dir.c 37.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* -*- mode: c; c-basic-offset: 8; -*-
 * vim: noexpandtab sw=8 ts=8 sts=0:
 *
 * dir.c - Operations for configfs directories.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 *
 * Based on sysfs:
 * 	sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel
 *
 * configfs Copyright (C) 2005 Oracle.  All rights reserved.
 */

#undef DEBUG

#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/module.h>
#include <linux/slab.h>
33
#include <linux/err.h>
34 35 36 37 38

#include <linux/configfs.h>
#include "configfs_internal.h"

DECLARE_RWSEM(configfs_rename_sem);
39 40
/*
 * Protects mutations of configfs_dirent linkage together with proper i_mutex
41
 * Also protects mutations of symlinks linkage to target configfs_dirent
42 43
 * Mutators of configfs_dirent linkage must *both* have the proper inode locked
 * and configfs_dirent_lock locked, in that order.
44 45
 * This allows one to safely traverse configfs_dirent trees and symlinks without
 * having to lock inodes.
46 47 48 49
 *
 * Protects setting of CONFIGFS_USET_DROPPING: checking the flag
 * unlocked is not reliable unless in detach_groups() called from
 * rmdir()/unregister() and from configfs_attach_group()
50 51
 */
DEFINE_SPINLOCK(configfs_dirent_lock);
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

static void configfs_d_iput(struct dentry * dentry,
			    struct inode * inode)
{
	struct configfs_dirent * sd = dentry->d_fsdata;

	if (sd) {
		BUG_ON(sd->s_dentry != dentry);
		sd->s_dentry = NULL;
		configfs_put(sd);
	}
	iput(inode);
}

/*
 * We _must_ delete our dentries on last dput, as the chain-to-parent
 * behavior is required to clear the parents of default_groups.
 */
static int configfs_d_delete(struct dentry *dentry)
{
	return 1;
}

static struct dentry_operations configfs_dentry_ops = {
	.d_iput		= configfs_d_iput,
	/* simple_delete_dentry() isn't exported */
	.d_delete	= configfs_d_delete,
};

/*
 * Allocates a new configfs_dirent and links it to the parent configfs_dirent
 */
static struct configfs_dirent *configfs_new_dirent(struct configfs_dirent * parent_sd,
						void * element)
{
	struct configfs_dirent * sd;

89
	sd = kmem_cache_zalloc(configfs_dir_cachep, GFP_KERNEL);
90
	if (!sd)
91
		return ERR_PTR(-ENOMEM);
92 93 94 95 96

	atomic_set(&sd->s_count, 1);
	INIT_LIST_HEAD(&sd->s_links);
	INIT_LIST_HEAD(&sd->s_children);
	sd->s_element = element;
97
	spin_lock(&configfs_dirent_lock);
98 99 100 101 102
	if (parent_sd->s_type & CONFIGFS_USET_DROPPING) {
		spin_unlock(&configfs_dirent_lock);
		kmem_cache_free(configfs_dir_cachep, sd);
		return ERR_PTR(-ENOENT);
	}
103 104
	list_add(&sd->s_sibling, &parent_sd->s_children);
	spin_unlock(&configfs_dirent_lock);
105 106 107 108

	return sd;
}

109 110 111 112 113 114 115
/*
 *
 * Return -EEXIST if there is already a configfs element with the same
 * name for the same parent.
 *
 * called with parent inode's i_mutex held
 */
116 117
static int configfs_dirent_exists(struct configfs_dirent *parent_sd,
				  const unsigned char *new)
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
{
	struct configfs_dirent * sd;

	list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
		if (sd->s_element) {
			const unsigned char *existing = configfs_get_name(sd);
			if (strcmp(existing, new))
				continue;
			else
				return -EEXIST;
		}
	}

	return 0;
}


135 136 137 138 139 140 141
int configfs_make_dirent(struct configfs_dirent * parent_sd,
			 struct dentry * dentry, void * element,
			 umode_t mode, int type)
{
	struct configfs_dirent * sd;

	sd = configfs_new_dirent(parent_sd, element);
142 143
	if (IS_ERR(sd))
		return PTR_ERR(sd);
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

	sd->s_mode = mode;
	sd->s_type = type;
	sd->s_dentry = dentry;
	if (dentry) {
		dentry->d_fsdata = configfs_get(sd);
		dentry->d_op = &configfs_dentry_ops;
	}

	return 0;
}

static int init_dir(struct inode * inode)
{
	inode->i_op = &configfs_dir_inode_operations;
	inode->i_fop = &configfs_dir_operations;

	/* directory inodes start off with i_nlink == 2 (for "." entry) */
162
	inc_nlink(inode);
163 164 165
	return 0;
}

166
static int configfs_init_file(struct inode * inode)
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
{
	inode->i_size = PAGE_SIZE;
	inode->i_fop = &configfs_file_operations;
	return 0;
}

static int init_symlink(struct inode * inode)
{
	inode->i_op = &configfs_symlink_inode_operations;
	return 0;
}

static int create_dir(struct config_item * k, struct dentry * p,
		      struct dentry * d)
{
	int error;
	umode_t mode = S_IFDIR| S_IRWXU | S_IRUGO | S_IXUGO;

185 186 187 188
	error = configfs_dirent_exists(p->d_fsdata, d->d_name.name);
	if (!error)
		error = configfs_make_dirent(p->d_fsdata, d, k, mode,
					     CONFIGFS_DIR);
189
	if (!error) {
190
		error = configfs_create(d, mode, init_dir);
191
		if (!error) {
192
			inc_nlink(p->d_inode);
193
			(d)->d_op = &configfs_dentry_ops;
194 195 196
		} else {
			struct configfs_dirent *sd = d->d_fsdata;
			if (sd) {
197
				spin_lock(&configfs_dirent_lock);
198
				list_del_init(&sd->s_sibling);
199
				spin_unlock(&configfs_dirent_lock);
200 201
				configfs_put(sd);
			}
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
		}
	}
	return error;
}


