tx.c 56.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *
 * Transmit and frame generation functions.
 */

#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/bitmap.h>
20
#include <linux/rcupdate.h>
21
#include <net/net_namespace.h>
22 23 24 25 26 27 28
#include <net/ieee80211_radiotap.h>
#include <net/cfg80211.h>
#include <net/mac80211.h>
#include <asm/unaligned.h>

#include "ieee80211_i.h"
#include "ieee80211_led.h"
29 30 31
#ifdef CONFIG_MAC80211_MESH
#include "mesh.h"
#endif
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
#include "wep.h"
#include "wpa.h"
#include "wme.h"
#include "ieee80211_rate.h"

#define IEEE80211_TX_OK		0
#define IEEE80211_TX_AGAIN	1
#define IEEE80211_TX_FRAG_AGAIN	2

/* misc utils */

static inline void ieee80211_include_sequence(struct ieee80211_sub_if_data *sdata,
					      struct ieee80211_hdr *hdr)
{
	/* Set the sequence number for this frame. */
	hdr->seq_ctrl = cpu_to_le16(sdata->sequence);

	/* Increase the sequence number. */
	sdata->sequence = (sdata->sequence + 0x10) & IEEE80211_SCTL_SEQ;
}

#ifdef CONFIG_MAC80211_LOWTX_FRAME_DUMP
static void ieee80211_dump_frame(const char *ifname, const char *title,
				 const struct sk_buff *skb)
{
	const struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
	u16 fc;
	int hdrlen;
60
	DECLARE_MAC_BUF(mac);
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

	printk(KERN_DEBUG "%s: %s (len=%d)", ifname, title, skb->len);
	if (skb->len < 4) {
		printk("\n");
		return;
	}

	fc = le16_to_cpu(hdr->frame_control);
	hdrlen = ieee80211_get_hdrlen(fc);
	if (hdrlen > skb->len)
		hdrlen = skb->len;
	if (hdrlen >= 4)
		printk(" FC=0x%04x DUR=0x%04x",
		       fc, le16_to_cpu(hdr->duration_id));
	if (hdrlen >= 10)
76
		printk(" A1=%s", print_mac(mac, hdr->addr1));
77
	if (hdrlen >= 16)
78
		printk(" A2=%s", print_mac(mac, hdr->addr2));
79
	if (hdrlen >= 24)
80
		printk(" A3=%s", print_mac(mac, hdr->addr3));
81
	if (hdrlen >= 30)
82
		printk(" A4=%s", print_mac(mac, hdr->addr4));
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
	printk("\n");
}
#else /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */
static inline void ieee80211_dump_frame(const char *ifname, const char *title,
					struct sk_buff *skb)
{
}
#endif /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */

static u16 ieee80211_duration(struct ieee80211_txrx_data *tx, int group_addr,
			      int next_frag_len)
{
	int rate, mrate, erp, dur, i;
	struct ieee80211_rate *txrate = tx->u.tx.rate;
	struct ieee80211_local *local = tx->local;
98
	struct ieee80211_supported_band *sband;
99

100 101 102 103 104
	sband = local->hw.wiphy->bands[local->hw.conf.channel->band];

	erp = 0;
	if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
		erp = txrate->flags & IEEE80211_RATE_ERP_G;
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

	/*
	 * data and mgmt (except PS Poll):
	 * - during CFP: 32768
	 * - during contention period:
	 *   if addr1 is group address: 0
	 *   if more fragments = 0 and addr1 is individual address: time to
	 *      transmit one ACK plus SIFS
	 *   if more fragments = 1 and addr1 is individual address: time to
	 *      transmit next fragment plus 2 x ACK plus 3 x SIFS
	 *
	 * IEEE 802.11, 9.6:
	 * - control response frame (CTS or ACK) shall be transmitted using the
	 *   same rate as the immediately previous frame in the frame exchange
	 *   sequence, if this rate belongs to the PHY mandatory rates, or else
	 *   at the highest possible rate belonging to the PHY rates in the
	 *   BSSBasicRateSet
	 */

	if ((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) {
		/* TODO: These control frames are not currently sent by
		 * 80211.o, but should they be implemented, this function
		 * needs to be updated to support duration field calculation.
		 *
		 * RTS: time needed to transmit pending data/mgmt frame plus
		 *    one CTS frame plus one ACK frame plus 3 x SIFS
		 * CTS: duration of immediately previous RTS minus time
		 *    required to transmit CTS and its SIFS
		 * ACK: 0 if immediately previous directed data/mgmt had
		 *    more=0, with more=1 duration in ACK frame is duration
		 *    from previous frame minus time needed to transmit ACK
		 *    and its SIFS
		 * PS Poll: BIT(15) | BIT(14) | aid
		 */
		return 0;
	}

