpacked_lun, data_length, task_attr, data_dir,
			flags, NULL, 0, NULL, 0);
}
1414 1415
EXPORT_SYMBOL(target_submit_cmd);

1416 1417 1418 1419 1420 1421
static void target_complete_tmr_failure(struct work_struct *work)
{
	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);

	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1422 1423

	transport_cmd_check_stop_to_fabric(se_cmd);
1424 1425
}

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
/**
 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
 *                     for TMR CDBs
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @fabric_context: fabric context for TMR req
 * @tm_type: Type of TM request
1436 1437
 * @gfp: gfp type for caller
 * @tag: referenced task tag for TMR_ABORT_TASK
1438
 * @flags: submit cmd flags
1439 1440 1441 1442
 *
 * Callable from all contexts.
 **/

1443
int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1444
		unsigned char *sense, u32 unpacked_lun,
1445 1446
		void *fabric_tmr_ptr, unsigned char tm_type,
		gfp_t gfp, unsigned int tag, int flags)
1447 1448 1449 1450 1451 1452 1453 1454 1455
{
	struct se_portal_group *se_tpg;
	int ret;

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);

	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
			      0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1456 1457 1458 1459
	/*
	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
	 * allocation failure.
	 */
1460
	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1461 1462
	if (ret < 0)
		return -ENOMEM;
1463

1464 1465 1466
	if (tm_type == TMR_ABORT_TASK)
		se_cmd->se_tmr_req->ref_task_tag = tag;

1467
	/* See target_submit_cmd for commentary */
1468 1469 1470 1471 1472
	ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
	if (ret) {
		core_tmr_release_req(se_cmd->se_tmr_req);
		return ret;
	}
1473 1474 1475

	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
	if (ret) {
1476 1477 1478 1479 1480 1481
		/*
		 * For callback during failure handling, push this work off
		 * to process context with TMR_LUN_DOES_NOT_EXIST status.
		 */
		INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
		schedule_work(&se_cmd->work);
1482
		return 0;
1483 1484
	}
	transport_generic_handle_tmr(se_cmd);
1485
	return 0;
1486 1487 1488
}
EXPORT_SYMBOL(target_submit_tmr);

1489
/*
1490
 * If the cmd is active, request it to be stopped and sleep until it
1491 1492
 * has completed.
 */
1493
bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1494 1495 1496
{
	bool was_active = false;

1497 1498
	if (cmd->transport_state & CMD_T_BUSY) {
		cmd->transport_state |= CMD_T_REQUEST_STOP;
1499 1500
		spin_unlock_irqrestore(&cmd->t_state_lock, *flags);

1501 1502 1503
		pr_debug("cmd %p waiting to complete\n", cmd);
		wait_for_completion(&cmd->task_stop_comp);
		pr_debug("cmd %p stopped successfully\n", cmd);
1504 1505

		spin_lock_irqsave(&cmd->t_state_lock, *flags);
1506 1507
		cmd->transport_state &= ~CMD_T_REQUEST_STOP;
		cmd->transport_state &= ~CMD_T_BUSY;
1508 1509 1510 1511 1512 1513
		was_active = true;
	}

	return was_active;
}

1514 1515 1516
/*
 * Handle SAM-esque emulation for generic transport request failures.
 */
1517 1518
void transport_generic_request_failure(struct se_cmd *cmd,
		sense_reason_t sense_reason)
1519
{
1520 1521
	int ret = 0;

1522
	pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1523
		" CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1524
		cmd->t_task_cdb[0]);
1525
	pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1526
		cmd->se_tfo->get_cmd_state(cmd),
1527
		cmd->t_state, sense_reason);
1528
	pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1529 1530 1531
		(cmd->transport_state & CMD_T_ACTIVE) != 0,
		(cmd->transport_state & CMD_T_STOP) != 0,
		(cmd->transport_state & CMD_T_SENT) != 0);
1532 1533 1534 1535

	/*
	 * For SAM Task Attribute emulation for failed struct se_cmd
	 */
1536
	transport_complete_task_attr(cmd);
1537 1538 1539 1540 1541 1542 1543
	/*
	 * Handle special case for COMPARE_AND_WRITE failure, where the
	 * callback is expected to drop the per device ->caw_mutex.
	 */
	if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
	     cmd->transport_complete_callback)
		cmd->transport_complete_callback(cmd);
1544

1545
	switch (sense_reason) {
1546 1547 1548 1549
	case TCM_NON_EXISTENT_LUN:
	case TCM_UNSUPPORTED_SCSI_OPCODE:
	case TCM_INVALID_CDB_FIELD:
	case TCM_INVALID_PARAMETER_LIST:
1550
	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1551 1552 1553
	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
	case TCM_UNKNOWN_MODE_PAGE:
	case TCM_WRITE_PROTECTED:
1554
	case TCM_ADDRESS_OUT_OF_RANGE:
1555 1556 1557
	case TCM_CHECK_CONDITION_ABORT_CMD:
	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
	case TCM_CHECK_CONDITION_NOT_READY:
1558
		break;
1559 1560 1561
	case TCM_OUT_OF_RESOURCES:
		sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		break;
1562
	case TCM_RESERVATION_CONFLICT:
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
		/*
		 * No SENSE Data payload for this case, set SCSI Status
		 * and queue the response to $FABRIC_MOD.
		 *
		 * Uses linux/include/scsi/scsi.h SAM status codes defs
		 */
		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
		/*
		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
		 * CONFLICT STATUS.
		 *
		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
		 */
1577
		if (cmd->se_sess &&
1578
		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1579
			core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1580 1581 1582
				cmd->orig_fe_lun, 0x2C,
				ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);

