cpufreq_conservative.c 10.7 KB
Newer Older
1 2 3 4 5 6
/*
 *  drivers/cpufreq/cpufreq_conservative.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
7
 *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8 9 10 11 12 13
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

14
#include <linux/slab.h>
15
#include "cpufreq_governor.h"
16

17
/* Conservative governor macros */
18 19
#define DEF_FREQUENCY_UP_THRESHOLD		(80)
#define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
20
#define DEF_FREQUENCY_STEP			(5)
21 22
#define DEF_SAMPLING_DOWN_FACTOR		(1)
#define MAX_SAMPLING_DOWN_FACTOR		(10)
23

24
static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
25

26 27 28 29 30 31 32 33 34 35 36 37
static inline unsigned int get_freq_target(struct cs_dbs_tuners *cs_tuners,
					   struct cpufreq_policy *policy)
{
	unsigned int freq_target = (cs_tuners->freq_step * policy->max) / 100;

	/* max freq cannot be less than 100. But who knows... */
	if (unlikely(freq_target == 0))
		freq_target = DEF_FREQUENCY_STEP;

	return freq_target;
}

38 39
/*
 * Every sampling_rate, we check, if current idle time is less than 20%
40 41 42
 * (default), then we try to increase frequency. Every sampling_rate *
 * sampling_down_factor, we check, if current idle time is more than 80%
 * (default), then we try to decrease frequency
43 44 45 46 47
 *
 * Any frequency increase takes it to the maximum frequency. Frequency reduction
 * happens at minimum steps of 5% (default) of maximum frequency
 */
static void cs_check_cpu(int cpu, unsigned int load)
48
{
49 50
	struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
	struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
51 52
	struct dbs_data *dbs_data = policy->governor_data;
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
53 54 55 56 57

	/*
	 * break out if we 'cannot' reduce the speed as the user might
	 * want freq_step to be zero
	 */
58
	if (cs_tuners->freq_step == 0)
59 60 61
		return;

	/* Check for frequency increase */
62
	if (load > cs_tuners->up_threshold) {
63 64 65 66 67 68
		dbs_info->down_skip = 0;

		/* if we are already at full speed then break out early */
		if (dbs_info->requested_freq == policy->max)
			return;

69
		dbs_info->requested_freq += get_freq_target(cs_tuners, policy);
70

71 72 73 74 75
		__cpufreq_driver_target(policy, dbs_info->requested_freq,
			CPUFREQ_RELATION_H);
		return;
	}

76 77 78 79 80
	/* if sampling_down_factor is active break out early */
	if (++dbs_info->down_skip < cs_tuners->sampling_down_factor)
		return;
	dbs_info->down_skip = 0;

81 82
	/* Check for frequency decrease */
	if (load < cs_tuners->down_threshold) {
83 84 85 86 87 88
		/*
		 * if we cannot reduce the frequency anymore, break out early
		 */
		if (policy->cur == policy->min)
			return;

89
		dbs_info->requested_freq -= get_freq_target(cs_tuners, policy);
90

91
		__cpufreq_driver_target(policy, dbs_info->requested_freq,
92
				CPUFREQ_RELATION_L);
93 94 95 96
		return;
	}
}

97
static void cs_dbs_timer(struct work_struct *work)
98
{
99 100
	struct cs_cpu_dbs_info_s *dbs_info = container_of(work,
			struct cs_cpu_dbs_info_s, cdbs.work.work);
101
	unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
102 103
	struct cs_cpu_dbs_info_s *core_dbs_info = &per_cpu(cs_cpu_dbs_info,
			cpu);
104 105 106
	struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
	int delay = delay_for_sampling_rate(cs_tuners->sampling_rate);
107
	bool modify_all = true;
108

109
	mutex_lock(&core_dbs_info->cdbs.timer_mutex);
110 111 112
	if (!need_load_eval(&core_dbs_info->cdbs, cs_tuners->sampling_rate))
		modify_all = false;
	else
113
		dbs_check_cpu(dbs_data, cpu);
114

115
	gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
116
	mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
117 118
}

119 120 121 122 123 124
static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
		void *data)
{
	struct cpufreq_freqs *freq = data;
	struct cs_cpu_dbs_info_s *dbs_info =
					&per_cpu(cs_cpu_dbs_info, freq->cpu);
125 126
	struct cpufreq_policy *policy;