	/* data/mgmt */
	if (0 /* FIX: data/mgmt during CFP */)
		return 32768;

	if (group_addr) /* Group address as the destination - no ACK */
		return 0;

	/* Individual destination address:
	 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
	 * CTS and ACK frames shall be transmitted using the highest rate in
	 * basic rate set that is less than or equal to the rate of the
	 * immediately previous frame and that is using the same modulation
	 * (CCK or OFDM). If no basic rate set matches with these requirements,
	 * the highest mandatory rate of the PHY that is less than or equal to
	 * the rate of the previous frame is used.
	 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
	 */
	rate = -1;
160 161 162 163
	/* use lowest available if everything fails */
	mrate = sband->bitrates[0].bitrate;
	for (i = 0; i < sband->n_bitrates; i++) {
		struct ieee80211_rate *r = &sband->bitrates[i];
164

165 166
		if (r->bitrate > txrate->bitrate)
			break;
167

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
		if (tx->sdata->basic_rates & BIT(i))
			rate = r->bitrate;

		switch (sband->band) {
		case IEEE80211_BAND_2GHZ: {
			u32 flag;
			if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
				flag = IEEE80211_RATE_MANDATORY_G;
			else
				flag = IEEE80211_RATE_MANDATORY_B;
			if (r->flags & flag)
				mrate = r->bitrate;
			break;
		}
		case IEEE80211_BAND_5GHZ:
			if (r->flags & IEEE80211_RATE_MANDATORY_A)
				mrate = r->bitrate;
			break;
		case IEEE80211_NUM_BANDS:
			WARN_ON(1);
			break;
		}
190 191 192 193 194 195 196 197 198 199 200 201
	}
	if (rate == -1) {
		/* No matching basic rate found; use highest suitable mandatory
		 * PHY rate */
		rate = mrate;
	}

	/* Time needed to transmit ACK
	 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
	 * to closest integer */

	dur = ieee80211_frame_duration(local, 10, rate, erp,
202
				tx->sdata->bss_conf.use_short_preamble);
203 204 205 206 207 208 209

	if (next_frag_len) {
		/* Frame is fragmented: duration increases with time needed to
		 * transmit next fragment plus ACK and 2 x SIFS. */
		dur *= 2; /* ACK + SIFS */
		/* next fragment */
		dur += ieee80211_frame_duration(local, next_frag_len,
210
				txrate->bitrate, erp,
211
				tx->sdata->bss_conf.use_short_preamble);
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	}

	return dur;
}

static inline int __ieee80211_queue_stopped(const struct ieee80211_local *local,
					    int queue)
{
	return test_bit(IEEE80211_LINK_STATE_XOFF, &local->state[queue]);
}

static inline int __ieee80211_queue_pending(const struct ieee80211_local *local,
					    int queue)
{
	return test_bit(IEEE80211_LINK_STATE_PENDING, &local->state[queue]);
}

static int inline is_ieee80211_device(struct net_device *dev,
				      struct net_device *master)
{
	return (wdev_priv(dev->ieee80211_ptr) ==
		wdev_priv(master->ieee80211_ptr));
}

/* tx handlers */

238
static ieee80211_tx_result
239 240 241 242 243 244 245 246
ieee80211_tx_h_check_assoc(struct ieee80211_txrx_data *tx)
{
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
	struct sk_buff *skb = tx->skb;
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
#endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
	u32 sta_flags;

247
	if (unlikely(tx->flags & IEEE80211_TXRXD_TX_INJECTED))
248
		return TX_CONTINUE;
249

Z
Zhu Yi 已提交
250
	if (unlikely(tx->local->sta_sw_scanning) &&
251 252
	    ((tx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
	     (tx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PROBE_REQ))
253
		return TX_DROP;
254

255 256 257
	if (tx->sdata->vif.type == IEEE80211_IF_TYPE_MESH_POINT)
		return TX_CONTINUE;

258
	if (tx->flags & IEEE80211_TXRXD_TXPS_BUFFERED)
259
		return TX_CONTINUE;
260 261 262

	sta_flags = tx->sta ? tx->sta->flags : 0;

263
	if (likely(tx->flags & IEEE80211_TXRXD_TXUNICAST)) {
264
		if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
265
			     tx->sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
266 267
			     (tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)) {
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
268
			DECLARE_MAC_BUF(mac);
269
			printk(KERN_DEBUG "%s: dropped data frame to not "
270 271
			       "associated station %s\n",
			       tx->dev->name, print_mac(mac, hdr->addr1));
272 273
#endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
			I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
274
			return TX_DROP;
275 276 277 278
		}
	} else {
		if (unlikely((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
			     tx->local->num_sta == 0 &&
279
			     tx->sdata->vif.type != IEEE80211_IF_TYPE_IBSS)) {
280 281 282 283
			/*
			 * No associated STAs - no need to send multicast
			 * frames.
			 */
284
			return TX_DROP;
285
		}
286
		return TX_CONTINUE;
287 288
	}

