futex.h 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright 2010 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 *
 * These routines make two important assumptions:
 *
 * 1. atomic_t is really an int and can be freely cast back and forth
 *    (validated in __init_atomic_per_cpu).
 *
 * 2. userspace uses sys_cmpxchg() for all atomic operations, thus using
 *    the same locking convention that all the kernel atomic routines use.
 */

#ifndef _ASM_TILE_FUTEX_H
#define _ASM_TILE_FUTEX_H

#ifndef __ASSEMBLY__

#include <linux/futex.h>
#include <linux/uaccess.h>
#include <linux/errno.h>
31
#include <asm/atomic.h>
32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
/*
 * Support macros for futex operations.  Do not use these macros directly.
 * They assume "ret", "val", "oparg", and "uaddr" in the lexical context.
 * __futex_cmpxchg() additionally assumes "oldval".
 */

#ifdef __tilegx__

#define __futex_asm(OP) \
	asm("1: {" #OP " %1, %3, %4; movei %0, 0 }\n"		\
	    ".pushsection .fixup,\"ax\"\n"			\
	    "0: { movei %0, %5; j 9f }\n"			\
	    ".section __ex_table,\"a\"\n"			\
	    ".quad 1b, 0b\n"					\
	    ".popsection\n"					\
	    "9:"						\
	    : "=r" (ret), "=r" (val), "+m" (*(uaddr))		\
	    : "r" (uaddr), "r" (oparg), "i" (-EFAULT))

#define __futex_set() __futex_asm(exch4)
#define __futex_add() __futex_asm(fetchadd4)
#define __futex_or() __futex_asm(fetchor4)
#define __futex_andn() ({ oparg = ~oparg; __futex_asm(fetchand4); })
#define __futex_cmpxchg() \
	({ __insn_mtspr(SPR_CMPEXCH_VALUE, oldval); __futex_asm(cmpexch4); })

#define __futex_xor()						\
	({							\
		u32 oldval, n = oparg;				\
		if ((ret = __get_user(oldval, uaddr)) == 0) {	\
			do {					\
				oparg = oldval ^ n;		\
				__futex_cmpxchg();		\
			} while (ret == 0 && oldval != val);	\
		}						\
	})

/* No need to prefetch, since the atomic ops go to the home cache anyway. */
#define __futex_prolog()
72 73

#else
74 75 76 77 78 79

#define __futex_call(FN)						\
	{								\
		struct __get_user gu = FN((u32 __force *)uaddr, lock, oparg); \
		val = gu.val;						\
		ret = gu.err;						\
80
	}
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

#define __futex_set() __futex_call(__atomic_xchg)
#define __futex_add() __futex_call(__atomic_xchg_add)
#define __futex_or() __futex_call(__atomic_or)
#define __futex_andn() __futex_call(__atomic_andn)
#define __futex_xor() __futex_call(__atomic_xor)

#define __futex_cmpxchg()						\
	{								\
		struct __get_user gu = __atomic_cmpxchg((u32 __force *)uaddr, \
							lock, oldval, oparg); \
		val = gu.val;						\
		ret = gu.err;						\
	}

/*
 * Find the lock pointer for the atomic calls to use, and issue a
 * prefetch to the user address to bring it into cache.  Similar to
 * __atomic_setup(), but we can't do a read into the L1 since it might
 * fault; instead we do a prefetch into the L2.
 */
#define __futex_prolog()					\
	int *lock;						\
	__insn_prefetch(uaddr);					\
	lock = __atomic_hashed_lock((int __force *)uaddr)
106 107
#endif

108
static inline int futex_atomic_op_inuser(int encoded_op, u32 __user *uaddr)
109 110 111 112 113
{
	int op = (encoded_op >> 28) & 7;
	int cmp = (encoded_op >> 24) & 15;
	int oparg = (encoded_op << 8) >> 20;
	int cmparg = (encoded_op << 20) >> 20;
114 115 116 117 118 119
	int uninitialized_var(val), ret;

	__futex_prolog();

	/* The 32-bit futex code makes this assumption, so validate it here. */
	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(int));
120 121 122 123

	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28))
		oparg = 1 << oparg;

124
	if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
125 126 127 128 129
		return -EFAULT;

	pagefault_disable();
	switch (op) {
	case FUTEX_OP_SET:
130
		__futex_set();
131 132
		break;
	case FUTEX_OP_ADD:
133
		__futex_add();
134 135
		break;
	case FUTEX_OP_OR:
136
		__futex_or();
137 138
		break;
	case FUTEX_OP_ANDN:
139
		__futex_andn();
140 141
		break;
	case FUTEX_OP_XOR:
142
		__futex_xor();
143 144
		break;
	default:
145 146
		ret = -ENOSYS;
		break;
147 148 149 150 151 152
	}
	pagefault_enable();

	if (!ret) {
		switch (cmp) {
		case FUTEX_OP_CMP_EQ:
153
			ret = (val == cmparg);
154 155
			break;
		case FUTEX_OP_CMP_NE:
156
			ret = (val != cmparg);
157 158
			break;
		case FUTEX_OP_CMP_LT:
159
			ret = (val < cmparg);
160 161
			break;
		case FUTEX_OP_CMP_GE:
162
			ret = (val >= cmparg);
163 164
			break;
		case FUTEX_OP_CMP_LE:
165
			ret = (val <= cmparg);
166 167
			break;
		case FUTEX_OP_CMP_GT:
168
			ret = (val > cmparg);
169 170 171 172 173 174 175 176
			break;
		default:
			ret = -ENOSYS;
		}
	}
	return ret;
}

177
static inline int futex_atomic_cmpxchg_inatomic(u32 *uval, u32 __user *uaddr,
178
						u32 oldval, u32 oparg)
179
{
180 181 182
	int ret, val;

	__futex_prolog();
183

184
	if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
185 186
		return -EFAULT;

187
	__futex_cmpxchg();
188

189 190 191
	*uval = val;
	return ret;
}
192

193 194 195
#endif /* !__ASSEMBLY__ */

#endif /* _ASM_TILE_FUTEX_H */