/**
 *	configfs_create_dir - create a directory for an config_item.
 *	@item:		config_itemwe're creating directory for.
 *	@dentry:	config_item's dentry.
 */

static int configfs_create_dir(struct config_item * item, struct dentry *dentry)
{
	struct dentry * parent;
	int error = 0;

	BUG_ON(!item);

	if (item->ci_parent)
		parent = item->ci_parent->ci_dentry;
	else if (configfs_mount && configfs_mount->mnt_sb)
		parent = configfs_mount->mnt_sb->s_root;
	else
		return -EFAULT;

	error = create_dir(item,parent,dentry);
	if (!error)
		item->ci_dentry = dentry;
	return error;
}

int configfs_create_link(struct configfs_symlink *sl,
			 struct dentry *parent,
			 struct dentry *dentry)
{
	int err = 0;
	umode_t mode = S_IFLNK | S_IRWXUGO;

241 242
	err = configfs_make_dirent(parent->d_fsdata, dentry, sl, mode,
				   CONFIGFS_ITEM_LINK);
243
	if (!err) {
244
		err = configfs_create(dentry, mode, init_symlink);
245 246
		if (!err)
			dentry->d_op = &configfs_dentry_ops;
247 248 249
		else {
			struct configfs_dirent *sd = dentry->d_fsdata;
			if (sd) {
250
				spin_lock(&configfs_dirent_lock);
251
				list_del_init(&sd->s_sibling);
252
				spin_unlock(&configfs_dirent_lock);
253 254 255
				configfs_put(sd);
			}
		}
256 257 258 259 260 261 262 263 264 265
	}
	return err;
}

static void remove_dir(struct dentry * d)
{
	struct dentry * parent = dget(d->d_parent);
	struct configfs_dirent * sd;

	sd = d->d_fsdata;
266
	spin_lock(&configfs_dirent_lock);
267
	list_del_init(&sd->s_sibling);
268
	spin_unlock(&configfs_dirent_lock);
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
	configfs_put(sd);
	if (d->d_inode)
		simple_rmdir(parent->d_inode,d);

	pr_debug(" o %s removing done (%d)\n",d->d_name.name,
		 atomic_read(&d->d_count));

	dput(parent);
}

/**
 * configfs_remove_dir - remove an config_item's directory.
 * @item:	config_item we're removing.
 *
 * The only thing special about this is that we remove any files in
 * the directory before we remove the directory, and we've inlined
 * what used to be configfs_rmdir() below, instead of calling separately.
 */

static void configfs_remove_dir(struct config_item * item)
{
	struct dentry * dentry = dget(item->ci_dentry);

	if (!dentry)
		return;

	remove_dir(dentry);
	/**
	 * Drop reference from dget() on entrance.
	 */
	dput(dentry);
}


/* attaches attribute's configfs_dirent to the dentry corresponding to the
 * attribute file
 */
static int configfs_attach_attr(struct configfs_dirent * sd, struct dentry * dentry)
{
	struct configfs_attribute * attr = sd->s_element;
	int error;

311 312
	dentry->d_fsdata = configfs_get(sd);
	sd->s_dentry = dentry;
313 314
	error = configfs_create(dentry, (attr->ca_mode & S_IALLUGO) | S_IFREG,
				configfs_init_file);
315 316
	if (error) {
		configfs_put(sd);
317
		return error;
318
	}
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360

	dentry->d_op = &configfs_dentry_ops;
	d_rehash(dentry);

	return 0;
}

static struct dentry * configfs_lookup(struct inode *dir,
				       struct dentry *dentry,
				       struct nameidata *nd)
{
	struct configfs_dirent * parent_sd = dentry->d_parent->d_fsdata;
	struct configfs_dirent * sd;
	int found = 0;
	int err = 0;

	list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
		if (sd->s_type & CONFIGFS_NOT_PINNED) {
			const unsigned char * name = configfs_get_name(sd);

			if (strcmp(name, dentry->d_name.name))
				continue;

			found = 1;
			err = configfs_attach_attr(sd, dentry);
			break;
		}
	}

	if (!found) {
		/*
		 * If it doesn't exist and it isn't a NOT_PINNED item,
		 * it must be negative.
		 */
		return simple_lookup(dir, dentry, nd);
	}

	return ERR_PTR(err);
}

/*
 * Only subdirectories count here.  Files (CONFIGFS_NOT_PINNED) are
361 362 363 364 365
 * attributes and are removed by rmdir().  We recurse, setting
 * CONFIGFS_USET_DROPPING on all children that are candidates for
 * default detach.
 * If there is an error, the caller will reset the flags via
 * configfs_detach_rollback().
366
 */
367
static int configfs_detach_prep(struct dentry *dentry, struct mutex **wait_mutex)
368 369 370 371 372 373 374 375 376 377 378 379 380 381
{
	struct configfs_dirent *parent_sd = dentry->d_fsdata;
	struct configfs_dirent *sd;
	int ret;

	ret = -EBUSY;
	if (!list_empty(&parent_sd->s_links))
		goto out;

	ret = 0;
	list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
		if (sd->s_type & CONFIGFS_NOT_PINNED)
			continue;
		if (sd->s_type & CONFIGFS_USET_DEFAULT) {
382 383 384 385 386 387
			/* Abort if racing with mkdir() */
			if (sd->s_type & CONFIGFS_USET_IN_MKDIR) {
				if (wait_mutex)
					*wait_mutex = &sd->s_dentry->d_inode->i_mutex;
				return -EAGAIN;
			}
388
			/* Mark that we're trying to drop the group */
389 390
			sd->s_type |= CONFIGFS_USET_DROPPING;