289
	return TX_CONTINUE;
290 291
}

292
static ieee80211_tx_result
293 294 295 296 297 298 299
ieee80211_tx_h_sequence(struct ieee80211_txrx_data *tx)
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;

	if (ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control)) >= 24)
		ieee80211_include_sequence(tx->sdata, hdr);

300
	return TX_CONTINUE;
301 302 303 304 305 306 307 308 309 310 311 312 313
}

/* This function is called whenever the AP is about to exceed the maximum limit
 * of buffered frames for power saving STAs. This situation should not really
 * happen often during normal operation, so dropping the oldest buffered packet
 * from each queue should be OK to make some room for new frames. */
static void purge_old_ps_buffers(struct ieee80211_local *local)
{
	int total = 0, purged = 0;
	struct sk_buff *skb;
	struct ieee80211_sub_if_data *sdata;
	struct sta_info *sta;

314 315 316 317 318 319
	/*
	 * virtual interfaces are protected by RCU
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
320 321
		struct ieee80211_if_ap *ap;
		if (sdata->dev == local->mdev ||
322
		    sdata->vif.type != IEEE80211_IF_TYPE_AP)
323 324 325 326 327 328 329 330 331
			continue;
		ap = &sdata->u.ap;
		skb = skb_dequeue(&ap->ps_bc_buf);
		if (skb) {
			purged++;
			dev_kfree_skb(skb);
		}
		total += skb_queue_len(&ap->ps_bc_buf);
	}
332
	rcu_read_unlock();
333

334
	read_lock_bh(&local->sta_lock);
335 336 337 338 339 340 341 342
	list_for_each_entry(sta, &local->sta_list, list) {
		skb = skb_dequeue(&sta->ps_tx_buf);
		if (skb) {
			purged++;
			dev_kfree_skb(skb);
		}
		total += skb_queue_len(&sta->ps_tx_buf);
	}
343
	read_unlock_bh(&local->sta_lock);
344 345 346

	local->total_ps_buffered = total;
	printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
347
	       wiphy_name(local->hw.wiphy), purged);
348 349
}

350
static ieee80211_tx_result
351 352
ieee80211_tx_h_multicast_ps_buf(struct ieee80211_txrx_data *tx)
{
353 354 355 356 357 358 359 360 361 362
	/*
	 * broadcast/multicast frame
	 *
	 * If any of the associated stations is in power save mode,
	 * the frame is buffered to be sent after DTIM beacon frame.
	 * This is done either by the hardware or us.
	 */

	/* not AP/IBSS or ordered frame */
	if (!tx->sdata->bss || (tx->fc & IEEE80211_FCTL_ORDER))
363
		return TX_CONTINUE;
364 365 366

	/* no stations in PS mode */
	if (!atomic_read(&tx->sdata->bss->num_sta_ps))
367
		return TX_CONTINUE;
368 369 370

	/* buffered in mac80211 */
	if (tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) {
371 372 373 374 375 376 377 378 379 380 381 382 383
		if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
			purge_old_ps_buffers(tx->local);
		if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >=
		    AP_MAX_BC_BUFFER) {
			if (net_ratelimit()) {
				printk(KERN_DEBUG "%s: BC TX buffer full - "
				       "dropping the oldest frame\n",
				       tx->dev->name);
			}
			dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
		} else
			tx->local->total_ps_buffered++;
		skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
384
		return TX_QUEUED;
385 386
	}

387 388 389
	/* buffered in hardware */
	tx->u.tx.control->flags |= IEEE80211_TXCTL_SEND_AFTER_DTIM;

390
	return TX_CONTINUE;
391 392
}

393
static ieee80211_tx_result
394 395 396
ieee80211_tx_h_unicast_ps_buf(struct ieee80211_txrx_data *tx)
{
	struct sta_info *sta = tx->sta;
397
	DECLARE_MAC_BUF(mac);
398 399 400 401

	if (unlikely(!sta ||
		     ((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT &&
		      (tx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP)))
402
		return TX_CONTINUE;
403

404 405
	if (unlikely((sta->flags & WLAN_STA_PS) &&
		     !(sta->flags & WLAN_STA_PSPOLL))) {
406 407
		struct ieee80211_tx_packet_data *pkt_data;
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
408
		printk(KERN_DEBUG "STA %s aid %d: PS buffer (entries "
409
		       "before %d)\n",
410
		       print_mac(mac, sta->addr), sta->aid,
411 412 413 414 415 416 417
		       skb_queue_len(&sta->ps_tx_buf));
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
		if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
			purge_old_ps_buffers(tx->local);
		if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
			struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
			if (net_ratelimit()) {
418
				printk(KERN_DEBUG "%s: STA %s TX "
419
				       "buffer full - dropping oldest frame\n",
420
				       tx->dev->name, print_mac(mac, sta->addr));
421 422 423 424
			}
			dev_kfree_skb(old);
		} else
			tx->local->total_ps_buffered++;
425

