tick-broadcast.c 14.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * linux/kernel/time/tick-broadcast.c
 *
 * This file contains functions which emulate a local clock-event
 * device via a broadcast event source.
 *
 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 *
 * This code is licenced under the GPL version 2. For details see
 * kernel-base/COPYING.
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
17
#include <linux/interrupt.h>
18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
#include <linux/tick.h>

#include "tick-internal.h"

/*
 * Broadcast support for broken x86 hardware, where the local apic
 * timer stops in C3 state.
 */

30
static struct tick_device tick_broadcast_device;
31 32 33
/* FIXME: Use cpumask_var_t. */
static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS);
static DECLARE_BITMAP(tmpmask, NR_CPUS);
34
static DEFINE_SPINLOCK(tick_broadcast_lock);
35
static int tick_broadcast_force;
36

37 38 39 40 41 42
#ifdef CONFIG_TICK_ONESHOT
static void tick_broadcast_clear_oneshot(int cpu);
#else
static inline void tick_broadcast_clear_oneshot(int cpu) { }
#endif

43 44 45 46 47 48 49 50
/*
 * Debugging: see timer_list.c
 */
struct tick_device *tick_get_broadcast_device(void)
{
	return &tick_broadcast_device;
}

51
struct cpumask *tick_get_broadcast_mask(void)
52
{
53
	return to_cpumask(tick_broadcast_mask);
54 55
}

56 57 58 59 60
/*
 * Start the device in periodic mode
 */
static void tick_broadcast_start_periodic(struct clock_event_device *bc)
{
T
Thomas Gleixner 已提交
61
	if (bc)
62 63 64 65 66 67 68 69
		tick_setup_periodic(bc, 1);
}

/*
 * Check, if the device can be utilized as broadcast device:
 */
int tick_check_broadcast_device(struct clock_event_device *dev)
{
70 71 72
	if ((tick_broadcast_device.evtdev &&
	     tick_broadcast_device.evtdev->rating >= dev->rating) ||
	     (dev->features & CLOCK_EVT_FEAT_C3STOP))
73 74 75 76
		return 0;

	clockevents_exchange_device(NULL, dev);
	tick_broadcast_device.evtdev = dev;
77
	if (!cpumask_empty(tick_get_broadcast_mask()))
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
		tick_broadcast_start_periodic(dev);
	return 1;
}

/*
 * Check, if the device is the broadcast device
 */
int tick_is_broadcast_device(struct clock_event_device *dev)
{
	return (dev && tick_broadcast_device.evtdev == dev);
}

/*
 * Check, if the device is disfunctional and a place holder, which
 * needs to be handled by the broadcast device.
 */
int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
{
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&tick_broadcast_lock, flags);

	/*
	 * Devices might be registered with both periodic and oneshot
	 * mode disabled. This signals, that the device needs to be
	 * operated from the broadcast device and is a placeholder for
	 * the cpu local device.
	 */
	if (!tick_device_is_functional(dev)) {
		dev->event_handler = tick_handle_periodic;
109
		cpumask_set_cpu(cpu, tick_get_broadcast_mask());
110 111
		tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
		ret = 1;
112 113 114 115 116 117 118 119
	} else {
		/*
		 * When the new device is not affected by the stop
		 * feature and the cpu is marked in the broadcast mask
		 * then clear the broadcast bit.
		 */
		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
			int cpu = smp_processor_id();
120

121
			cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
122 123 124
			tick_broadcast_clear_oneshot(cpu);
		}
	}
125 126 127 128 129
	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
	return ret;
}

/*
130
 * Broadcast the event to the cpus, which are set in the mask (mangled).
131
 */
132
static void tick_do_broadcast(struct cpumask *mask)
133
{
134
	int cpu = smp_processor_id();
135 136 137 138 139
	struct tick_device *td;

	/*
	 * Check, if the current cpu is in the mask
	 */
140 141
	if (cpumask_test_cpu(cpu, mask)) {
		cpumask_clear_cpu(cpu, mask);
142 143 144 145
		td = &per_cpu(tick_cpu_device, cpu);
		td->evtdev->event_handler(td->evtdev);
	}

146
	if (!cpumask_empty(mask)) {
147 148 149 150 151 152
		/*
		 * It might be necessary to actually check whether the devices
		 * have different broadcast functions. For now, just use the
		 * one of the first device. This works as long as we have this
		 * misfeature only on x86 (lapic)
		 */
153 154
		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
		td->evtdev->broadcast(mask);
155 156 157 158 159 160 161 162 163 164 165
	}
}