1583 1584
		trace_target_cmd_complete(cmd);
		ret = cmd->se_tfo-> queue_status(cmd);
1585
		if (ret == -EAGAIN || ret == -ENOMEM)
1586
			goto queue_full;
1587 1588
		goto check_stop;
	default:
1589
		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1590 1591
			cmd->t_task_cdb[0], sense_reason);
		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1592 1593
		break;
	}
1594

1595
	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1596 1597
	if (ret == -EAGAIN || ret == -ENOMEM)
		goto queue_full;
1598

1599 1600
check_stop:
	transport_lun_remove_cmd(cmd);
1601
	if (!transport_cmd_check_stop_to_fabric(cmd))
1602
		;
1603 1604 1605
	return;

queue_full:
1606 1607
	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
	transport_handle_queue_full(cmd, cmd->se_dev);
1608
}
1609
EXPORT_SYMBOL(transport_generic_request_failure);
1610

1611
void __target_execute_cmd(struct se_cmd *cmd)
1612
{
1613
	sense_reason_t ret;
1614

1615 1616 1617 1618 1619 1620
	if (cmd->execute_cmd) {
		ret = cmd->execute_cmd(cmd);
		if (ret) {
			spin_lock_irq(&cmd->t_state_lock);
			cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
			spin_unlock_irq(&cmd->t_state_lock);
1621

1622 1623
			transport_generic_request_failure(cmd, ret);
		}
1624 1625 1626
	}
}

1627
static bool target_handle_task_attr(struct se_cmd *cmd)
1628 1629 1630
{
	struct se_device *dev = cmd->se_dev;

1631 1632
	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
		return false;
1633

1634
	/*
L
Lucas De Marchi 已提交
1635
	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1636 1637
	 * to allow the passed struct se_cmd list of tasks to the front of the list.
	 */
1638 1639 1640 1641 1642
	switch (cmd->sam_task_attr) {
	case MSG_HEAD_TAG:
		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
			 "se_ordered_id: %u\n",
			 cmd->t_task_cdb[0], cmd->se_ordered_id);
1643
		return false;
1644 1645
	case MSG_ORDERED_TAG:
		atomic_inc(&dev->dev_ordered_sync);
1646 1647
		smp_mb__after_atomic_inc();

1648 1649 1650 1651
		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
			 " se_ordered_id: %u\n",
			 cmd->t_task_cdb[0], cmd->se_ordered_id);

1652
		/*
1653 1654
		 * Execute an ORDERED command if no other older commands
		 * exist that need to be completed first.
1655
		 */
1656
		if (!atomic_read(&dev->simple_cmds))
1657
			return false;
1658 1659
		break;
	default:
1660 1661 1662
		/*
		 * For SIMPLE and UNTAGGED Task Attribute commands
		 */
1663
		atomic_inc(&dev->simple_cmds);
1664
		smp_mb__after_atomic_inc();
1665
		break;
1666
	}
1667

1668 1669
	if (atomic_read(&dev->dev_ordered_sync) == 0)
		return false;
1670

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	spin_lock(&dev->delayed_cmd_lock);
	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
	spin_unlock(&dev->delayed_cmd_lock);

	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
		" delayed CMD list, se_ordered_id: %u\n",
		cmd->t_task_cdb[0], cmd->sam_task_attr,
		cmd->se_ordered_id);
	return true;
}

void target_execute_cmd(struct se_cmd *cmd)
{
	/*
	 * If the received CDB has aleady been aborted stop processing it here.
	 */
1687
	if (transport_check_aborted_status(cmd, 1))
1688
		return;
1689

1690 1691 1692 1693
	/*
	 * Determine if frontend context caller is requesting the stopping of
	 * this command for frontend exceptions.
	 */
1694
	spin_lock_irq(&cmd->t_state_lock);
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	if (cmd->transport_state & CMD_T_STOP) {
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
			__func__, __LINE__,
			cmd->se_tfo->get_task_tag(cmd));

		spin_unlock_irq(&cmd->t_state_lock);
		complete(&cmd->t_transport_stop_comp);
		return;
	}

	cmd->t_state = TRANSPORT_PROCESSING;
1706
	cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1707 1708
	spin_unlock_irq(&cmd->t_state_lock);

1709 1710 1711 1712 1713 1714 1715 1716
	if (target_handle_task_attr(cmd)) {
		spin_lock_irq(&cmd->t_state_lock);
		cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
		spin_unlock_irq(&cmd->t_state_lock);
		return;
	}

	__target_execute_cmd(cmd);
1717
}
1718
EXPORT_SYMBOL(target_execute_cmd);
1719

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
/*
 * Process all commands up to the last received ORDERED task attribute which
 * requires another blocking boundary
 */
static void target_restart_delayed_cmds(struct se_device *dev)
{
	for (;;) {
		struct se_cmd *cmd;

		spin_lock(&dev->delayed_cmd_lock);
		if (list_empty(&dev->delayed_cmd_list)) {
			spin_unlock(&dev->delayed_cmd_lock);
			break;
		}

		cmd = list_entry(dev->delayed_cmd_list.next,
				 struct se_cmd, se_delayed_node);
		list_del(&cmd->se_delayed_node);
		spin_unlock(&dev->delayed_cmd_lock);