426
		/* Queue frame to be sent after STA sends an PS Poll frame */
427 428 429
		if (skb_queue_empty(&sta->ps_tx_buf))
			sta_info_set_tim_bit(sta);

430 431 432
		pkt_data = (struct ieee80211_tx_packet_data *)tx->skb->cb;
		pkt_data->jiffies = jiffies;
		skb_queue_tail(&sta->ps_tx_buf, tx->skb);
433
		return TX_QUEUED;
434 435 436
	}
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
	else if (unlikely(sta->flags & WLAN_STA_PS)) {
437
		printk(KERN_DEBUG "%s: STA %s in PS mode, but pspoll "
438
		       "set -> send frame\n", tx->dev->name,
439
		       print_mac(mac, sta->addr));
440 441
	}
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
442
	sta->flags &= ~WLAN_STA_PSPOLL;
443

444
	return TX_CONTINUE;
445 446
}

447
static ieee80211_tx_result
448 449
ieee80211_tx_h_ps_buf(struct ieee80211_txrx_data *tx)
{
450
	if (unlikely(tx->flags & IEEE80211_TXRXD_TXPS_BUFFERED))
451
		return TX_CONTINUE;
452

453
	if (tx->flags & IEEE80211_TXRXD_TXUNICAST)
454 455 456 457 458
		return ieee80211_tx_h_unicast_ps_buf(tx);
	else
		return ieee80211_tx_h_multicast_ps_buf(tx);
}

459
static ieee80211_tx_result
460 461
ieee80211_tx_h_select_key(struct ieee80211_txrx_data *tx)
{
462
	struct ieee80211_key *key;
463
	u16 fc = tx->fc;
464

465 466
	if (unlikely(tx->u.tx.control->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT))
		tx->key = NULL;
467 468 469 470
	else if (tx->sta && (key = rcu_dereference(tx->sta->key)))
		tx->key = key;
	else if ((key = rcu_dereference(tx->sdata->default_key)))
		tx->key = key;
471
	else if (tx->sdata->drop_unencrypted &&
472 473
		 !(tx->u.tx.control->flags & IEEE80211_TXCTL_EAPOL_FRAME) &&
		 !(tx->flags & IEEE80211_TXRXD_TX_INJECTED)) {
474
		I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
475
		return TX_DROP;
476
	} else
477 478 479
		tx->key = NULL;

	if (tx->key) {
480 481
		u16 ftype, stype;

482
		tx->key->tx_rx_count++;
483
		/* TODO: add threshold stuff again */
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498

		switch (tx->key->conf.alg) {
		case ALG_WEP:
			ftype = fc & IEEE80211_FCTL_FTYPE;
			stype = fc & IEEE80211_FCTL_STYPE;

			if (ftype == IEEE80211_FTYPE_MGMT &&
			    stype == IEEE80211_STYPE_AUTH)
				break;
		case ALG_TKIP:
		case ALG_CCMP:
			if (!WLAN_FC_DATA_PRESENT(fc))
				tx->key = NULL;
			break;
		}
499 500
	}

501 502 503
	if (!tx->key || !(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
		tx->u.tx.control->flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT;

504
	return TX_CONTINUE;
505 506
}

507
static ieee80211_tx_result
508 509 510 511 512 513 514 515 516 517
ieee80211_tx_h_fragment(struct ieee80211_txrx_data *tx)
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
	size_t hdrlen, per_fragm, num_fragm, payload_len, left;
	struct sk_buff **frags, *first, *frag;
	int i;
	u16 seq;
	u8 *pos;
	int frag_threshold = tx->local->fragmentation_threshold;

518
	if (!(tx->flags & IEEE80211_TXRXD_FRAGMENTED))
519
		return TX_CONTINUE;
520 521 522 523 524 525

	first = tx->skb;

	hdrlen = ieee80211_get_hdrlen(tx->fc);
	payload_len = first->len - hdrlen;
	per_fragm = frag_threshold - hdrlen - FCS_LEN;
526
	num_fragm = DIV_ROUND_UP(payload_len, per_fragm);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572

	frags = kzalloc(num_fragm * sizeof(struct sk_buff *), GFP_ATOMIC);
	if (!frags)
		goto fail;

	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
	seq = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ;
	pos = first->data + hdrlen + per_fragm;
	left = payload_len - per_fragm;
	for (i = 0; i < num_fragm - 1; i++) {
		struct ieee80211_hdr *fhdr;
		size_t copylen;

		if (left <= 0)
			goto fail;