/*
 * Periodic broadcast:
 * - invoke the broadcast handlers
 */
static void tick_do_periodic_broadcast(void)
{
	spin_lock(&tick_broadcast_lock);

166 167 168
	cpumask_and(to_cpumask(tmpmask),
		    cpu_online_mask, tick_get_broadcast_mask());
	tick_do_broadcast(to_cpumask(tmpmask));
169 170 171 172 173 174 175 176 177

	spin_unlock(&tick_broadcast_lock);
}

/*
 * Event handler for periodic broadcast ticks
 */
static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
{
178 179
	ktime_t next;

180 181 182 183 184 185 186 187 188 189
	tick_do_periodic_broadcast();

	/*
	 * The device is in periodic mode. No reprogramming necessary:
	 */
	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
		return;

	/*
	 * Setup the next period for devices, which do not have
190 191 192 193
	 * periodic mode. We read dev->next_event first and add to it
	 * when the event alrady expired. clockevents_program_event()
	 * sets dev->next_event only when the event is really
	 * programmed to the device.
194
	 */
195 196
	for (next = dev->next_event; ;) {
		next = ktime_add(next, tick_period);
197 198 199 200 201 202 203 204 205 206 207

		if (!clockevents_program_event(dev, next, ktime_get()))
			return;
		tick_do_periodic_broadcast();
	}
}

/*
 * Powerstate information: The system enters/leaves a state, where
 * affected devices might stop
 */
208
static void tick_do_broadcast_on_off(unsigned long *reason)
209 210 211
{
	struct clock_event_device *bc, *dev;
	struct tick_device *td;
212
	unsigned long flags;
213
	int cpu, bc_stopped;
214 215 216 217 218 219 220 221 222

	spin_lock_irqsave(&tick_broadcast_lock, flags);

	cpu = smp_processor_id();
	td = &per_cpu(tick_cpu_device, cpu);
	dev = td->evtdev;
	bc = tick_broadcast_device.evtdev;

	/*
223
	 * Is the device not affected by the powerstate ?
224
	 */
225
	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
226 227
		goto out;

228 229
	if (!tick_device_is_functional(dev))
		goto out;
230

231
	bc_stopped = cpumask_empty(tick_get_broadcast_mask());
232

233 234 235
	switch (*reason) {
	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
236 237
		if (!cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
			cpumask_set_cpu(cpu, tick_get_broadcast_mask());
238 239
			if (tick_broadcast_device.mode ==
			    TICKDEV_MODE_PERIODIC)
240
				clockevents_shutdown(dev);
241
		}
242
		if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
243
			tick_broadcast_force = 1;
244 245
		break;
	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
246
		if (!tick_broadcast_force &&
247 248
		    cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
			cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
249 250
			if (tick_broadcast_device.mode ==
			    TICKDEV_MODE_PERIODIC)
251 252
				tick_setup_periodic(dev, 0);
		}
253
		break;
254 255
	}

256
	if (cpumask_empty(tick_get_broadcast_mask())) {
257
		if (!bc_stopped)
258
			clockevents_shutdown(bc);
259
	} else if (bc_stopped) {
260 261
		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
			tick_broadcast_start_periodic(bc);
262 263
		else
			tick_broadcast_setup_oneshot(bc);
264 265 266 267 268 269 270 271 272 273 274
	}
out:
	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}

/*
 * Powerstate information: The system enters/leaves a state, where
 * affected devices might stop.
 */
void tick_broadcast_on_off(unsigned long reason, int *oncpu)
{
275
	if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
276
		printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
277
		       "offline CPU #%d\n", *oncpu);
278
	else
279
		tick_do_broadcast_on_off(&reason);
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
}

/*
 * Set the periodic handler depending on broadcast on/off
 */
void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
{
	if (!broadcast)
		dev->event_handler = tick_handle_periodic;
	else
		dev->event_handler = tick_handle_periodic_broadcast;
}

/*
 * Remove a CPU from broadcasting
 */
void tick_shutdown_broadcast(unsigned int *cpup)
{
	struct clock_event_device *bc;
	unsigned long flags;
	unsigned int cpu = *cpup;

	spin_lock_irqsave(&tick_broadcast_lock, flags);

	bc = tick_broadcast_device.evtdev;
305
	cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
306 307