127
	if (!dbs_info->enable)
128 129
		return 0;

130
	policy = dbs_info->cdbs.cur_policy;
131 132

	/*
133
	 * we only care if our internally tracked freq moves outside the 'valid'
134
	 * ranges of frequency available to us otherwise we do not change it
135
	*/
136 137 138
	if (dbs_info->requested_freq > policy->max
			|| dbs_info->requested_freq < policy->min)
		dbs_info->requested_freq = freq->new;
139 140 141 142

	return 0;
}

143
/************************** sysfs interface ************************/
144
static struct common_dbs_data cs_dbs_cdata;
145

146 147
static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
		const char *buf, size_t count)
148
{
149
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
150 151
	unsigned int input;
	int ret;
152
	ret = sscanf(buf, "%u", &input);
153

154
	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
155 156
		return -EINVAL;

157
	cs_tuners->sampling_down_factor = input;
158 159 160
	return count;
}

161 162
static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
		size_t count)
163
{
164
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
165 166
	unsigned int input;
	int ret;
167
	ret = sscanf(buf, "%u", &input);
168

169
	if (ret != 1)
170
		return -EINVAL;
171

172
	cs_tuners->sampling_rate = max(input, dbs_data->min_sampling_rate);
173 174 175
	return count;
}

176 177
static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
		size_t count)
178
{
179
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
180 181
	unsigned int input;
	int ret;
182
	ret = sscanf(buf, "%u", &input);
183

184
	if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
185 186
		return -EINVAL;

187
	cs_tuners->up_threshold = input;
188 189 190
	return count;
}

191 192
static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
		size_t count)
193
{
194
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
195 196
	unsigned int input;
	int ret;
197
	ret = sscanf(buf, "%u", &input);
198

199 200
	/* cannot be lower than 11 otherwise freq will not fall */
	if (ret != 1 || input < 11 || input > 100 ||
201
			input >= cs_tuners->up_threshold)
202 203
		return -EINVAL;

204
	cs_tuners->down_threshold = input;
205 206 207
	return count;
}

208 209
static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
		const char *buf, size_t count)
210
{
211
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
212
	unsigned int input, j;
213 214
	int ret;

215 216
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
217 218
		return -EINVAL;

219
	if (input > 1)
220
		input = 1;
221

222
	if (input == cs_tuners->ignore_nice_load) /* nothing to do */
223
		return count;
224

225
	cs_tuners->ignore_nice_load = input;
226

227
	/* we need to re-evaluate prev_cpu_idle */
228
	for_each_online_cpu(j) {
229
		struct cs_cpu_dbs_info_s *dbs_info;
230
		dbs_info = &per_cpu(cs_cpu_dbs_info, j);
231
		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
232
					&dbs_info->cdbs.prev_cpu_wall, 0);
233
		if (cs_tuners->ignore_nice_load)
234 235
			dbs_info->cdbs.prev_cpu_nice =
				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
236 237 238 239
	}
	return count;
}

240 241
static ssize_t store_freq_step(struct dbs_data *dbs_data, const char *buf,
		size_t count)
242
{
243
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
244 245
	unsigned int input;
	int ret;
246
	ret = sscanf(buf, "%u", &input);
247

248
	if (ret != 1)
249 250
		return -EINVAL;

251
	if (input > 100)
252
		input = 100;
253

254 255 256 257
	/*
	 * no need to test here if freq_step is zero as the user might actually
	 * want this, they would be crazy though :)
	 */
258
	cs_tuners->freq_step = input;
259 260 261
	return count;
}

262 263 264 265
show_store_one(cs, sampling_rate);
show_store_one(cs, sampling_down_factor);
show_store_one(cs, up_threshold);
show_store_one(cs, down_threshold);
266
show_store_one(cs, ignore_nice_load);
267 268 269 270 271 272 273
show_store_one(cs, freq_step);
declare_show_sampling_rate_min(cs);

gov_sys_pol_attr_rw(sampling_rate);
gov_sys_pol_attr_rw(sampling_down_factor);
gov_sys_pol_attr_rw(up_threshold);
gov_sys_pol_attr_rw(down_threshold);
274
gov_sys_pol_attr_rw(ignore_nice_load);
275 276 277 278 279 280 281 282 283
gov_sys_pol_attr_rw(freq_step);
gov_sys_pol_attr_ro(sampling_rate_min);

static struct attribute *dbs_attributes_gov_sys[] = {
	&sampling_rate_min_gov_sys.attr,
	&sampling_rate_gov_sys.attr,
	&sampling_down_factor_gov_sys.attr,
	&up_threshold_gov_sys.attr,
	&down_threshold_gov_sys.attr,
284
	&ignore_nice_load_gov_sys.attr,
285
	&freq_step_gov_sys.attr,
286 287 288
	NULL
};