		/* reserve enough extra head and tail room for possible
		 * encryption */
		frag = frags[i] =
			dev_alloc_skb(tx->local->tx_headroom +
				      frag_threshold +
				      IEEE80211_ENCRYPT_HEADROOM +
				      IEEE80211_ENCRYPT_TAILROOM);
		if (!frag)
			goto fail;
		/* Make sure that all fragments use the same priority so
		 * that they end up using the same TX queue */
		frag->priority = first->priority;
		skb_reserve(frag, tx->local->tx_headroom +
				  IEEE80211_ENCRYPT_HEADROOM);
		fhdr = (struct ieee80211_hdr *) skb_put(frag, hdrlen);
		memcpy(fhdr, first->data, hdrlen);
		if (i == num_fragm - 2)
			fhdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREFRAGS);
		fhdr->seq_ctrl = cpu_to_le16(seq | ((i + 1) & IEEE80211_SCTL_FRAG));
		copylen = left > per_fragm ? per_fragm : left;
		memcpy(skb_put(frag, copylen), pos, copylen);

		pos += copylen;
		left -= copylen;
	}
	skb_trim(first, hdrlen + per_fragm);

	tx->u.tx.num_extra_frag = num_fragm - 1;
	tx->u.tx.extra_frag = frags;

573
	return TX_CONTINUE;
574 575 576 577 578 579 580 581 582 583

 fail:
	printk(KERN_DEBUG "%s: failed to fragment frame\n", tx->dev->name);
	if (frags) {
		for (i = 0; i < num_fragm - 1; i++)
			if (frags[i])
				dev_kfree_skb(frags[i]);
		kfree(frags);
	}
	I802_DEBUG_INC(tx->local->tx_handlers_drop_fragment);
584
	return TX_DROP;
585 586
}

587
static ieee80211_tx_result
588
ieee80211_tx_h_encrypt(struct ieee80211_txrx_data *tx)
589
{
590
	if (!tx->key)
591
		return TX_CONTINUE;
592

593 594 595 596 597 598 599
	switch (tx->key->conf.alg) {
	case ALG_WEP:
		return ieee80211_crypto_wep_encrypt(tx);
	case ALG_TKIP:
		return ieee80211_crypto_tkip_encrypt(tx);
	case ALG_CCMP:
		return ieee80211_crypto_ccmp_encrypt(tx);
600 601
	}

602 603
	/* not reached */
	WARN_ON(1);
604
	return TX_DROP;
605 606
}

607
static ieee80211_tx_result
608 609
ieee80211_tx_h_rate_ctrl(struct ieee80211_txrx_data *tx)
{
610
	struct rate_selection rsel;
611 612 613
	struct ieee80211_supported_band *sband;

	sband = tx->local->hw.wiphy->bands[tx->local->hw.conf.channel->band];
614

615
	if (likely(!tx->u.tx.rate)) {
616
		rate_control_get_rate(tx->dev, sband, tx->skb, &rsel);
617
		tx->u.tx.rate = rsel.rate;
618
		if (unlikely(rsel.probe)) {
619 620 621
			tx->u.tx.control->flags |=
				IEEE80211_TXCTL_RATE_CTRL_PROBE;
			tx->flags |= IEEE80211_TXRXD_TXPROBE_LAST_FRAG;
622
			tx->u.tx.control->alt_retry_rate = tx->u.tx.rate;
623
			tx->u.tx.rate = rsel.probe;
624
		} else
625
			tx->u.tx.control->alt_retry_rate = NULL;
626 627

		if (!tx->u.tx.rate)
628
			return TX_DROP;
629
	} else
630
		tx->u.tx.control->alt_retry_rate = NULL;
631

632
	if (tx->sdata->bss_conf.use_cts_prot &&
633
	    (tx->flags & IEEE80211_TXRXD_FRAGMENTED) && rsel.nonerp) {
634
		tx->u.tx.last_frag_rate = tx->u.tx.rate;
635
		if (rsel.probe)
636 637 638
			tx->flags &= ~IEEE80211_TXRXD_TXPROBE_LAST_FRAG;
		else
			tx->flags |= IEEE80211_TXRXD_TXPROBE_LAST_FRAG;
639
		tx->u.tx.rate = rsel.nonerp;
640
		tx->u.tx.control->tx_rate = rsel.nonerp;
641 642 643
		tx->u.tx.control->flags &= ~IEEE80211_TXCTL_RATE_CTRL_PROBE;
	} else {
		tx->u.tx.last_frag_rate = tx->u.tx.rate;
644
		tx->u.tx.control->tx_rate = tx->u.tx.rate;
645
	}
646
	tx->u.tx.control->tx_rate = tx->u.tx.rate;
647

648
	return TX_CONTINUE;
649 650
}

651
static ieee80211_tx_result
652 653 654
ieee80211_tx_h_misc(struct ieee80211_txrx_data *tx)
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
655
	u16 fc = le16_to_cpu(hdr->frame_control);
656 657 658
	u16 dur;
	struct ieee80211_tx_control *control = tx->u.tx.control;