391 392 393 394
			/*
			 * Yup, recursive.  If there's a problem, blame
			 * deep nesting of default_groups
			 */
395
			ret = configfs_detach_prep(sd->s_dentry, wait_mutex);
396
			if (!ret)
397
				continue;
398 399 400 401 402 403 404 405 406 407 408
		} else
			ret = -ENOTEMPTY;

		break;
	}

out:
	return ret;
}

/*
409
 * Walk the tree, resetting CONFIGFS_USET_DROPPING wherever it was
410 411 412 413 414 415 416 417 418 419
 * set.
 */
static void configfs_detach_rollback(struct dentry *dentry)
{
	struct configfs_dirent *parent_sd = dentry->d_fsdata;
	struct configfs_dirent *sd;

	list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
		if (sd->s_type & CONFIGFS_USET_DEFAULT) {
			configfs_detach_rollback(sd->s_dentry);
420
			sd->s_type &= ~CONFIGFS_USET_DROPPING;
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
		}
	}
}

static void detach_attrs(struct config_item * item)
{
	struct dentry * dentry = dget(item->ci_dentry);
	struct configfs_dirent * parent_sd;
	struct configfs_dirent * sd, * tmp;

	if (!dentry)
		return;

	pr_debug("configfs %s: dropping attrs for  dir\n",
		 dentry->d_name.name);

	parent_sd = dentry->d_fsdata;
	list_for_each_entry_safe(sd, tmp, &parent_sd->s_children, s_sibling) {
		if (!sd->s_element || !(sd->s_type & CONFIGFS_NOT_PINNED))
			continue;
441
		spin_lock(&configfs_dirent_lock);
442
		list_del_init(&sd->s_sibling);
443
		spin_unlock(&configfs_dirent_lock);
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
		configfs_drop_dentry(sd, dentry);
		configfs_put(sd);
	}

	/**
	 * Drop reference from dget() on entrance.
	 */
	dput(dentry);
}

static int populate_attrs(struct config_item *item)
{
	struct config_item_type *t = item->ci_type;
	struct configfs_attribute *attr;
	int error = 0;
	int i;

	if (!t)
		return -EINVAL;
	if (t->ct_attrs) {
		for (i = 0; (attr = t->ct_attrs[i]) != NULL; i++) {
			if ((error = configfs_create_file(item, attr)))
				break;
		}
	}

	if (error)
		detach_attrs(item);

	return error;
}

static int configfs_attach_group(struct config_item *parent_item,
				 struct config_item *item,
				 struct dentry *dentry);
static void configfs_detach_group(struct config_item *item);

static void detach_groups(struct config_group *group)
{
	struct dentry * dentry = dget(group->cg_item.ci_dentry);
	struct dentry *child;
	struct configfs_dirent *parent_sd;
	struct configfs_dirent *sd, *tmp;

	if (!dentry)
		return;

	parent_sd = dentry->d_fsdata;
	list_for_each_entry_safe(sd, tmp, &parent_sd->s_children, s_sibling) {
		if (!sd->s_element ||
		    !(sd->s_type & CONFIGFS_USET_DEFAULT))
			continue;

		child = sd->s_dentry;

499 500
		mutex_lock(&child->d_inode->i_mutex);

501 502 503
		configfs_detach_group(sd->s_element);
		child->d_inode->i_flags |= S_DEAD;

504
		mutex_unlock(&child->d_inode->i_mutex);
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564

		d_delete(child);
		dput(child);
	}

	/**
	 * Drop reference from dget() on entrance.
	 */
	dput(dentry);
}

/*
 * This fakes mkdir(2) on a default_groups[] entry.  It
 * creates a dentry, attachs it, and then does fixup
 * on the sd->s_type.
 *
 * We could, perhaps, tweak our parent's ->mkdir for a minute and
 * try using vfs_mkdir.  Just a thought.
 */
static int create_default_group(struct config_group *parent_group,
				struct config_group *group)
{
	int ret;
	struct qstr name;
	struct configfs_dirent *sd;
	/* We trust the caller holds a reference to parent */
	struct dentry *child, *parent = parent_group->cg_item.ci_dentry;

	if (!group->cg_item.ci_name)
		group->cg_item.ci_name = group->cg_item.ci_namebuf;
	name.name = group->cg_item.ci_name;
	name.len = strlen(name.name);
	name.hash = full_name_hash(name.name, name.len);

	ret = -ENOMEM;
	child = d_alloc(parent, &name);
	if (child) {
		d_add(child, NULL);

		ret = configfs_attach_group(&parent_group->cg_item,
					    &group->cg_item, child);
		if (!ret) {
			sd = child->d_fsdata;
			sd->s_type |= CONFIGFS_USET_DEFAULT;
		} else {
			d_delete(child);
			dput(child);
		}
	}

	return ret;
}

static int populate_groups(struct config_group *group)
{
	struct config_group *new_group;
	struct dentry *dentry = group->cg_item.ci_dentry;
	int ret = 0;
	int i;

565
	if (group->default_groups) {
566 567
		/*
		 * FYI, we're faking mkdir here
568 569
		 * I'm not sure we need this semaphore, as we're called
		 * from our parent's mkdir.  That holds our parent's
570
		 * i_mutex, so afaik lookup cannot continue through our
571
		 * parent to find us, let alone mess with our tree.
572
		 * That said, taking our i_mutex is closer to mkdir
573 574
		 * emulation, and shouldn't hurt.
		 */
575
		mutex_lock_nested(&dentry->d_inode->i_mutex, I_MUTEX_CHILD);
576 577 578 579 580 581 582 583 584

		for (i = 0; group->default_groups[i]; i++) {
			new_group = group->default_groups[i];

			ret = create_default_group(group, new_group);
			if (ret)
				break;
		}

585
		mutex_unlock(&dentry->d_inode->i_mutex);
586 587 588 589 590 591 592 593 594 595
	}

	if (ret)
		detach_groups(group);

	return ret;
}

/*
 * All of link_obj/unlink_obj/link_group/unlink_group require that
596
 * subsys->su_mutex is held.
597 598 599 600 601 602 603 604 605 606 607 608
 */

static void unlink_obj(struct config_item *item)
{
	struct config_group *group;

	group = item->ci_group;
	if (group) {
		list_del_init(&item->ci_entry);

		item->ci_group = NULL;
		item->ci_parent = NULL;
609 610

		/* Drop the reference for ci_entry */
611 612
		config_item_put(item);

