mv88e6352.c 16.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 * net/dsa/mv88e6352.c - Marvell 88e6352 switch chip support
 *
 * Copyright (c) 2014 Guenter Roeck
 *
 * Derived from mv88e6123_61_65.c
 * Copyright (c) 2008-2009 Marvell Semiconductor
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
#include <linux/phy.h>
#include <net/dsa.h>
#include "mv88e6xxx.h"

static char *mv88e6352_probe(struct device *host_dev, int sw_addr)
{
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(host_dev);
	int ret;

	if (bus == NULL)
		return NULL;

	ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), 0x03);
	if (ret >= 0) {
35 36
		if ((ret & 0xfff0) == 0x1760)
			return "Marvell 88E6176";
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
		if (ret == 0x3521)
			return "Marvell 88E6352 (A0)";
		if (ret == 0x3522)
			return "Marvell 88E6352 (A1)";
		if ((ret & 0xfff0) == 0x3520)
			return "Marvell 88E6352";
	}

	return NULL;
}

static int mv88e6352_switch_reset(struct dsa_switch *ds)
{
	unsigned long timeout;
	int ret;
	int i;

	/* Set all ports to the disabled state. */
	for (i = 0; i < 7; i++) {
		ret = REG_READ(REG_PORT(i), 0x04);
		REG_WRITE(REG_PORT(i), 0x04, ret & 0xfffc);
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

	/* Reset the switch. Keep PPU active (bit 14, undocumented).
	 * The PPU needs to be active to support indirect phy register
	 * accesses through global registers 0x18 and 0x19.
	 */
	REG_WRITE(REG_GLOBAL, 0x04, 0xc000);

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
		ret = REG_READ(REG_GLOBAL, 0x00);
		if ((ret & 0x8800) == 0x8800)
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
		return -ETIMEDOUT;

	return 0;
}

static int mv88e6352_setup_global(struct dsa_switch *ds)
{
	int ret;
	int i;

	/* Discard packets with excessive collisions,
	 * mask all interrupt sources, enable PPU (bit 14, undocumented).
	 */
	REG_WRITE(REG_GLOBAL, 0x04, 0x6000);

	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
	REG_WRITE(REG_GLOBAL, 0x0a, 0x0148);

	/* Configure the priority mapping registers. */
	ret = mv88e6xxx_config_prio(ds);
	if (ret < 0)
		return ret;

	/* Configure the upstream port, and configure the upstream
	 * port as the port to which ingress and egress monitor frames
	 * are to be sent.
	 */
	REG_WRITE(REG_GLOBAL, 0x1a, (dsa_upstream_port(ds) * 0x1110));

	/* Disable remote management for now, and set the switch's
	 * DSA device number.
	 */
	REG_WRITE(REG_GLOBAL, 0x1c, ds->index & 0x1f);

	/* Send all frames with destination addresses matching
	 * 01:80:c2:00:00:2x to the CPU port.
	 */
	REG_WRITE(REG_GLOBAL2, 0x02, 0xffff);

	/* Send all frames with destination addresses matching
	 * 01:80:c2:00:00:0x to the CPU port.
	 */
	REG_WRITE(REG_GLOBAL2, 0x03, 0xffff);

	/* Disable the loopback filter, disable flow control
	 * messages, disable flood broadcast override, disable
	 * removing of provider tags, disable ATU age violation
	 * interrupts, disable tag flow control, force flow
	 * control priority to the highest, and send all special
	 * multicast frames to the CPU at the highest priority.
	 */
	REG_WRITE(REG_GLOBAL2, 0x05, 0x00ff);

	/* Program the DSA routing table. */
	for (i = 0; i < 32; i++) {
		int nexthop = 0x1f;

		if (i != ds->index && i < ds->dst->pd->nr_chips)
			nexthop = ds->pd->rtable[i] & 0x1f;