		__target_execute_cmd(cmd);

		if (cmd->sam_task_attr == MSG_ORDERED_TAG)
			break;
	}
}

1747
/*
1748
 * Called from I/O completion to determine which dormant/delayed
1749 1750 1751 1752
 * and ordered cmds need to have their tasks added to the execution queue.
 */
static void transport_complete_task_attr(struct se_cmd *cmd)
{
1753
	struct se_device *dev = cmd->se_dev;
1754

1755 1756 1757
	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
		return;

1758
	if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1759 1760 1761
		atomic_dec(&dev->simple_cmds);
		smp_mb__after_atomic_dec();
		dev->dev_cur_ordered_id++;
1762
		pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1763 1764
			" SIMPLE: %u\n", dev->dev_cur_ordered_id,
			cmd->se_ordered_id);
1765
	} else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1766
		dev->dev_cur_ordered_id++;
1767
		pr_debug("Incremented dev_cur_ordered_id: %u for"
1768 1769
			" HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
			cmd->se_ordered_id);
1770
	} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1771 1772 1773 1774
		atomic_dec(&dev->dev_ordered_sync);
		smp_mb__after_atomic_dec();

		dev->dev_cur_ordered_id++;
1775
		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1776 1777 1778
			" %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
	}

1779
	target_restart_delayed_cmds(dev);
1780 1781
}

1782
static void transport_complete_qf(struct se_cmd *cmd)
1783 1784 1785
{
	int ret = 0;

1786
	transport_complete_task_attr(cmd);
1787 1788

	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1789
		trace_target_cmd_complete(cmd);
1790 1791 1792 1793
		ret = cmd->se_tfo->queue_status(cmd);
		if (ret)
			goto out;
	}
1794 1795 1796

	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
1797
		trace_target_cmd_complete(cmd);
1798 1799 1800
		ret = cmd->se_tfo->queue_data_in(cmd);
		break;
	case DMA_TO_DEVICE:
1801
		if (cmd->se_cmd_flags & SCF_BIDI) {
1802 1803
			ret = cmd->se_tfo->queue_data_in(cmd);
			if (ret < 0)
1804
				break;
1805 1806 1807
		}
		/* Fall through for DMA_TO_DEVICE */
	case DMA_NONE:
1808
		trace_target_cmd_complete(cmd);
1809 1810 1811 1812 1813 1814
		ret = cmd->se_tfo->queue_status(cmd);
		break;
	default:
		break;
	}

1815 1816 1817 1818 1819 1820 1821
out:
	if (ret < 0) {
		transport_handle_queue_full(cmd, cmd->se_dev);
		return;
	}
	transport_lun_remove_cmd(cmd);
	transport_cmd_check_stop_to_fabric(cmd);
1822 1823 1824 1825
}

static void transport_handle_queue_full(
	struct se_cmd *cmd,
1826
	struct se_device *dev)
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
{
	spin_lock_irq(&dev->qf_cmd_lock);
	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
	atomic_inc(&dev->dev_qf_count);
	smp_mb__after_atomic_inc();
	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);

	schedule_work(&cmd->se_dev->qf_work_queue);
}

1837
static void target_complete_ok_work(struct work_struct *work)
1838
{
1839
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1840
	int ret;
1841

1842 1843 1844 1845 1846
	/*
	 * Check if we need to move delayed/dormant tasks from cmds on the
	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
	 * Attribute.
	 */
1847 1848
	transport_complete_task_attr(cmd);

1849 1850 1851 1852 1853 1854 1855
	/*
	 * Check to schedule QUEUE_FULL work, or execute an existing
	 * cmd->transport_qf_callback()
	 */
	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
		schedule_work(&cmd->se_dev->qf_work_queue);

1856
	/*
1857
	 * Check if we need to send a sense buffer from
1858 1859 1860
	 * the struct se_cmd in question.
	 */
	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1861 1862 1863 1864 1865 1866 1867 1868 1869
		WARN_ON(!cmd->scsi_status);
		ret = transport_send_check_condition_and_sense(
					cmd, 0, 1);
		if (ret == -EAGAIN || ret == -ENOMEM)
			goto queue_full;

		transport_lun_remove_cmd(cmd);
		transport_cmd_check_stop_to_fabric(cmd);
		return;
1870 1871
	}
	/*
L
Lucas De Marchi 已提交
1872
	 * Check for a callback, used by amongst other things
1873
	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
1874
	 */
1875 1876 1877 1878
	if (cmd->transport_complete_callback) {
		sense_reason_t rc;

		rc = cmd->transport_complete_callback(cmd);
1879
		if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) {
1880
			return;
1881 1882 1883 1884 1885
		} else if (rc) {
			ret = transport_send_check_condition_and_sense(cmd,
						rc, 0);
			if (ret == -EAGAIN || ret == -ENOMEM)
				goto queue_full;
1886

1887 1888 1889 1890
			transport_lun_remove_cmd(cmd);
			transport_cmd_check_stop_to_fabric(cmd);
			return;
		}
1891
	}
1892 1893 1894 1895

	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
		spin_lock(&cmd->se_lun->lun_sep_lock);
1896 1897
		if (cmd->se_lun->lun_sep) {
			cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1898 1899 1900 1901
					cmd->data_length;
		}
		spin_unlock(&cmd->se_lun->lun_sep_lock);