613
		/* Drop the reference for ci_parent */
614 615 616 617 618 619
		config_group_put(group);
	}
}

static void link_obj(struct config_item *parent_item, struct config_item *item)
{
620 621 622 623
	/*
	 * Parent seems redundant with group, but it makes certain
	 * traversals much nicer.
	 */
624
	item->ci_parent = parent_item;
625 626 627 628 629

	/*
	 * We hold a reference on the parent for the child's ci_parent
	 * link.
	 */
630 631 632
	item->ci_group = config_group_get(to_config_group(parent_item));
	list_add_tail(&item->ci_entry, &item->ci_group->cg_children);

633 634 635 636
	/*
	 * We hold a reference on the child for ci_entry on the parent's
	 * cg_children
	 */
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
	config_item_get(item);
}

static void unlink_group(struct config_group *group)
{
	int i;
	struct config_group *new_group;

	if (group->default_groups) {
		for (i = 0; group->default_groups[i]; i++) {
			new_group = group->default_groups[i];
			unlink_group(new_group);
		}
	}

	group->cg_subsys = NULL;
	unlink_obj(&group->cg_item);
}

static void link_group(struct config_group *parent_group, struct config_group *group)
{
	int i;
	struct config_group *new_group;
	struct configfs_subsystem *subsys = NULL; /* gcc is a turd */

	link_obj(&parent_group->cg_item, &group->cg_item);

	if (parent_group->cg_subsys)
		subsys = parent_group->cg_subsys;
	else if (configfs_is_root(&parent_group->cg_item))
		subsys = to_configfs_subsystem(group);
	else
		BUG();
	group->cg_subsys = subsys;

	if (group->default_groups) {
		for (i = 0; group->default_groups[i]; i++) {
			new_group = group->default_groups[i];
			link_group(group, new_group);
		}
	}
}

/*
 * The goal is that configfs_attach_item() (and
 * configfs_attach_group()) can be called from either the VFS or this
 * module.  That is, they assume that the items have been created,
 * the dentry allocated, and the dcache is all ready to go.
 *
 * If they fail, they must clean up after themselves as if they
 * had never been called.  The caller (VFS or local function) will
 * handle cleaning up the dcache bits.
 *
 * configfs_detach_group() and configfs_detach_item() behave similarly on
 * the way out.  They assume that the proper semaphores are held, they
 * clean up the configfs items, and they expect their callers will
 * handle the dcache bits.
 */
static int configfs_attach_item(struct config_item *parent_item,
				struct config_item *item,
				struct dentry *dentry)
{
	int ret;

	ret = configfs_create_dir(item, dentry);
	if (!ret) {
		ret = populate_attrs(item);
		if (ret) {
			configfs_remove_dir(item);
			d_delete(dentry);
		}
	}

	return ret;
}

static void configfs_detach_item(struct config_item *item)
{
	detach_attrs(item);
	configfs_remove_dir(item);
}

static int configfs_attach_group(struct config_item *parent_item,
				 struct config_item *item,
				 struct dentry *dentry)
{
	int ret;
	struct configfs_dirent *sd;

	ret = configfs_attach_item(parent_item, item, dentry);
	if (!ret) {
		sd = dentry->d_fsdata;
		sd->s_type |= CONFIGFS_USET_DIR;

		ret = populate_groups(to_config_group(item));
		if (ret) {
			configfs_detach_item(item);
			d_delete(dentry);
		}
	}

	return ret;
}

static void configfs_detach_group(struct config_item *item)
{
	detach_groups(to_config_group(item));
	configfs_detach_item(item);
}

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
/*
 * After the item has been detached from the filesystem view, we are
 * ready to tear it out of the hierarchy.  Notify the client before
 * we do that so they can perform any cleanup that requires
 * navigating the hierarchy.  A client does not need to provide this
 * callback.  The subsystem semaphore MUST be held by the caller, and
 * references must be valid for both items.  It also assumes the
 * caller has validated ci_type.
 */
static void client_disconnect_notify(struct config_item *parent_item,
				     struct config_item *item)
{
	struct config_item_type *type;

	type = parent_item->ci_type;
	BUG_ON(!type);

	if (type->ct_group_ops && type->ct_group_ops->disconnect_notify)
		type->ct_group_ops->disconnect_notify(to_config_group(parent_item),
						      item);
}

769 770 771 772 773 774 775 776 777 778 779 780 781 782
/*
 * Drop the initial reference from make_item()/make_group()
 * This function assumes that reference is held on item
 * and that item holds a valid reference to the parent.  Also, it
 * assumes the caller has validated ci_type.
 */
static void client_drop_item(struct config_item *parent_item,
			     struct config_item *item)
{
	struct config_item_type *type;

	type = parent_item->ci_type;
	BUG_ON(!type);

783 784 785 786
	/*
	 * If ->drop_item() exists, it is responsible for the
	 * config_item_put().
	 */
787 788
	if (type->ct_group_ops && type->ct_group_ops->drop_item)
		type->ct_group_ops->drop_item(to_config_group(parent_item),
789
					      item);
790 791 792 793
	else
		config_item_put(item);
}

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
#ifdef DEBUG
static void configfs_dump_one(struct configfs_dirent *sd, int level)
{
	printk(KERN_INFO "%*s\"%s\":\n", level, " ", configfs_get_name(sd));