		REG_WRITE(REG_GLOBAL2, 0x06, 0x8000 | (i << 8) | nexthop);
	}

	/* Clear all trunk masks. */
	for (i = 0; i < 8; i++)
		REG_WRITE(REG_GLOBAL2, 0x07, 0x8000 | (i << 12) | 0x7f);

	/* Clear all trunk mappings. */
	for (i = 0; i < 16; i++)
		REG_WRITE(REG_GLOBAL2, 0x08, 0x8000 | (i << 11));

	/* Disable ingress rate limiting by resetting all ingress
	 * rate limit registers to their initial state.
	 */
	for (i = 0; i < 7; i++)
		REG_WRITE(REG_GLOBAL2, 0x09, 0x9000 | (i << 8));

	/* Initialise cross-chip port VLAN table to reset defaults. */
	REG_WRITE(REG_GLOBAL2, 0x0b, 0x9000);

	/* Clear the priority override table. */
	for (i = 0; i < 16; i++)
		REG_WRITE(REG_GLOBAL2, 0x0f, 0x8000 | (i << 8));

	/* @@@ initialise AVB (22/23) watchdog (27) sdet (29) registers */

	return 0;
}

static int mv88e6352_setup_port(struct dsa_switch *ds, int p)
{
	int addr = REG_PORT(p);
	u16 val;

	/* MAC Forcing register: don't force link, speed, duplex
	 * or flow control state to any particular values on physical
	 * ports, but force the CPU port and all DSA ports to 1000 Mb/s
	 * full duplex.
	 */
	if (dsa_is_cpu_port(ds, p) || ds->dsa_port_mask & (1 << p))
		REG_WRITE(addr, 0x01, 0x003e);
	else
		REG_WRITE(addr, 0x01, 0x0003);

	/* Do not limit the period of time that this port can be
	 * paused for by the remote end or the period of time that
	 * this port can pause the remote end.
	 */
	REG_WRITE(addr, 0x02, 0x0000);

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	val = 0x0433;
	if (dsa_is_cpu_port(ds, p)) {
		if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
			val |= 0x3300;
		else
			val |= 0x0100;
	}
	if (ds->dsa_port_mask & (1 << p))
		val |= 0x0100;
	if (p == dsa_upstream_port(ds))
		val |= 0x000c;
	REG_WRITE(addr, 0x04, val);

	/* Port Control 2: don't force a good FCS, set the maximum
	 * frame size to 10240 bytes, don't let the switch add or
	 * strip 802.1q tags, don't discard tagged or untagged frames
	 * on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't
	 * send a copy of all transmitted/received frames on this port
	 * to the CPU.
	 */
	REG_WRITE(addr, 0x08, 0x2080);

	/* Egress rate control: disable egress rate control. */
	REG_WRITE(addr, 0x09, 0x0001);

	/* Egress rate control 2: disable egress rate control. */
	REG_WRITE(addr, 0x0a, 0x0000);

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
	REG_WRITE(addr, 0x0b, 1 << p);

	/* Port ATU control: disable limiting the number of address
	 * database entries that this port is allowed to use.
	 */
	REG_WRITE(addr, 0x0c, 0x0000);

	/* Priority Override: disable DA, SA and VTU priority override. */
	REG_WRITE(addr, 0x0d, 0x0000);

	/* Port Ethertype: use the Ethertype DSA Ethertype value. */
	REG_WRITE(addr, 0x0f, ETH_P_EDSA);

	/* Tag Remap: use an identity 802.1p prio -> switch prio
	 * mapping.
	 */
	REG_WRITE(addr, 0x18, 0x3210);

	/* Tag Remap 2: use an identity 802.1p prio -> switch prio
	 * mapping.
	 */
	REG_WRITE(addr, 0x19, 0x7654);