1902
		trace_target_cmd_complete(cmd);
1903
		ret = cmd->se_tfo->queue_data_in(cmd);
1904
		if (ret == -EAGAIN || ret == -ENOMEM)
1905
			goto queue_full;
1906 1907 1908
		break;
	case DMA_TO_DEVICE:
		spin_lock(&cmd->se_lun->lun_sep_lock);
1909 1910
		if (cmd->se_lun->lun_sep) {
			cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
1911 1912 1913 1914 1915 1916
				cmd->data_length;
		}
		spin_unlock(&cmd->se_lun->lun_sep_lock);
		/*
		 * Check if we need to send READ payload for BIDI-COMMAND
		 */
1917
		if (cmd->se_cmd_flags & SCF_BIDI) {
1918
			spin_lock(&cmd->se_lun->lun_sep_lock);
1919 1920
			if (cmd->se_lun->lun_sep) {
				cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1921 1922 1923
					cmd->data_length;
			}
			spin_unlock(&cmd->se_lun->lun_sep_lock);
1924
			ret = cmd->se_tfo->queue_data_in(cmd);
1925
			if (ret == -EAGAIN || ret == -ENOMEM)
1926
				goto queue_full;
1927 1928 1929 1930
			break;
		}
		/* Fall through for DMA_TO_DEVICE */
	case DMA_NONE:
1931
		trace_target_cmd_complete(cmd);
1932
		ret = cmd->se_tfo->queue_status(cmd);
1933
		if (ret == -EAGAIN || ret == -ENOMEM)
1934
			goto queue_full;
1935 1936 1937 1938 1939 1940 1941
		break;
	default:
		break;
	}

	transport_lun_remove_cmd(cmd);
	transport_cmd_check_stop_to_fabric(cmd);
1942 1943 1944
	return;

queue_full:
1945
	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
1946
		" data_direction: %d\n", cmd, cmd->data_direction);
1947 1948
	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
	transport_handle_queue_full(cmd, cmd->se_dev);
1949 1950
}

1951
static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
1952
{
1953 1954
	struct scatterlist *sg;
	int count;
1955

1956 1957
	for_each_sg(sgl, sg, nents, count)
		__free_page(sg_page(sg));
1958

1959 1960
	kfree(sgl);
}
1961

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
{
	/*
	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
	 * emulation, and free + reset pointers if necessary..
	 */
	if (!cmd->t_data_sg_orig)
		return;

	kfree(cmd->t_data_sg);
	cmd->t_data_sg = cmd->t_data_sg_orig;
	cmd->t_data_sg_orig = NULL;
	cmd->t_data_nents = cmd->t_data_nents_orig;
	cmd->t_data_nents_orig = 0;
}

1978 1979
static inline void transport_free_pages(struct se_cmd *cmd)
{
1980 1981
	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
		transport_reset_sgl_orig(cmd);
1982
		return;
1983 1984
	}
	transport_reset_sgl_orig(cmd);
1985 1986

	transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
1987 1988
	cmd->t_data_sg = NULL;
	cmd->t_data_nents = 0;
1989

1990
	transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
1991 1992
	cmd->t_bidi_data_sg = NULL;
	cmd->t_bidi_data_nents = 0;
1993 1994
}

C
Christoph Hellwig 已提交
1995 1996 1997 1998 1999 2000 2001
/**
 * transport_release_cmd - free a command
 * @cmd:       command to free
 *
 * This routine unconditionally frees a command, and reference counting
 * or list removal must be done in the caller.
 */
2002
static int transport_release_cmd(struct se_cmd *cmd)
C
Christoph Hellwig 已提交
2003 2004 2005
{
	BUG_ON(!cmd->se_tfo);

2006
	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
C
Christoph Hellwig 已提交
2007 2008 2009 2010
		core_tmr_release_req(cmd->se_tmr_req);
	if (cmd->t_task_cdb != cmd->__t_task_cdb)
		kfree(cmd->t_task_cdb);
	/*
2011 2012
	 * If this cmd has been setup with target_get_sess_cmd(), drop
	 * the kref and call ->release_cmd() in kref callback.
C
Christoph Hellwig 已提交
2013
	 */
2014
	return target_put_sess_cmd(cmd->se_sess, cmd);
C
Christoph Hellwig 已提交
2015 2016
}

2017 2018 2019 2020 2021 2022
/**
 * transport_put_cmd - release a reference to a command
 * @cmd:       command to release
 *
 * This routine releases our reference to the command and frees it if possible.
 */
2023
static int transport_put_cmd(struct se_cmd *cmd)
2024 2025
{
	transport_free_pages(cmd);
2026
	return transport_release_cmd(cmd);
2027 2028
}

2029
void *transport_kmap_data_sg(struct se_cmd *cmd)
2030
{
2031
	struct scatterlist *sg = cmd->t_data_sg;
2032 2033
	struct page **pages;
	int i;
2034 2035

	/*
2036 2037 2038
	 * We need to take into account a possible offset here for fabrics like
	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2039
	 */
2040 2041
	if (!cmd->t_data_nents)
		return NULL;
2042 2043 2044

	BUG_ON(!sg);
	if (cmd->t_data_nents == 1)
2045 2046 2047 2048
		return kmap(sg_page(sg)) + sg->offset;

	/* >1 page. use vmap */
	pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2049
	if (!pages)
2050 2051 2052 2053 2054 2055 2056 2057 2058
		return NULL;

	/* convert sg[] to pages[] */
	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
		pages[i] = sg_page(sg);
	}

	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
	kfree(pages);
2059
	if (!cmd->t_data_vmap)
2060 2061 2062
		return NULL;

	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2063
}
2064
EXPORT_SYMBOL(transport_kmap_data_sg);
2065