#define type_print(_type) if (sd->s_type & _type) printk(KERN_INFO "%*s %s\n", level, " ", #_type);
	type_print(CONFIGFS_ROOT);
	type_print(CONFIGFS_DIR);
	type_print(CONFIGFS_ITEM_ATTR);
	type_print(CONFIGFS_ITEM_LINK);
	type_print(CONFIGFS_USET_DIR);
	type_print(CONFIGFS_USET_DEFAULT);
	type_print(CONFIGFS_USET_DROPPING);
#undef type_print
}

static int configfs_dump(struct configfs_dirent *sd, int level)
{
	struct configfs_dirent *child_sd;
	int ret = 0;

	configfs_dump_one(sd, level);

	if (!(sd->s_type & (CONFIGFS_DIR|CONFIGFS_ROOT)))
		return 0;

	list_for_each_entry(child_sd, &sd->s_children, s_sibling) {
		ret = configfs_dump(child_sd, level + 2);
		if (ret)
			break;
	}

	return ret;
}
#endif


/*
 * configfs_depend_item() and configfs_undepend_item()
 *
 * WARNING: Do not call these from a configfs callback!
 *
 * This describes these functions and their helpers.
 *
 * Allow another kernel system to depend on a config_item.  If this
 * happens, the item cannot go away until the dependant can live without
 * it.  The idea is to give client modules as simple an interface as
 * possible.  When a system asks them to depend on an item, they just
 * call configfs_depend_item().  If the item is live and the client
 * driver is in good shape, we'll happily do the work for them.
 *
 * Why is the locking complex?  Because configfs uses the VFS to handle
 * all locking, but this function is called outside the normal
 * VFS->configfs path.  So it must take VFS locks to prevent the
 * VFS->configfs stuff (configfs_mkdir(), configfs_rmdir(), etc).  This is
 * why you can't call these functions underneath configfs callbacks.
 *
 * Note, btw, that this can be called at *any* time, even when a configfs
 * subsystem isn't registered, or when configfs is loading or unloading.
 * Just like configfs_register_subsystem().  So we take the same
 * precautions.  We pin the filesystem.  We lock each i_mutex _in_order_
 * on our way down the tree.  If we can find the target item in the
 * configfs tree, it must be part of the subsystem tree as well, so we
 * do not need the subsystem semaphore.  Holding the i_mutex chain locks
 * out mkdir() and rmdir(), who might be racing us.
 */

/*
 * configfs_depend_prep()
 *
 * Only subdirectories count here.  Files (CONFIGFS_NOT_PINNED) are
 * attributes.  This is similar but not the same to configfs_detach_prep().
 * Note that configfs_detach_prep() expects the parent to be locked when it
 * is called, but we lock the parent *inside* configfs_depend_prep().  We
 * do that so we can unlock it if we find nothing.
 *
 * Here we do a depth-first search of the dentry hierarchy looking for
 * our object.  We take i_mutex on each step of the way down.  IT IS
 * ESSENTIAL THAT i_mutex LOCKING IS ORDERED.  If we come back up a branch,
 * we'll drop the i_mutex.
 *
 * If the target is not found, -ENOENT is bubbled up and we have released
 * all locks.  If the target was found, the locks will be cleared by
 * configfs_depend_rollback().
 *
 * This adds a requirement that all config_items be unique!
 *
 * This is recursive because the locking traversal is tricky.  There isn't
 * much on the stack, though, so folks that need this function - be careful
 * about your stack!  Patches will be accepted to make it iterative.
 */
static int configfs_depend_prep(struct dentry *origin,
				struct config_item *target)
{
	struct configfs_dirent *child_sd, *sd = origin->d_fsdata;
	int ret = 0;

	BUG_ON(!origin || !sd);

	/* Lock this guy on the way down */
	mutex_lock(&sd->s_dentry->d_inode->i_mutex);
	if (sd->s_element == target)  /* Boo-yah */
		goto out;

	list_for_each_entry(child_sd, &sd->s_children, s_sibling) {
		if (child_sd->s_type & CONFIGFS_DIR) {
			ret = configfs_depend_prep(child_sd->s_dentry,
						   target);
			if (!ret)
				goto out;  /* Child path boo-yah */
		}
	}

	/* We looped all our children and didn't find target */
	mutex_unlock(&sd->s_dentry->d_inode->i_mutex);
	ret = -ENOENT;

out:
	return ret;
}

/*
 * This is ONLY called if configfs_depend_prep() did its job.  So we can
 * trust the entire path from item back up to origin.
 *
 * We walk backwards from item, unlocking each i_mutex.  We finish by
 * unlocking origin.
 */
static void configfs_depend_rollback(struct dentry *origin,
				     struct config_item *item)
{
	struct dentry *dentry = item->ci_dentry;

	while (dentry != origin) {
		mutex_unlock(&dentry->d_inode->i_mutex);
		dentry = dentry->d_parent;
	}

	mutex_unlock(&origin->d_inode->i_mutex);
}

int configfs_depend_item(struct configfs_subsystem *subsys,
			 struct config_item *target)
{
	int ret;
	struct configfs_dirent *p, *root_sd, *subsys_sd = NULL;
	struct config_item *s_item = &subsys->su_group.cg_item;

	/*
	 * Pin the configfs filesystem.  This means we can safely access
	 * the root of the configfs filesystem.
	 */
	ret = configfs_pin_fs();
	if (ret)
		return ret;

	/*
	 * Next, lock the root directory.  We're going to check that the
	 * subsystem is really registered, and so we need to lock out
	 * configfs_[un]register_subsystem().
	 */
	mutex_lock(&configfs_sb->s_root->d_inode->i_mutex);

	root_sd = configfs_sb->s_root->d_fsdata;

	list_for_each_entry(p, &root_sd->s_children, s_sibling) {
		if (p->s_type & CONFIGFS_DIR) {
			if (p->s_element == s_item) {
				subsys_sd = p;
				break;
			}
		}
	}

	if (!subsys_sd) {
		ret = -ENOENT;
		goto out_unlock_fs;
	}

	/* Ok, now we can trust subsys/s_item */

	/* Scan the tree, locking i_mutex recursively, return 0 if found */
	ret = configfs_depend_prep(subsys_sd->s_dentry, target);
	if (ret)
		goto out_unlock_fs;

	/* We hold all i_mutexes from the subsystem down to the target */
	p = target->ci_dentry->d_fsdata;
	p->s_dependent_count += 1;

	configfs_depend_rollback(subsys_sd->s_dentry, target);

out_unlock_fs:
	mutex_unlock(&configfs_sb->s_root->d_inode->i_mutex);

	/*
	 * If we succeeded, the fs is pinned via other methods.  If not,
	 * we're done with it anyway.  So release_fs() is always right.
	 */
	configfs_release_fs();

	return ret;
}
EXPORT_SYMBOL(configfs_depend_item);