262
	return mv88e6xxx_setup_port_common(ds, p);
263 264
}

265 266 267 268 269 270 271 272 273
#ifdef CONFIG_NET_DSA_HWMON

static int mv88e6352_phy_page_read(struct dsa_switch *ds,
				   int port, int page, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->phy_mutex);
274
	ret = mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
275 276
	if (ret < 0)
		goto error;
277
	ret = mv88e6xxx_phy_read_indirect(ds, port, reg);
278
error:
279
	mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
280 281 282 283 284 285 286 287 288 289 290
	mutex_unlock(&ps->phy_mutex);
	return ret;
}

static int mv88e6352_phy_page_write(struct dsa_switch *ds,
				    int port, int page, int reg, int val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->phy_mutex);
291
	ret = mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
292 293 294
	if (ret < 0)
		goto error;

295
	ret = mv88e6xxx_phy_write_indirect(ds, port, reg, val);
296
error:
297
	mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
	mutex_unlock(&ps->phy_mutex);
	return ret;
}

static int mv88e6352_get_temp(struct dsa_switch *ds, int *temp)
{
	int ret;

	*temp = 0;

	ret = mv88e6352_phy_page_read(ds, 0, 6, 27);
	if (ret < 0)
		return ret;

	*temp = (ret & 0xff) - 25;

	return 0;
}

static int mv88e6352_get_temp_limit(struct dsa_switch *ds, int *temp)
{
	int ret;

	*temp = 0;

	ret = mv88e6352_phy_page_read(ds, 0, 6, 26);
	if (ret < 0)
		return ret;

	*temp = (((ret >> 8) & 0x1f) * 5) - 25;

	return 0;
}

static int mv88e6352_set_temp_limit(struct dsa_switch *ds, int temp)
{
	int ret;

	ret = mv88e6352_phy_page_read(ds, 0, 6, 26);
	if (ret < 0)
		return ret;
	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
	return mv88e6352_phy_page_write(ds, 0, 6, 26,
					(ret & 0xe0ff) | (temp << 8));
}

static int mv88e6352_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
{
	int ret;

	*alarm = false;

	ret = mv88e6352_phy_page_read(ds, 0, 6, 26);
	if (ret < 0)
		return ret;

	*alarm = !!(ret & 0x40);

	return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */

360 361 362 363 364 365
static int mv88e6352_setup(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int i;

366 367 368 369
	ret = mv88e6xxx_setup_common(ds);
	if (ret < 0)
		return ret;

370
	mutex_init(&ps->eeprom_mutex);
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

	ps->id = REG_READ(REG_PORT(0), 0x03) & 0xfff0;

	ret = mv88e6352_switch_reset(ds);
	if (ret < 0)
		return ret;

	/* @@@ initialise vtu and atu */

	ret = mv88e6352_setup_global(ds);
	if (ret < 0)
		return ret;

	for (i = 0; i < 7; i++) {
		ret = mv88e6352_setup_port(ds, i);
		if (ret < 0)
			return ret;
	}

	return 0;
}

static int mv88e6352_port_to_phy_addr(int port)
{
	if (port >= 0 && port <= 4)
		return port;
	return -EINVAL;
}

static int
mv88e6352_phy_read(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6352_port_to_phy_addr(port);
	int ret;

	if (addr < 0)
		return addr;

	mutex_lock(&ps->phy_mutex);
411
	ret = mv88e6xxx_phy_read_indirect(ds, addr, regnum);
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	mutex_unlock(&ps->phy_mutex);

	return ret;
}

static int
mv88e6352_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6352_port_to_phy_addr(port);
	int ret;

	if (addr < 0)
		return addr;

	mutex_lock(&ps->phy_mutex);
428
	ret = mv88e6xxx_phy_write_indirect(ds, addr, regnum, val);
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
	mutex_unlock(&ps->phy_mutex);