2066
void transport_kunmap_data_sg(struct se_cmd *cmd)
2067
{
2068
	if (!cmd->t_data_nents) {
2069
		return;
2070
	} else if (cmd->t_data_nents == 1) {
2071
		kunmap(sg_page(cmd->t_data_sg));
2072 2073
		return;
	}
2074 2075 2076

	vunmap(cmd->t_data_vmap);
	cmd->t_data_vmap = NULL;
2077
}
2078
EXPORT_SYMBOL(transport_kunmap_data_sg);
2079

2080
int
2081 2082
target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
		 bool zero_page)
2083
{
2084
	struct scatterlist *sg;
2085
	struct page *page;
2086 2087
	gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
	unsigned int nent;
2088
	int i = 0;
2089

2090 2091 2092
	nent = DIV_ROUND_UP(length, PAGE_SIZE);
	sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
	if (!sg)
2093
		return -ENOMEM;
2094

2095
	sg_init_table(sg, nent);
2096

2097 2098
	while (length) {
		u32 page_len = min_t(u32, length, PAGE_SIZE);
2099
		page = alloc_page(GFP_KERNEL | zero_flag);
2100 2101
		if (!page)
			goto out;
2102

2103
		sg_set_page(&sg[i], page, page_len, 0);
2104 2105
		length -= page_len;
		i++;
2106
	}
2107 2108
	*sgl = sg;
	*nents = nent;
2109 2110
	return 0;

2111
out:
2112
	while (i > 0) {
2113
		i--;
2114
		__free_page(sg_page(&sg[i]));
2115
	}
2116
	kfree(sg);
2117
	return -ENOMEM;
2118 2119
}

2120
/*
2121 2122 2123
 * Allocate any required resources to execute the command.  For writes we
 * might not have the payload yet, so notify the fabric via a call to
 * ->write_pending instead. Otherwise place it on the execution queue.
2124
 */
2125 2126
sense_reason_t
transport_generic_new_cmd(struct se_cmd *cmd)
2127 2128 2129 2130 2131 2132
{
	int ret = 0;

	/*
	 * Determine is the TCM fabric module has already allocated physical
	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2133
	 * beforehand.
2134
	 */
2135 2136
	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
	    cmd->data_length) {
2137 2138
		bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
		if ((cmd->se_cmd_flags & SCF_BIDI) ||
		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
			u32 bidi_length;

			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
				bidi_length = cmd->t_task_nolb *
					      cmd->se_dev->dev_attrib.block_size;
			else
				bidi_length = cmd->data_length;

			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
					       &cmd->t_bidi_data_nents,
					       bidi_length, zero_flag);
			if (ret < 0)
				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		}

2156 2157
		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
				       cmd->data_length, zero_flag);
2158
		if (ret < 0)
2159
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2160 2161
	}
	/*
2162 2163 2164
	 * If this command is not a write we can execute it right here,
	 * for write buffers we need to notify the fabric driver first
	 * and let it call back once the write buffers are ready.
2165
	 */
2166
	target_add_to_state_list(cmd);
2167 2168 2169 2170
	if (cmd->data_direction != DMA_TO_DEVICE) {
		target_execute_cmd(cmd);
		return 0;
	}
2171
	transport_cmd_check_stop(cmd, false, true);
2172 2173 2174 2175 2176

	ret = cmd->se_tfo->write_pending(cmd);
	if (ret == -EAGAIN || ret == -ENOMEM)
		goto queue_full;

2177 2178 2179
	/* fabric drivers should only return -EAGAIN or -ENOMEM as error */
	WARN_ON(ret);

2180
	return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2181

2182 2183 2184 2185 2186
queue_full:
	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
	cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
	transport_handle_queue_full(cmd, cmd->se_dev);
	return 0;
2187
}
2188
EXPORT_SYMBOL(transport_generic_new_cmd);
2189

2190
static void transport_write_pending_qf(struct se_cmd *cmd)
2191
{
2192 2193 2194 2195
	int ret;

	ret = cmd->se_tfo->write_pending(cmd);
	if (ret == -EAGAIN || ret == -ENOMEM) {
2196 2197 2198 2199
		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
			 cmd);
		transport_handle_queue_full(cmd, cmd->se_dev);
	}
2200 2201
}

2202
int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2203
{
2204
	unsigned long flags;
2205 2206
	int ret = 0;

2207
	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2208
		if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2209 2210
			 transport_wait_for_tasks(cmd);

2211
		ret = transport_release_cmd(cmd);
2212 2213 2214
	} else {
		if (wait_for_tasks)
			transport_wait_for_tasks(cmd);
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
		/*
		 * Handle WRITE failure case where transport_generic_new_cmd()
		 * has already added se_cmd to state_list, but fabric has
		 * failed command before I/O submission.
		 */
		if (cmd->state_active) {
			spin_lock_irqsave(&cmd->t_state_lock, flags);
			target_remove_from_state_list(cmd);
			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		}
2225

2226
		if (cmd->se_lun)
2227 2228
			transport_lun_remove_cmd(cmd);

2229
		ret = transport_put_cmd(cmd);
2230
	}
2231
	return ret;
2232 2233 2234
}
EXPORT_SYMBOL(transport_generic_free_cmd);

2235 2236 2237
/* target_get_sess_cmd - Add command to active ->sess_cmd_list
 * @se_sess:	session to reference
 * @se_cmd:	command descriptor to add
2238
 * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2239
 */
2240
int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2241
			       bool ack_kref)
2242 2243
{
	unsigned long flags;
2244
	int ret = 0;
2245

2246
	kref_init(&se_cmd->cmd_kref);
2247 2248 2249 2250 2251
	/*
	 * Add a second kref if the fabric caller is expecting to handle
	 * fabric acknowledgement that requires two target_put_sess_cmd()
	 * invocations before se_cmd descriptor release.
	 */
2252
	if (ack_kref == true) {
2253
		kref_get(&se_cmd->cmd_kref);
2254 2255
		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
	}
2256