	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
308
		if (bc && cpumask_empty(tick_get_broadcast_mask()))
309
			clockevents_shutdown(bc);
310 311 312 313
	}

	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}
314

315 316 317 318 319 320 321 322
void tick_suspend_broadcast(void)
{
	struct clock_event_device *bc;
	unsigned long flags;

	spin_lock_irqsave(&tick_broadcast_lock, flags);

	bc = tick_broadcast_device.evtdev;
T
Thomas Gleixner 已提交
323
	if (bc)
324
		clockevents_shutdown(bc);
325 326 327 328 329 330 331 332 333 334 335 336 337 338

	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}

int tick_resume_broadcast(void)
{
	struct clock_event_device *bc;
	unsigned long flags;
	int broadcast = 0;

	spin_lock_irqsave(&tick_broadcast_lock, flags);

	bc = tick_broadcast_device.evtdev;

339
	if (bc) {
T
Thomas Gleixner 已提交
340 341
		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);

342 343
		switch (tick_broadcast_device.mode) {
		case TICKDEV_MODE_PERIODIC:
344
			if (!cpumask_empty(tick_get_broadcast_mask()))
345
				tick_broadcast_start_periodic(bc);
346 347
			broadcast = cpumask_test_cpu(smp_processor_id(),
						     tick_get_broadcast_mask());
348 349 350 351 352
			break;
		case TICKDEV_MODE_ONESHOT:
			broadcast = tick_resume_broadcast_oneshot(bc);
			break;
		}
353 354 355 356 357 358 359
	}
	spin_unlock_irqrestore(&tick_broadcast_lock, flags);

	return broadcast;
}


360 361
#ifdef CONFIG_TICK_ONESHOT

362 363
/* FIXME: use cpumask_var_t. */
static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS);
364

365
/*
366
 * Exposed for debugging: see timer_list.c
367
 */
368
struct cpumask *tick_get_broadcast_oneshot_mask(void)
369
{
370
	return to_cpumask(tick_broadcast_oneshot_mask);
371 372
}

373 374 375
static int tick_broadcast_set_event(ktime_t expires, int force)
{
	struct clock_event_device *bc = tick_broadcast_device.evtdev;
376 377

	return tick_dev_program_event(bc, expires, force);
378 379
}

380 381 382
int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
{
	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
383
	return 0;
384 385
}

386 387 388 389 390 391
/*
 * Called from irq_enter() when idle was interrupted to reenable the
 * per cpu device.
 */
void tick_check_oneshot_broadcast(int cpu)
{
392
	if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) {
393 394 395 396 397 398
		struct tick_device *td = &per_cpu(tick_cpu_device, cpu);

		clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
	}
}

399 400 401 402 403 404
/*
 * Handle oneshot mode broadcasting
 */
static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
{
	struct tick_device *td;
405
	ktime_t now, next_event;
406 407 408 409 410
	int cpu;

	spin_lock(&tick_broadcast_lock);
again:
	dev->next_event.tv64 = KTIME_MAX;
411
	next_event.tv64 = KTIME_MAX;
412
	cpumask_clear(to_cpumask(tmpmask));
413 414
	now = ktime_get();
	/* Find all expired events */
415
	for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) {
416 417
		td = &per_cpu(tick_cpu_device, cpu);
		if (td->evtdev->next_event.tv64 <= now.tv64)
418
			cpumask_set_cpu(cpu, to_cpumask(tmpmask));
419 420
		else if (td->evtdev->next_event.tv64 < next_event.tv64)
			next_event.tv64 = td->evtdev->next_event.tv64;
421 422 423
	}

	/*
424 425
	 * Wakeup the cpus which have an expired event.
	 */
426
	tick_do_broadcast(to_cpumask(tmpmask));
427 428 429 430 431 432 433 434 435 436

	/*
	 * Two reasons for reprogram:
	 *
	 * - The global event did not expire any CPU local
	 * events. This happens in dyntick mode, as the maximum PIT
	 * delta is quite small.
	 *
	 * - There are pending events on sleeping CPUs which were not
	 * in the event mask
437
	 */
438
	if (next_event.tv64 != KTIME_MAX) {
439
		/*
440 441
		 * Rearm the broadcast device. If event expired,
		 * repeat the above
442
		 */
443
		if (tick_broadcast_set_event(next_event, 0))
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
			goto again;
	}
	spin_unlock(&tick_broadcast_lock);
}