/*
 * Release the dependent linkage.  This is much simpler than
 * configfs_depend_item() because we know that that the client driver is
 * pinned, thus the subsystem is pinned, and therefore configfs is pinned.
 */
void configfs_undepend_item(struct configfs_subsystem *subsys,
			    struct config_item *target)
{
	struct configfs_dirent *sd;

	/*
	 * Since we can trust everything is pinned, we just need i_mutex
	 * on the item.
	 */
	mutex_lock(&target->ci_dentry->d_inode->i_mutex);

	sd = target->ci_dentry->d_fsdata;
	BUG_ON(sd->s_dependent_count < 1);

	sd->s_dependent_count -= 1;

	/*
	 * After this unlock, we cannot trust the item to stay alive!
	 * DO NOT REFERENCE item after this unlock.
	 */
	mutex_unlock(&target->ci_dentry->d_inode->i_mutex);
}
EXPORT_SYMBOL(configfs_undepend_item);
1027 1028 1029

static int configfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
1030
	int ret, module_got = 0;
1031 1032 1033 1034 1035 1036
	struct config_group *group;
	struct config_item *item;
	struct config_item *parent_item;
	struct configfs_subsystem *subsys;
	struct configfs_dirent *sd;
	struct config_item_type *type;
1037
	struct module *owner = NULL;
1038 1039
	char *name;

1040 1041 1042 1043
	if (dentry->d_parent == configfs_sb->s_root) {
		ret = -EPERM;
		goto out;
	}
1044 1045

	sd = dentry->d_parent->d_fsdata;
1046 1047 1048 1049
	if (!(sd->s_type & CONFIGFS_USET_DIR)) {
		ret = -EPERM;
		goto out;
	}
1050

1051
	/* Get a working ref for the duration of this function */
1052 1053 1054 1055 1056 1057 1058 1059
	parent_item = configfs_get_config_item(dentry->d_parent);
	type = parent_item->ci_type;
	subsys = to_config_group(parent_item)->cg_subsys;
	BUG_ON(!subsys);

	if (!type || !type->ct_group_ops ||
	    (!type->ct_group_ops->make_group &&
	     !type->ct_group_ops->make_item)) {
1060 1061
		ret = -EPERM;  /* Lack-of-mkdir returns -EPERM */
		goto out_put;
1062 1063 1064 1065
	}

	name = kmalloc(dentry->d_name.len + 1, GFP_KERNEL);
	if (!name) {
1066 1067
		ret = -ENOMEM;
		goto out_put;
1068
	}
1069

1070 1071
	snprintf(name, dentry->d_name.len + 1, "%s", dentry->d_name.name);

1072
	mutex_lock(&subsys->su_mutex);
1073 1074 1075
	group = NULL;
	item = NULL;
	if (type->ct_group_ops->make_group) {
1076 1077
		group = type->ct_group_ops->make_group(to_config_group(parent_item), name);
		if (group) {
1078 1079 1080 1081
			link_group(to_config_group(parent_item), group);
			item = &group->cg_item;
		}
	} else {
1082 1083
		item = type->ct_group_ops->make_item(to_config_group(parent_item), name);
		if (item)
1084 1085
			link_obj(parent_item, item);
	}
1086
	mutex_unlock(&subsys->su_mutex);
1087 1088

	kfree(name);
1089
	if (!item) {
1090
		/*
1091
		 * If item == NULL, then link_obj() was never called.
1092 1093
		 * There are no extra references to clean up.
		 */
1094
		ret = -ENOMEM;
1095
		goto out_put;
1096 1097
	}

1098 1099 1100 1101 1102
	/*
	 * link_obj() has been called (via link_group() for groups).
	 * From here on out, errors must clean that up.
	 */

1103
	type = item->ci_type;
1104 1105 1106 1107
	if (!type) {
		ret = -EINVAL;
		goto out_unlink;
	}
1108

1109 1110 1111 1112 1113
	owner = type->ct_owner;
	if (!try_module_get(owner)) {
		ret = -EINVAL;
		goto out_unlink;
	}
1114

1115 1116 1117 1118 1119 1120 1121
	/*
	 * I hate doing it this way, but if there is
	 * an error,  module_put() probably should
	 * happen after any cleanup.
	 */
	module_got = 1;

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	/*
	 * Make racing rmdir() fail if it did not tag parent with
	 * CONFIGFS_USET_DROPPING
	 * Note: if CONFIGFS_USET_DROPPING is already set, attach_group() will
	 * fail and let rmdir() terminate correctly
	 */
	spin_lock(&configfs_dirent_lock);
	/* This will make configfs_detach_prep() fail */
	sd->s_type |= CONFIGFS_USET_IN_MKDIR;
	spin_unlock(&configfs_dirent_lock);

1133 1134 1135 1136 1137
	if (group)
		ret = configfs_attach_group(parent_item, item, dentry);
	else
		ret = configfs_attach_item(parent_item, item, dentry);

1138 1139 1140 1141
	spin_lock(&configfs_dirent_lock);
	sd->s_type &= ~CONFIGFS_USET_IN_MKDIR;
	spin_unlock(&configfs_dirent_lock);

1142 1143 1144
out_unlink:
	if (ret) {
		/* Tear down everything we built up */
1145
		mutex_lock(&subsys->su_mutex);
1146 1147

		client_disconnect_notify(parent_item, item);
1148 1149 1150 1151 1152
		if (group)
			unlink_group(group);
		else
			unlink_obj(item);
		client_drop_item(parent_item, item);
1153

1154
		mutex_unlock(&subsys->su_mutex);
1155 1156 1157

		if (module_got)
			module_put(owner);
1158 1159
	}

1160 1161
out_put:
	/*
1162 1163 1164
	 * link_obj()/link_group() took a reference from child->parent,
	 * so the parent is safely pinned.  We can drop our working
	 * reference.
1165 1166 1167 1168
	 */
	config_item_put(parent_item);

out:
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	return ret;
}

static int configfs_rmdir(struct inode *dir, struct dentry *dentry)
{
	struct config_item *parent_item;
	struct config_item *item;
	struct configfs_subsystem *subsys;
	struct configfs_dirent *sd;
	struct module *owner = NULL;
	int ret;

	if (dentry->d_parent == configfs_sb->s_root)
		return -EPERM;

	sd = dentry->d_fsdata;
	if (sd->s_type & CONFIGFS_USET_DEFAULT)
		return -EPERM;