2257
	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2258 2259 2260 2261
	if (se_sess->sess_tearing_down) {
		ret = -ESHUTDOWN;
		goto out;
	}
2262
	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2263
out:
2264
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2265
	return ret;
2266
}
2267
EXPORT_SYMBOL(target_get_sess_cmd);
2268

2269
static void target_release_cmd_kref(struct kref *kref)
2270
{
2271 2272
	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
	struct se_session *se_sess = se_cmd->se_sess;
2273 2274

	if (list_empty(&se_cmd->se_cmd_list)) {
2275
		spin_unlock(&se_sess->sess_cmd_lock);
2276
		se_cmd->se_tfo->release_cmd(se_cmd);
2277
		return;
2278 2279
	}
	if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2280
		spin_unlock(&se_sess->sess_cmd_lock);
2281
		complete(&se_cmd->cmd_wait_comp);
2282
		return;
2283 2284
	}
	list_del(&se_cmd->se_cmd_list);
2285
	spin_unlock(&se_sess->sess_cmd_lock);
2286

2287 2288 2289 2290 2291 2292 2293 2294 2295
	se_cmd->se_tfo->release_cmd(se_cmd);
}

/* target_put_sess_cmd - Check for active I/O shutdown via kref_put
 * @se_sess:	session to reference
 * @se_cmd:	command descriptor to drop
 */
int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
{
2296 2297
	return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
			&se_sess->sess_cmd_lock);
2298 2299 2300
}
EXPORT_SYMBOL(target_put_sess_cmd);

2301 2302 2303 2304
/* target_sess_cmd_list_set_waiting - Flag all commands in
 *         sess_cmd_list to complete cmd_wait_comp.  Set
 *         sess_tearing_down so no more commands are queued.
 * @se_sess:	session to flag
2305
 */
2306
void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2307 2308 2309 2310 2311
{
	struct se_cmd *se_cmd;
	unsigned long flags;

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2312 2313 2314 2315
	if (se_sess->sess_tearing_down) {
		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
		return;
	}
2316
	se_sess->sess_tearing_down = 1;
2317
	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2318

2319
	list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2320 2321 2322 2323
		se_cmd->cmd_wait_set = 1;

	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
}
2324
EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2325 2326 2327 2328

/* target_wait_for_sess_cmds - Wait for outstanding descriptors
 * @se_sess:    session to wait for active I/O
 */
2329
void target_wait_for_sess_cmds(struct se_session *se_sess)
2330 2331
{
	struct se_cmd *se_cmd, *tmp_cmd;
2332
	unsigned long flags;
2333 2334

	list_for_each_entry_safe(se_cmd, tmp_cmd,
2335
				&se_sess->sess_wait_list, se_cmd_list) {
2336 2337 2338 2339 2340 2341
		list_del(&se_cmd->se_cmd_list);

		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
			" %d\n", se_cmd, se_cmd->t_state,
			se_cmd->se_tfo->get_cmd_state(se_cmd));

2342 2343 2344 2345
		wait_for_completion(&se_cmd->cmd_wait_comp);
		pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
			" fabric state: %d\n", se_cmd, se_cmd->t_state,
			se_cmd->se_tfo->get_cmd_state(se_cmd));
2346 2347 2348

		se_cmd->se_tfo->release_cmd(se_cmd);
	}
2349 2350 2351 2352 2353

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
	WARN_ON(!list_empty(&se_sess->sess_cmd_list));
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);

2354 2355 2356
}
EXPORT_SYMBOL(target_wait_for_sess_cmds);

2357
static int transport_clear_lun_ref_thread(void *p)
2358
{
J
Jörn Engel 已提交
2359
	struct se_lun *lun = p;
2360

2361 2362 2363
	percpu_ref_kill(&lun->lun_ref);

	wait_for_completion(&lun->lun_ref_comp);
2364 2365 2366 2367 2368
	complete(&lun->lun_shutdown_comp);

	return 0;
}

2369
int transport_clear_lun_ref(struct se_lun *lun)
2370 2371 2372
{
	struct task_struct *kt;

2373
	kt = kthread_run(transport_clear_lun_ref_thread, lun,
2374 2375
			"tcm_cl_%u", lun->unpacked_lun);
	if (IS_ERR(kt)) {
2376
		pr_err("Unable to start clear_lun thread\n");
2377
		return PTR_ERR(kt);
2378 2379 2380 2381 2382 2383
	}
	wait_for_completion(&lun->lun_shutdown_comp);

	return 0;
}

2384 2385 2386
/**
 * transport_wait_for_tasks - wait for completion to occur
 * @cmd:	command to wait
2387
 *
2388 2389
 * Called from frontend fabric context to wait for storage engine
 * to pause and/or release frontend generated struct se_cmd.
2390
 */
2391
bool transport_wait_for_tasks(struct se_cmd *cmd)
2392 2393 2394
{
	unsigned long flags;

2395
	spin_lock_irqsave(&cmd->t_state_lock, flags);
2396 2397
	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2398
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2399
		return false;
2400
	}
2401

2402 2403
	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2404
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2405
		return false;
2406
	}
2407

2408
	if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2409
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2410
		return false;
2411
	}
2412

2413
	cmd->transport_state |= CMD_T_STOP;
2414

2415
	pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2416
		" i_state: %d, t_state: %d, CMD_T_STOP\n",
2417 2418
		cmd, cmd->se_tfo->get_task_tag(cmd),
		cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2419