/*
 * Powerstate information: The system enters/leaves a state, where
 * affected devices might stop
 */
void tick_broadcast_oneshot_control(unsigned long reason)
{
	struct clock_event_device *bc, *dev;
	struct tick_device *td;
	unsigned long flags;
	int cpu;

	spin_lock_irqsave(&tick_broadcast_lock, flags);

	/*
	 * Periodic mode does not care about the enter/exit of power
	 * states
	 */
	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
		goto out;

	bc = tick_broadcast_device.evtdev;
	cpu = smp_processor_id();
	td = &per_cpu(tick_cpu_device, cpu);
	dev = td->evtdev;

	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
		goto out;

	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
478 479
		if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
			cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask());
480 481 482 483 484
			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
			if (dev->next_event.tv64 < bc->next_event.tv64)
				tick_broadcast_set_event(dev->next_event, 1);
		}
	} else {
485 486 487
		if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
			cpumask_clear_cpu(cpu,
					  tick_get_broadcast_oneshot_mask());
488 489 490 491 492 493 494 495 496 497
			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
			if (dev->next_event.tv64 != KTIME_MAX)
				tick_program_event(dev->next_event, 1);
		}
	}

out:
	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}

498 499 500 501 502 503 504
/*
 * Reset the one shot broadcast for a cpu
 *
 * Called with tick_broadcast_lock held
 */
static void tick_broadcast_clear_oneshot(int cpu)
{
505
	cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
506 507
}

508 509
static void tick_broadcast_init_next_event(struct cpumask *mask,
					   ktime_t expires)
510 511 512 513
{
	struct tick_device *td;
	int cpu;

514
	for_each_cpu(cpu, mask) {
515 516 517 518 519 520
		td = &per_cpu(tick_cpu_device, cpu);
		if (td->evtdev)
			td->evtdev->next_event = expires;
	}
}

521
/**
522
 * tick_broadcast_setup_oneshot - setup the broadcast device
523 524 525
 */
void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
{
526 527
	/* Set it up only once ! */
	if (bc->event_handler != tick_handle_oneshot_broadcast) {
528 529 530
		int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
		int cpu = smp_processor_id();

531 532
		bc->event_handler = tick_handle_oneshot_broadcast;
		clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
533 534 535 536 537 538 539 540 541 542

		/* Take the do_timer update */
		tick_do_timer_cpu = cpu;

		/*
		 * We must be careful here. There might be other CPUs
		 * waiting for periodic broadcast. We need to set the
		 * oneshot_mask bits for those and program the
		 * broadcast device to fire.
		 */
543 544 545 546 547 548 549 550 551
		cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask());
		cpumask_clear_cpu(cpu, to_cpumask(tmpmask));
		cpumask_or(tick_get_broadcast_oneshot_mask(),
			   tick_get_broadcast_oneshot_mask(),
			   to_cpumask(tmpmask));

		if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) {
			tick_broadcast_init_next_event(to_cpumask(tmpmask),
						       tick_next_period);
552 553 554
			tick_broadcast_set_event(tick_next_period, 1);
		} else
			bc->next_event.tv64 = KTIME_MAX;
555
	}
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
}

/*
 * Select oneshot operating mode for the broadcast device
 */
void tick_broadcast_switch_to_oneshot(void)
{
	struct clock_event_device *bc;
	unsigned long flags;

	spin_lock_irqsave(&tick_broadcast_lock, flags);

	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
	bc = tick_broadcast_device.evtdev;
	if (bc)
		tick_broadcast_setup_oneshot(bc);
	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}


/*
 * Remove a dead CPU from broadcasting
 */
void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
{
	unsigned long flags;
	unsigned int cpu = *cpup;

	spin_lock_irqsave(&tick_broadcast_lock, flags);

586 587 588 589
	/*
	 * Clear the broadcast mask flag for the dead cpu, but do not
	 * stop the broadcast device!
	 */
590
	cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
591 592 593 594

	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}

595 596 597 598 599 600 601 602
/*
 * Check, whether the broadcast device is in one shot mode
 */
int tick_broadcast_oneshot_active(void)
{
	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
}

603
#endif