1188 1189 1190 1191 1192 1193 1194
	/*
	 * Here's where we check for dependents.  We're protected by
	 * i_mutex.
	 */
	if (sd->s_dependent_count)
		return -EBUSY;

1195
	/* Get a working ref until we have the child */
1196 1197 1198 1199 1200 1201 1202 1203 1204
	parent_item = configfs_get_config_item(dentry->d_parent);
	subsys = to_config_group(parent_item)->cg_subsys;
	BUG_ON(!subsys);

	if (!parent_item->ci_type) {
		config_item_put(parent_item);
		return -EINVAL;
	}

1205
	spin_lock(&configfs_dirent_lock);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	do {
		struct mutex *wait_mutex;

		ret = configfs_detach_prep(dentry, &wait_mutex);
		if (ret) {
			configfs_detach_rollback(dentry);
			spin_unlock(&configfs_dirent_lock);
			if (ret != -EAGAIN) {
				config_item_put(parent_item);
				return ret;
			}

			/* Wait until the racing operation terminates */
			mutex_lock(wait_mutex);
			mutex_unlock(wait_mutex);

			spin_lock(&configfs_dirent_lock);
		}
	} while (ret == -EAGAIN);
1225
	spin_unlock(&configfs_dirent_lock);
1226

1227
	/* Get a working ref for the duration of this function */
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	item = configfs_get_config_item(dentry);

	/* Drop reference from above, item already holds one. */
	config_item_put(parent_item);

	if (item->ci_type)
		owner = item->ci_type->ct_owner;

	if (sd->s_type & CONFIGFS_USET_DIR) {
		configfs_detach_group(item);

1239
		mutex_lock(&subsys->su_mutex);
1240
		client_disconnect_notify(parent_item, item);
1241 1242 1243 1244
		unlink_group(to_config_group(item));
	} else {
		configfs_detach_item(item);

1245
		mutex_lock(&subsys->su_mutex);
1246
		client_disconnect_notify(parent_item, item);
1247 1248 1249 1250
		unlink_obj(item);
	}

	client_drop_item(parent_item, item);
1251
	mutex_unlock(&subsys->su_mutex);
1252 1253 1254 1255 1256 1257 1258 1259 1260

	/* Drop our reference from above */
	config_item_put(item);

	module_put(owner);

	return 0;
}

1261
const struct inode_operations configfs_dir_inode_operations = {
1262 1263 1264 1265 1266
	.mkdir		= configfs_mkdir,
	.rmdir		= configfs_rmdir,
	.symlink	= configfs_symlink,
	.unlink		= configfs_unlink,
	.lookup		= configfs_lookup,
1267
	.setattr	= configfs_setattr,
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
};

#if 0
int configfs_rename_dir(struct config_item * item, const char *new_name)
{
	int error = 0;
	struct dentry * new_dentry, * parent;

	if (!strcmp(config_item_name(item), new_name))
		return -EINVAL;

	if (!item->parent)
		return -EINVAL;

	down_write(&configfs_rename_sem);
	parent = item->parent->dentry;

1285
	mutex_lock(&parent->d_inode->i_mutex);
1286 1287 1288

	new_dentry = lookup_one_len(new_name, parent, strlen(new_name));
	if (!IS_ERR(new_dentry)) {
1289
		if (!new_dentry->d_inode) {
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
			error = config_item_set_name(item, "%s", new_name);
			if (!error) {
				d_add(new_dentry, NULL);
				d_move(item->dentry, new_dentry);
			}
			else
				d_delete(new_dentry);
		} else
			error = -EEXIST;
		dput(new_dentry);
	}
1301
	mutex_unlock(&parent->d_inode->i_mutex);
1302 1303 1304 1305 1306 1307 1308 1309
	up_write(&configfs_rename_sem);

	return error;
}
#endif

static int configfs_dir_open(struct inode *inode, struct file *file)
{
1310
	struct dentry * dentry = file->f_path.dentry;
1311 1312
	struct configfs_dirent * parent_sd = dentry->d_fsdata;

1313
	mutex_lock(&dentry->d_inode->i_mutex);
1314
	file->private_data = configfs_new_dirent(parent_sd, NULL);
1315
	mutex_unlock(&dentry->d_inode->i_mutex);
1316

1317
	return IS_ERR(file->private_data) ? PTR_ERR(file->private_data) : 0;
1318 1319 1320 1321 1322

}

static int configfs_dir_close(struct inode *inode, struct file *file)
{
1323
	struct dentry * dentry = file->f_path.dentry;
1324 1325
	struct configfs_dirent * cursor = file->private_data;

1326
	mutex_lock(&dentry->d_inode->i_mutex);
1327
	spin_lock(&configfs_dirent_lock);
1328
	list_del_init(&cursor->s_sibling);
1329
	spin_unlock(&configfs_dirent_lock);
1330
	mutex_unlock(&dentry->d_inode->i_mutex);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344

	release_configfs_dirent(cursor);

	return 0;
}

/* Relationship between s_mode and the DT_xxx types */
static inline unsigned char dt_type(struct configfs_dirent *sd)
{
	return (sd->s_mode >> 12) & 15;
}

static int configfs_readdir(struct file * filp, void * dirent, filldir_t filldir)
{
1345
	struct dentry *dentry = filp->f_path.dentry;
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	struct configfs_dirent * parent_sd = dentry->d_fsdata;
	struct configfs_dirent *cursor = filp->private_data;
	struct list_head *p, *q = &cursor->s_sibling;
	ino_t ino;
	int i = filp->f_pos;