2420
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2421

2422
	wait_for_completion(&cmd->t_transport_stop_comp);
2423

2424
	spin_lock_irqsave(&cmd->t_state_lock, flags);
2425
	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2426

2427
	pr_debug("wait_for_tasks: Stopped wait_for_completion("
2428
		"&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2429
		cmd->se_tfo->get_task_tag(cmd));
2430

2431
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2432 2433

	return true;
2434
}
2435
EXPORT_SYMBOL(transport_wait_for_tasks);
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447

static int transport_get_sense_codes(
	struct se_cmd *cmd,
	u8 *asc,
	u8 *ascq)
{
	*asc = cmd->scsi_asc;
	*ascq = cmd->scsi_ascq;

	return 0;
}

2448 2449 2450
int
transport_send_check_condition_and_sense(struct se_cmd *cmd,
		sense_reason_t reason, int from_transport)
2451 2452 2453 2454 2455
{
	unsigned char *buffer = cmd->sense_buffer;
	unsigned long flags;
	u8 asc = 0, ascq = 0;

2456
	spin_lock_irqsave(&cmd->t_state_lock, flags);
2457
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2458
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2459 2460 2461
		return 0;
	}
	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2462
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2463 2464 2465 2466 2467 2468

	if (!reason && from_transport)
		goto after_reason;

	if (!from_transport)
		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2469

2470 2471 2472 2473 2474
	/*
	 * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
	 * SENSE KEY values from include/scsi/scsi.h
	 */
	switch (reason) {
H
Hannes Reinecke 已提交
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	case TCM_NO_SENSE:
		/* CURRENT ERROR */
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
		/* Not Ready */
		buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
		/* NO ADDITIONAL SENSE INFORMATION */
		buffer[SPC_ASC_KEY_OFFSET] = 0;
		buffer[SPC_ASCQ_KEY_OFFSET] = 0;
		break;
2485
	case TCM_NON_EXISTENT_LUN:
2486
		/* CURRENT ERROR */
2487 2488
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2489
		/* ILLEGAL REQUEST */
2490
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2491
		/* LOGICAL UNIT NOT SUPPORTED */
2492
		buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2493
		break;
2494 2495 2496
	case TCM_UNSUPPORTED_SCSI_OPCODE:
	case TCM_SECTOR_COUNT_TOO_MANY:
		/* CURRENT ERROR */
2497 2498
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2499
		/* ILLEGAL REQUEST */
2500
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2501
		/* INVALID COMMAND OPERATION CODE */
2502
		buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2503 2504 2505
		break;
	case TCM_UNKNOWN_MODE_PAGE:
		/* CURRENT ERROR */
2506 2507
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2508
		/* ILLEGAL REQUEST */
2509
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2510
		/* INVALID FIELD IN CDB */
2511
		buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2512 2513 2514
		break;
	case TCM_CHECK_CONDITION_ABORT_CMD:
		/* CURRENT ERROR */
2515 2516
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2517
		/* ABORTED COMMAND */
2518
		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2519
		/* BUS DEVICE RESET FUNCTION OCCURRED */
2520 2521
		buffer[SPC_ASC_KEY_OFFSET] = 0x29;
		buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2522 2523 2524
		break;
	case TCM_INCORRECT_AMOUNT_OF_DATA:
		/* CURRENT ERROR */
2525 2526
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2527
		/* ABORTED COMMAND */
2528
		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2529
		/* WRITE ERROR */
2530
		buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2531
		/* NOT ENOUGH UNSOLICITED DATA */
2532
		buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2533 2534 2535
		break;
	case TCM_INVALID_CDB_FIELD:
		/* CURRENT ERROR */
2536 2537
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2538
		/* ILLEGAL REQUEST */
2539
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2540
		/* INVALID FIELD IN CDB */
2541
		buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2542 2543 2544
		break;
	case TCM_INVALID_PARAMETER_LIST:
		/* CURRENT ERROR */
2545 2546
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2547
		/* ILLEGAL REQUEST */
2548
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2549
		/* INVALID FIELD IN PARAMETER LIST */
2550
		buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2551
		break;
2552 2553 2554 2555 2556 2557 2558 2559 2560
	case TCM_PARAMETER_LIST_LENGTH_ERROR:
		/* CURRENT ERROR */
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
		/* ILLEGAL REQUEST */
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
		/* PARAMETER LIST LENGTH ERROR */
		buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
		break;
2561 2562
	case TCM_UNEXPECTED_UNSOLICITED_DATA:
		/* CURRENT ERROR */
2563 2564
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2565
		/* ABORTED COMMAND */
2566
		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2567
		/* WRITE ERROR */
2568
		buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2569
		/* UNEXPECTED_UNSOLICITED_DATA */
2570
		buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2571 2572 2573
		break;
	case TCM_SERVICE_CRC_ERROR:
		/* CURRENT ERROR */
2574 2575
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2576
		/* ABORTED COMMAND */
2577
		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2578
		/* PROTOCOL SERVICE CRC ERROR */
2579
		buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2580
		/* N/A */
2581
		buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2582 2583 2584
		break;
	case TCM_SNACK_REJECTED:
		/* CURRENT ERROR */
2585 2586
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2587
		/* ABORTED COMMAND */
2588
		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2589
		/* READ ERROR */
2590
		buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2591
		/* FAILED RETRANSMISSION REQUEST */
2592
		buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2593 2594 2595
		break;
	case TCM_WRITE_PROTECTED:
		/* CURRENT ERROR */
2596 2597
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2598
		/* DATA PROTECT */
2599
		buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2600
		/* WRITE PROTECTED */
2601
		buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2602
		break;
2603 2604
	case TCM_ADDRESS_OUT_OF_RANGE:
		/* CURRENT ERROR */
2605 2606
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2607
		/* ILLEGAL REQUEST */
2608
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2609
		/* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2610
		buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2611
		break;
2612 2613
	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
		/* CURRENT ERROR */
2614 2615
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2616
		/* UNIT ATTENTION */
2617
		buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2618
		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2619 2620
		buffer[SPC_ASC_KEY_OFFSET] = asc;
		buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2621 2622 2623
		break;
	case TCM_CHECK_CONDITION_NOT_READY:
		/* CURRENT ERROR */
2624 2625
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2626
		/* Not Ready */
2627
		buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2628
		transport_get_sense_codes(cmd, &asc, &ascq);
2629 2630
		buffer[SPC_ASC_KEY_OFFSET] = asc;
		buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2631
		break;
2632 2633 2634 2635 2636 2637 2638 2639 2640
	case TCM_MISCOMPARE_VERIFY:
		/* CURRENT ERROR */
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
		buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
		/* MISCOMPARE DURING VERIFY OPERATION */
		buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
		buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
		break;
2641 2642 2643
	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
	default:
		/* CURRENT ERROR */
2644 2645
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2646 2647 2648 2649 2650 2651 2652
		/*
		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
		 * Solaris initiators.  Returning NOT READY instead means the
		 * operations will be retried a finite number of times and we
		 * can survive intermittent errors.
		 */
		buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2653
		/* LOGICAL UNIT COMMUNICATION FAILURE */
2654
		buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
		break;
	}
	/*
	 * This code uses linux/include/scsi/scsi.h SAM status codes!
	 */
	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
	/*
	 * Automatically padded, this value is encoded in the fabric's
	 * data_length response PDU containing the SCSI defined sense data.
	 */
2665
	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
2666 2667