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
	if (!control->retry_limit) {
		if (!is_multicast_ether_addr(hdr->addr1)) {
			if (tx->skb->len + FCS_LEN > tx->local->rts_threshold
			    && tx->local->rts_threshold <
					IEEE80211_MAX_RTS_THRESHOLD) {
				control->flags |=
					IEEE80211_TXCTL_USE_RTS_CTS;
				control->flags |=
					IEEE80211_TXCTL_LONG_RETRY_LIMIT;
				control->retry_limit =
					tx->local->long_retry_limit;
			} else {
				control->retry_limit =
					tx->local->short_retry_limit;
			}
674
		} else {
675
			control->retry_limit = 1;
676 677 678
		}
	}

679
	if (tx->flags & IEEE80211_TXRXD_FRAGMENTED) {
680 681 682 683
		/* Do not use multiple retry rates when sending fragmented
		 * frames.
		 * TODO: The last fragment could still use multiple retry
		 * rates. */
684
		control->alt_retry_rate = NULL;
685 686 687 688 689
	}

	/* Use CTS protection for unicast frames sent using extended rates if
	 * there are associated non-ERP stations and RTS/CTS is not configured
	 * for the frame. */
690 691
	if ((tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) &&
	    (tx->u.tx.rate->flags & IEEE80211_RATE_ERP_G) &&
692
	    (tx->flags & IEEE80211_TXRXD_TXUNICAST) &&
693
	    tx->sdata->bss_conf.use_cts_prot &&
694 695 696
	    !(control->flags & IEEE80211_TXCTL_USE_RTS_CTS))
		control->flags |= IEEE80211_TXCTL_USE_CTS_PROTECT;

697 698 699 700
	/* Transmit data frames using short preambles if the driver supports
	 * short preambles at the selected rate and short preambles are
	 * available on the network at the current point in time. */
	if (((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) &&
701
	    (tx->u.tx.rate->flags & IEEE80211_RATE_SHORT_PREAMBLE) &&
702
	    tx->sdata->bss_conf.use_short_preamble &&
703
	    (!tx->sta || (tx->sta->flags & WLAN_STA_SHORT_PREAMBLE))) {
704
		tx->u.tx.control->flags |= IEEE80211_TXCTL_SHORT_PREAMBLE;
705 706
	}

707 708 709 710
	/* Setup duration field for the first fragment of the frame. Duration
	 * for remaining fragments will be updated when they are being sent
	 * to low-level driver in ieee80211_tx(). */
	dur = ieee80211_duration(tx, is_multicast_ether_addr(hdr->addr1),
711 712
				 (tx->flags & IEEE80211_TXRXD_FRAGMENTED) ?
				 tx->u.tx.extra_frag[0]->len : 0);
713 714 715 716
	hdr->duration_id = cpu_to_le16(dur);

	if ((control->flags & IEEE80211_TXCTL_USE_RTS_CTS) ||
	    (control->flags & IEEE80211_TXCTL_USE_CTS_PROTECT)) {
717 718 719 720 721 722
		struct ieee80211_supported_band *sband;
		struct ieee80211_rate *rate, *baserate;
		int idx;

		sband = tx->local->hw.wiphy->bands[
				tx->local->hw.conf.channel->band];
723 724

		/* Do not use multiple retry rates when using RTS/CTS */
725
		control->alt_retry_rate = NULL;
726 727 728

		/* Use min(data rate, max base rate) as CTS/RTS rate */
		rate = tx->u.tx.rate;
729 730 731 732 733 734 735 736 737 738
		baserate = NULL;

		for (idx = 0; idx < sband->n_bitrates; idx++) {
			if (sband->bitrates[idx].bitrate > rate->bitrate)
				continue;
			if (tx->sdata->basic_rates & BIT(idx) &&
			    (!baserate ||
			     (baserate->bitrate < sband->bitrates[idx].bitrate)))
				baserate = &sband->bitrates[idx];
		}
739

740 741 742 743
		if (baserate)
			control->rts_cts_rate = baserate;
		else
			control->rts_cts_rate = &sband->bitrates[0];
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
	}

	if (tx->sta) {
		tx->sta->tx_packets++;
		tx->sta->tx_fragments++;
		tx->sta->tx_bytes += tx->skb->len;
		if (tx->u.tx.extra_frag) {
			int i;
			tx->sta->tx_fragments += tx->u.tx.num_extra_frag;
			for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
				tx->sta->tx_bytes +=
					tx->u.tx.extra_frag[i]->len;
			}
		}
	}

760
	return TX_CONTINUE;
761 762
}

763
static ieee80211_tx_result
764 765 766 767 768 769
ieee80211_tx_h_load_stats(struct ieee80211_txrx_data *tx)
{
	struct ieee80211_local *local = tx->local;
	struct sk_buff *skb = tx->skb;
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
	u32 load = 0, hdrtime;
770
	struct ieee80211_rate *rate = tx->u.tx.rate;
771 772 773 774 775 776 777 778 779 780