	return ret;
}

static struct mv88e6xxx_hw_stat mv88e6352_hw_stats[] = {
	{ "in_good_octets", 8, 0x00, },
	{ "in_bad_octets", 4, 0x02, },
	{ "in_unicast", 4, 0x04, },
	{ "in_broadcasts", 4, 0x06, },
	{ "in_multicasts", 4, 0x07, },
	{ "in_pause", 4, 0x16, },
	{ "in_undersize", 4, 0x18, },
	{ "in_fragments", 4, 0x19, },
	{ "in_oversize", 4, 0x1a, },
	{ "in_jabber", 4, 0x1b, },
	{ "in_rx_error", 4, 0x1c, },
	{ "in_fcs_error", 4, 0x1d, },
	{ "out_octets", 8, 0x0e, },
	{ "out_unicast", 4, 0x10, },
	{ "out_broadcasts", 4, 0x13, },
	{ "out_multicasts", 4, 0x12, },
	{ "out_pause", 4, 0x15, },
	{ "excessive", 4, 0x11, },
	{ "collisions", 4, 0x1e, },
	{ "deferred", 4, 0x05, },
	{ "single", 4, 0x14, },
	{ "multiple", 4, 0x17, },
	{ "out_fcs_error", 4, 0x03, },
	{ "late", 4, 0x1f, },
	{ "hist_64bytes", 4, 0x08, },
	{ "hist_65_127bytes", 4, 0x09, },
	{ "hist_128_255bytes", 4, 0x0a, },
	{ "hist_256_511bytes", 4, 0x0b, },
	{ "hist_512_1023bytes", 4, 0x0c, },
	{ "hist_1024_max_bytes", 4, 0x0d, },
465 466 467
	{ "sw_in_discards", 4, 0x110, },
	{ "sw_in_filtered", 2, 0x112, },
	{ "sw_out_filtered", 2, 0x113, },
468 469
};

470 471 472 473 474 475 476 477 478 479 480 481
static int mv88e6352_read_eeprom_word(struct dsa_switch *ds, int addr)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->eeprom_mutex);

	ret = mv88e6xxx_reg_write(ds, REG_GLOBAL2, 0x14,
				  0xc000 | (addr & 0xff));
	if (ret < 0)
		goto error;

482
	ret = mv88e6xxx_eeprom_busy_wait(ds);
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
	if (ret < 0)
		goto error;

	ret = mv88e6xxx_reg_read(ds, REG_GLOBAL2, 0x15);
error:
	mutex_unlock(&ps->eeprom_mutex);
	return ret;
}

static int mv88e6352_get_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
	int offset;
	int len;
	int ret;

	offset = eeprom->offset;
	len = eeprom->len;
	eeprom->len = 0;

	eeprom->magic = 0xc3ec4951;

505
	ret = mv88e6xxx_eeprom_load_wait(ds);
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
	if (ret < 0)
		return ret;

	if (offset & 1) {
		int word;

		word = mv88e6352_read_eeprom_word(ds, offset >> 1);
		if (word < 0)
			return word;

		*data++ = (word >> 8) & 0xff;

		offset++;
		len--;
		eeprom->len++;
	}

	while (len >= 2) {
		int word;

		word = mv88e6352_read_eeprom_word(ds, offset >> 1);
		if (word < 0)
			return word;

		*data++ = word & 0xff;
		*data++ = (word >> 8) & 0xff;

		offset += 2;
		len -= 2;
		eeprom->len += 2;
	}

	if (len) {
		int word;

		word = mv88e6352_read_eeprom_word(ds, offset >> 1);
		if (word < 0)
			return word;

		*data++ = word & 0xff;

		offset++;
		len--;
		eeprom->len++;
	}

	return 0;
}

static int mv88e6352_eeprom_is_readonly(struct dsa_switch *ds)
{
	int ret;

	ret = mv88e6xxx_reg_read(ds, REG_GLOBAL2, 0x14);
	if (ret < 0)
		return ret;

	if (!(ret & 0x0400))
		return -EROFS;

	return 0;
}

static int mv88e6352_write_eeprom_word(struct dsa_switch *ds, int addr,
				       u16 data)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->eeprom_mutex);

	ret = mv88e6xxx_reg_write(ds, REG_GLOBAL2, 0x15, data);
	if (ret < 0)
		goto error;

	ret = mv88e6xxx_reg_write(ds, REG_GLOBAL2, 0x14,
				  0xb000 | (addr & 0xff));
	if (ret < 0)
		goto error;