289 290 291 292 293 294 295 296 297 298 299
static struct attribute_group cs_attr_group_gov_sys = {
	.attrs = dbs_attributes_gov_sys,
	.name = "conservative",
};

static struct attribute *dbs_attributes_gov_pol[] = {
	&sampling_rate_min_gov_pol.attr,
	&sampling_rate_gov_pol.attr,
	&sampling_down_factor_gov_pol.attr,
	&up_threshold_gov_pol.attr,
	&down_threshold_gov_pol.attr,
300
	&ignore_nice_load_gov_pol.attr,
301 302 303 304 305 306
	&freq_step_gov_pol.attr,
	NULL
};

static struct attribute_group cs_attr_group_gov_pol = {
	.attrs = dbs_attributes_gov_pol,
307 308 309 310 311
	.name = "conservative",
};

/************************** sysfs end ************************/

312 313 314 315
static int cs_init(struct dbs_data *dbs_data)
{
	struct cs_dbs_tuners *tuners;

316
	tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
317 318 319 320 321 322 323 324
	if (!tuners) {
		pr_err("%s: kzalloc failed\n", __func__);
		return -ENOMEM;
	}

	tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
	tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
	tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
325
	tuners->ignore_nice_load = 0;
326
	tuners->freq_step = DEF_FREQUENCY_STEP;
327 328 329 330 331 332 333 334 335 336 337 338 339

	dbs_data->tuners = tuners;
	dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
		jiffies_to_usecs(10);
	mutex_init(&dbs_data->mutex);
	return 0;
}

static void cs_exit(struct dbs_data *dbs_data)
{
	kfree(dbs_data->tuners);
}

340
define_get_cpu_dbs_routines(cs_cpu_dbs_info);
341

342 343 344
static struct notifier_block cs_cpufreq_notifier_block = {
	.notifier_call = dbs_cpufreq_notifier,
};
345

346 347 348
static struct cs_ops cs_ops = {
	.notifier_block = &cs_cpufreq_notifier_block,
};
349

350
static struct common_dbs_data cs_dbs_cdata = {
351
	.governor = GOV_CONSERVATIVE,
352 353
	.attr_group_gov_sys = &cs_attr_group_gov_sys,
	.attr_group_gov_pol = &cs_attr_group_gov_pol,
354 355 356 357 358
	.get_cpu_cdbs = get_cpu_cdbs,
	.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
	.gov_dbs_timer = cs_dbs_timer,
	.gov_check_cpu = cs_check_cpu,
	.gov_ops = &cs_ops,
359 360
	.init = cs_init,
	.exit = cs_exit,
361
};
362

363
static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
364 365
				   unsigned int event)
{
366
	return cpufreq_governor_dbs(policy, &cs_dbs_cdata, event);
367 368
}

369 370 371
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
static
#endif
372 373
struct cpufreq_governor cpufreq_gov_conservative = {
	.name			= "conservative",
374
	.governor		= cs_cpufreq_governor_dbs,
375 376
	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
	.owner			= THIS_MODULE,
377 378 379 380
};

static int __init cpufreq_gov_dbs_init(void)
{
381
	return cpufreq_register_governor(&cpufreq_gov_conservative);
382 383 384 385
}

static void __exit cpufreq_gov_dbs_exit(void)
{
386
	cpufreq_unregister_governor(&cpufreq_gov_conservative);
387 388
}

389
MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
390
MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
391 392
		"Low Latency Frequency Transition capable processors "
		"optimised for use in a battery environment");
393
MODULE_LICENSE("GPL");
394

395 396 397
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
fs_initcall(cpufreq_gov_dbs_init);
#else
398
module_init(cpufreq_gov_dbs_init);
399
#endif
400
module_exit(cpufreq_gov_dbs_exit);