	/* TODO: this could be part of tx_status handling, so that the number
	 * of retries would be known; TX rate should in that case be stored
	 * somewhere with the packet */

	/* Estimate total channel use caused by this frame */

	/* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
	 * 1 usec = 1/8 * (1080 / 10) = 13.5 */

781 782 783
	if (tx->u.tx.channel->band == IEEE80211_BAND_5GHZ ||
	    (tx->u.tx.channel->band == IEEE80211_BAND_2GHZ &&
	     rate->flags & IEEE80211_RATE_ERP_G))
784 785 786 787 788 789 790 791 792 793 794 795 796
		hdrtime = CHAN_UTIL_HDR_SHORT;
	else
		hdrtime = CHAN_UTIL_HDR_LONG;

	load = hdrtime;
	if (!is_multicast_ether_addr(hdr->addr1))
		load += hdrtime;

	if (tx->u.tx.control->flags & IEEE80211_TXCTL_USE_RTS_CTS)
		load += 2 * hdrtime;
	else if (tx->u.tx.control->flags & IEEE80211_TXCTL_USE_CTS_PROTECT)
		load += hdrtime;

797 798
	/* TODO: optimise again */
	load += skb->len * CHAN_UTIL_RATE_LCM / rate->bitrate;
799 800 801 802 803 804

	if (tx->u.tx.extra_frag) {
		int i;
		for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
			load += 2 * hdrtime;
			load += tx->u.tx.extra_frag[i]->len *
805
				tx->u.tx.rate->bitrate;
806 807 808 809 810 811 812 813 814 815
		}
	}

	/* Divide channel_use by 8 to avoid wrapping around the counter */
	load >>= CHAN_UTIL_SHIFT;
	local->channel_use_raw += load;
	if (tx->sta)
		tx->sta->channel_use_raw += load;
	tx->sdata->channel_use_raw += load;

816
	return TX_CONTINUE;
817 818 819
}


820 821
typedef ieee80211_tx_result (*ieee80211_tx_handler)(struct ieee80211_txrx_data *);
static ieee80211_tx_handler ieee80211_tx_handlers[] =
822 823 824 825 826 827 828
{
	ieee80211_tx_h_check_assoc,
	ieee80211_tx_h_sequence,
	ieee80211_tx_h_ps_buf,
	ieee80211_tx_h_select_key,
	ieee80211_tx_h_michael_mic_add,
	ieee80211_tx_h_fragment,
829
	ieee80211_tx_h_encrypt,
830 831 832 833 834 835 836 837 838 839 840 841
	ieee80211_tx_h_rate_ctrl,
	ieee80211_tx_h_misc,
	ieee80211_tx_h_load_stats,
	NULL
};

/* actual transmit path */

/*
 * deal with packet injection down monitor interface
 * with Radiotap Header -- only called for monitor mode interface
 */
842
static ieee80211_tx_result
843 844
__ieee80211_parse_tx_radiotap(struct ieee80211_txrx_data *tx,
			      struct sk_buff *skb)
845 846 847 848 849 850 851 852 853 854 855 856
{
	/*
	 * this is the moment to interpret and discard the radiotap header that
	 * must be at the start of the packet injected in Monitor mode
	 *
	 * Need to take some care with endian-ness since radiotap
	 * args are little-endian
	 */

	struct ieee80211_radiotap_iterator iterator;
	struct ieee80211_radiotap_header *rthdr =
		(struct ieee80211_radiotap_header *) skb->data;
857
	struct ieee80211_supported_band *sband;
858
	int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len);
859
	struct ieee80211_tx_control *control = tx->u.tx.control;
860

861 862
	sband = tx->local->hw.wiphy->bands[tx->local->hw.conf.channel->band];

863 864 865
	control->flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT;
	tx->flags |= IEEE80211_TXRXD_TX_INJECTED;
	tx->flags &= ~IEEE80211_TXRXD_FRAGMENTED;
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894

	/*
	 * for every radiotap entry that is present
	 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
	 * entries present, or -EINVAL on error)
	 */

	while (!ret) {
		int i, target_rate;

		ret = ieee80211_radiotap_iterator_next(&iterator);

		if (ret)
			continue;

		/* see if this argument is something we can use */
		switch (iterator.this_arg_index) {
		/*
		 * You must take care when dereferencing iterator.this_arg
		 * for multibyte types... the pointer is not aligned.  Use
		 * get_unaligned((type *)iterator.this_arg) to dereference
		 * iterator.this_arg for type "type" safely on all arches.
		*/
		case IEEE80211_RADIOTAP_RATE:
			/*
			 * radiotap rate u8 is in 500kbps units eg, 0x02=1Mbps
			 * ieee80211 rate int is in 100kbps units eg, 0x0a=1Mbps
			 */
			target_rate = (*iterator.this_arg) * 5;
895 896
			for (i = 0; i < sband->n_bitrates; i++) {
				struct ieee80211_rate *r;
897