	switch (i) {
		case 0:
			ino = dentry->d_inode->i_ino;
			if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
				break;
			filp->f_pos++;
			i++;
			/* fallthrough */
		case 1:
			ino = parent_ino(dentry);
			if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
				break;
			filp->f_pos++;
			i++;
			/* fallthrough */
		default:
			if (filp->f_pos == 2) {
1369
				spin_lock(&configfs_dirent_lock);
A
Akinobu Mita 已提交
1370
				list_move(q, &parent_sd->s_children);
1371
				spin_unlock(&configfs_dirent_lock);
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
			}
			for (p=q->next; p!= &parent_sd->s_children; p=p->next) {
				struct configfs_dirent *next;
				const char * name;
				int len;

				next = list_entry(p, struct configfs_dirent,
						   s_sibling);
				if (!next->s_element)
					continue;

				name = configfs_get_name(next);
				len = strlen(name);
				if (next->s_dentry)
					ino = next->s_dentry->d_inode->i_ino;
				else
					ino = iunique(configfs_sb, 2);

				if (filldir(dirent, name, len, filp->f_pos, ino,
						 dt_type(next)) < 0)
					return 0;

1394
				spin_lock(&configfs_dirent_lock);
A
Akinobu Mita 已提交
1395
				list_move(q, p);
1396
				spin_unlock(&configfs_dirent_lock);
1397 1398 1399 1400 1401 1402 1403 1404 1405
				p = q;
				filp->f_pos++;
			}
	}
	return 0;
}

static loff_t configfs_dir_lseek(struct file * file, loff_t offset, int origin)
{
1406
	struct dentry * dentry = file->f_path.dentry;
1407

1408
	mutex_lock(&dentry->d_inode->i_mutex);
1409 1410 1411 1412 1413 1414 1415
	switch (origin) {
		case 1:
			offset += file->f_pos;
		case 0:
			if (offset >= 0)
				break;
		default:
1416
			mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
			return -EINVAL;
	}
	if (offset != file->f_pos) {
		file->f_pos = offset;
		if (file->f_pos >= 2) {
			struct configfs_dirent *sd = dentry->d_fsdata;
			struct configfs_dirent *cursor = file->private_data;
			struct list_head *p;
			loff_t n = file->f_pos - 2;

1427
			spin_lock(&configfs_dirent_lock);
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
			list_del(&cursor->s_sibling);
			p = sd->s_children.next;
			while (n && p != &sd->s_children) {
				struct configfs_dirent *next;
				next = list_entry(p, struct configfs_dirent,
						   s_sibling);
				if (next->s_element)
					n--;
				p = p->next;
			}
			list_add_tail(&cursor->s_sibling, p);
1439
			spin_unlock(&configfs_dirent_lock);
1440 1441
		}
	}
1442
	mutex_unlock(&dentry->d_inode->i_mutex);
1443 1444 1445
	return offset;
}

1446
const struct file_operations configfs_dir_operations = {
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	.open		= configfs_dir_open,
	.release	= configfs_dir_close,
	.llseek		= configfs_dir_lseek,
	.read		= generic_read_dir,
	.readdir	= configfs_readdir,
};

int configfs_register_subsystem(struct configfs_subsystem *subsys)
{
	int err;
	struct config_group *group = &subsys->su_group;
	struct qstr name;
	struct dentry *dentry;
	struct configfs_dirent *sd;

	err = configfs_pin_fs();
	if (err)
		return err;

	if (!group->cg_item.ci_name)
		group->cg_item.ci_name = group->cg_item.ci_namebuf;

	sd = configfs_sb->s_root->d_fsdata;
	link_group(to_config_group(sd->s_element), group);

1472 1473
	mutex_lock_nested(&configfs_sb->s_root->d_inode->i_mutex,
			I_MUTEX_PARENT);
1474 1475 1476 1477 1478 1479 1480

	name.name = group->cg_item.ci_name;
	name.len = strlen(name.name);
	name.hash = full_name_hash(name.name, name.len);

	err = -ENOMEM;
	dentry = d_alloc(configfs_sb->s_root, &name);
1481 1482
	if (dentry) {
		d_add(dentry, NULL);
1483

1484 1485 1486 1487 1488 1489 1490
		err = configfs_attach_group(sd->s_element, &group->cg_item,
					    dentry);
		if (err) {
			d_delete(dentry);
			dput(dentry);
		}
	}
1491

1492
	mutex_unlock(&configfs_sb->s_root->d_inode->i_mutex);
1493

1494 1495 1496
	if (err) {
		unlink_group(group);
		configfs_release_fs();
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	}

	return err;
}

void configfs_unregister_subsystem(struct configfs_subsystem *subsys)
{
	struct config_group *group = &subsys->su_group;
	struct dentry *dentry = group->cg_item.ci_dentry;

	if (dentry->d_parent != configfs_sb->s_root) {
		printk(KERN_ERR "configfs: Tried to unregister non-subsystem!\n");
		return;
	}

M
Mark Fasheh 已提交
1512 1513 1514
	mutex_lock_nested(&configfs_sb->s_root->d_inode->i_mutex,
			  I_MUTEX_PARENT);
	mutex_lock_nested(&dentry->d_inode->i_mutex, I_MUTEX_CHILD);
1515
	spin_lock(&configfs_dirent_lock);
1516
	if (configfs_detach_prep(dentry, NULL)) {
1517 1518
		printk(KERN_ERR "configfs: Tried to unregister non-empty subsystem!\n");
	}
1519
	spin_unlock(&configfs_dirent_lock);
1520 1521
	configfs_detach_group(&group->cg_item);
	dentry->d_inode->i_flags |= S_DEAD;
1522
	mutex_unlock(&dentry->d_inode->i_mutex);
1523 1524 1525

	d_delete(dentry);

1526
	mutex_unlock(&configfs_sb->s_root->d_inode->i_mutex);
1527 1528 1529 1530 1531 1532 1533 1534 1535

	dput(dentry);

	unlink_group(group);
	configfs_release_fs();
}

EXPORT_SYMBOL(configfs_register_subsystem);
EXPORT_SYMBOL(configfs_unregister_subsystem);