after_reason:
2668
	trace_target_cmd_complete(cmd);
2669
	return cmd->se_tfo->queue_status(cmd);
2670 2671 2672 2673 2674
}
EXPORT_SYMBOL(transport_send_check_condition_and_sense);

int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
{
2675 2676
	if (!(cmd->transport_state & CMD_T_ABORTED))
		return 0;
2677

2678 2679
	if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
		return 1;
2680

2681 2682
	pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
		 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2683

2684
	cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
2685
	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2686
	trace_target_cmd_complete(cmd);
2687 2688 2689
	cmd->se_tfo->queue_status(cmd);

	return 1;
2690 2691 2692 2693 2694
}
EXPORT_SYMBOL(transport_check_aborted_status);

void transport_send_task_abort(struct se_cmd *cmd)
{
2695 2696 2697
	unsigned long flags;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
2698
	if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) {
2699 2700 2701 2702 2703
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		return;
	}
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

2704 2705 2706 2707 2708 2709 2710
	/*
	 * If there are still expected incoming fabric WRITEs, we wait
	 * until until they have completed before sending a TASK_ABORTED
	 * response.  This response with TASK_ABORTED status will be
	 * queued back to fabric module by transport_check_aborted_status().
	 */
	if (cmd->data_direction == DMA_TO_DEVICE) {
2711
		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2712
			cmd->transport_state |= CMD_T_ABORTED;
2713
			smp_mb__after_atomic_inc();
2714
			return;
2715 2716 2717
		}
	}
	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2718

2719 2720
	transport_lun_remove_cmd(cmd);

2721
	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2722
		" ITT: 0x%08x\n", cmd->t_task_cdb[0],
2723
		cmd->se_tfo->get_task_tag(cmd));
2724

2725
	trace_target_cmd_complete(cmd);
2726
	cmd->se_tfo->queue_status(cmd);
2727 2728
}

2729
static void target_tmr_work(struct work_struct *work)
2730
{
2731
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2732
	struct se_device *dev = cmd->se_dev;
2733 2734 2735 2736
	struct se_tmr_req *tmr = cmd->se_tmr_req;
	int ret;

	switch (tmr->function) {
2737
	case TMR_ABORT_TASK:
2738
		core_tmr_abort_task(dev, tmr, cmd->se_sess);
2739
		break;
2740 2741 2742
	case TMR_ABORT_TASK_SET:
	case TMR_CLEAR_ACA:
	case TMR_CLEAR_TASK_SET:
2743 2744
		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
		break;
2745
	case TMR_LUN_RESET:
2746 2747 2748 2749
		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
					 TMR_FUNCTION_REJECTED;
		break;
2750
	case TMR_TARGET_WARM_RESET:
2751 2752
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
2753
	case TMR_TARGET_COLD_RESET:
2754 2755 2756
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	default:
2757
		pr_err("Uknown TMR function: 0x%02x.\n",
2758 2759 2760 2761 2762 2763
				tmr->function);
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	}

	cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2764
	cmd->se_tfo->queue_tm_rsp(cmd);
2765

2766
	transport_cmd_check_stop_to_fabric(cmd);
2767 2768
}

2769 2770
int transport_generic_handle_tmr(
	struct se_cmd *cmd)
2771
{
2772 2773
	INIT_WORK(&cmd->work, target_tmr_work);
	queue_work(cmd->se_dev->tmr_wq, &cmd->work);
2774 2775
	return 0;
}
2776
EXPORT_SYMBOL(transport_generic_handle_tmr);