586
	ret = mv88e6xxx_eeprom_busy_wait(ds);
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
error:
	mutex_unlock(&ps->eeprom_mutex);
	return ret;
}

static int mv88e6352_set_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
	int offset;
	int ret;
	int len;

	if (eeprom->magic != 0xc3ec4951)
		return -EINVAL;

	ret = mv88e6352_eeprom_is_readonly(ds);
	if (ret)
		return ret;

	offset = eeprom->offset;
	len = eeprom->len;
	eeprom->len = 0;

610
	ret = mv88e6xxx_eeprom_load_wait(ds);
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
	if (ret < 0)
		return ret;

	if (offset & 1) {
		int word;

		word = mv88e6352_read_eeprom_word(ds, offset >> 1);
		if (word < 0)
			return word;

		word = (*data++ << 8) | (word & 0xff);

		ret = mv88e6352_write_eeprom_word(ds, offset >> 1, word);
		if (ret < 0)
			return ret;

		offset++;
		len--;
		eeprom->len++;
	}

	while (len >= 2) {
		int word;

		word = *data++;
		word |= *data++ << 8;

		ret = mv88e6352_write_eeprom_word(ds, offset >> 1, word);
		if (ret < 0)
			return ret;

		offset += 2;
		len -= 2;
		eeprom->len += 2;
	}

	if (len) {
		int word;

		word = mv88e6352_read_eeprom_word(ds, offset >> 1);
		if (word < 0)
			return word;

		word = (word & 0xff00) | *data++;

		ret = mv88e6352_write_eeprom_word(ds, offset >> 1, word);
		if (ret < 0)
			return ret;

		offset++;
		len--;
		eeprom->len++;
	}

	return 0;
}

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
static void
mv88e6352_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
{
	mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6352_hw_stats),
			      mv88e6352_hw_stats, port, data);
}

static void
mv88e6352_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data)
{
	mv88e6xxx_get_ethtool_stats(ds, ARRAY_SIZE(mv88e6352_hw_stats),
				    mv88e6352_hw_stats, port, data);
}

static int mv88e6352_get_sset_count(struct dsa_switch *ds)
{
	return ARRAY_SIZE(mv88e6352_hw_stats);
}

struct dsa_switch_driver mv88e6352_switch_driver = {
	.tag_protocol		= DSA_TAG_PROTO_EDSA,
	.priv_size		= sizeof(struct mv88e6xxx_priv_state),
	.probe			= mv88e6352_probe,
	.setup			= mv88e6352_setup,
	.set_addr		= mv88e6xxx_set_addr_indirect,
	.phy_read		= mv88e6352_phy_read,
	.phy_write		= mv88e6352_phy_write,
	.poll_link		= mv88e6xxx_poll_link,
	.get_strings		= mv88e6352_get_strings,
	.get_ethtool_stats	= mv88e6352_get_ethtool_stats,
	.get_sset_count		= mv88e6352_get_sset_count,
699 700
	.set_eee		= mv88e6xxx_set_eee,
	.get_eee		= mv88e6xxx_get_eee,
701 702 703 704 705 706
#ifdef CONFIG_NET_DSA_HWMON
	.get_temp		= mv88e6352_get_temp,
	.get_temp_limit		= mv88e6352_get_temp_limit,
	.set_temp_limit		= mv88e6352_set_temp_limit,
	.get_temp_alarm		= mv88e6352_get_temp_alarm,
#endif
707 708
	.get_eeprom		= mv88e6352_get_eeprom,
	.set_eeprom		= mv88e6352_set_eeprom,
709 710
	.get_regs_len		= mv88e6xxx_get_regs_len,
	.get_regs		= mv88e6xxx_get_regs,
711 712 713
};

MODULE_ALIAS("platform:mv88e6352");