898 899 900
				r = &sband->bitrates[i];

				if (r->bitrate == target_rate) {
901 902 903
					tx->u.tx.rate = r;
					break;
				}
904 905 906 907 908 909 910 911 912 913 914
			}
			break;

		case IEEE80211_RADIOTAP_ANTENNA:
			/*
			 * radiotap uses 0 for 1st ant, mac80211 is 1 for
			 * 1st ant
			 */
			control->antenna_sel_tx = (*iterator.this_arg) + 1;
			break;

915
#if 0
916 917 918
		case IEEE80211_RADIOTAP_DBM_TX_POWER:
			control->power_level = *iterator.this_arg;
			break;
919
#endif
920 921 922 923 924 925 926 927 928 929 930

		case IEEE80211_RADIOTAP_FLAGS:
			if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
				/*
				 * this indicates that the skb we have been
				 * handed has the 32-bit FCS CRC at the end...
				 * we should react to that by snipping it off
				 * because it will be recomputed and added
				 * on transmission
				 */
				if (skb->len < (iterator.max_length + FCS_LEN))
931
					return TX_DROP;
932 933 934

				skb_trim(skb, skb->len - FCS_LEN);
			}
935 936 937 938 939
			if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
				control->flags &=
					~IEEE80211_TXCTL_DO_NOT_ENCRYPT;
			if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG)
				tx->flags |= IEEE80211_TXRXD_FRAGMENTED;
940 941
			break;

942 943 944 945 946 947
		/*
		 * Please update the file
		 * Documentation/networking/mac80211-injection.txt
		 * when parsing new fields here.
		 */

948 949 950 951 952 953
		default:
			break;
		}
	}

	if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
954
		return TX_DROP;
955 956 957 958 959 960 961 962

	/*
	 * remove the radiotap header
	 * iterator->max_length was sanity-checked against
	 * skb->len by iterator init
	 */
	skb_pull(skb, iterator.max_length);

963
	return TX_CONTINUE;
964 965
}

966 967 968
/*
 * initialises @tx
 */
969
static ieee80211_tx_result
970 971 972 973 974 975
__ieee80211_tx_prepare(struct ieee80211_txrx_data *tx,
		       struct sk_buff *skb,
		       struct net_device *dev,
		       struct ieee80211_tx_control *control)
{
	struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
976
	struct ieee80211_hdr *hdr;
977 978 979 980 981 982 983 984 985
	struct ieee80211_sub_if_data *sdata;

	int hdrlen;

	memset(tx, 0, sizeof(*tx));
	tx->skb = skb;
	tx->dev = dev; /* use original interface */
	tx->local = local;
	tx->sdata = IEEE80211_DEV_TO_SUB_IF(dev);
986
	tx->u.tx.control = control;
987
	/*
988 989
	 * Set this flag (used below to indicate "automatic fragmentation"),
	 * it will be cleared/left by radiotap as desired.
990
	 */
991
	tx->flags |= IEEE80211_TXRXD_FRAGMENTED;
992 993 994

	/* process and remove the injection radiotap header */
	sdata = IEEE80211_DEV_TO_SUB_IF(dev);
995
	if (unlikely(sdata->vif.type == IEEE80211_IF_TYPE_MNTR)) {
996 997
		if (__ieee80211_parse_tx_radiotap(tx, skb) == TX_DROP)
			return TX_DROP;
998

999
		/*
1000 1001 1002
		 * __ieee80211_parse_tx_radiotap has now removed
		 * the radiotap header that was present and pre-filled
		 * 'tx' with tx control information.
1003 1004 1005
		 */
	}

1006 1007
	hdr = (struct ieee80211_hdr *) skb->data;

1008 1009
	tx->sta = sta_info_get(local, hdr->addr1);
	tx->fc = le16_to_cpu(hdr->frame_control);
1010

1011 1012
	if (is_multicast_ether_addr(hdr->addr1)) {
		tx->flags &= ~IEEE80211_TXRXD_TXUNICAST;
1013
		control->flags |= IEEE80211_TXCTL_NO_ACK;
1014 1015
	} else {
		tx->flags |= IEEE80211_TXRXD_TXUNICAST;
1016
		control->flags &= ~IEEE80211_TXCTL_NO_ACK;
1017
	}
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027

	if (tx->flags & IEEE80211_TXRXD_FRAGMENTED) {
		if ((tx->flags & IEEE80211_TXRXD_TXUNICAST) &&
		    skb->len + FCS_LEN > local->fragmentation_threshold &&
		    !local->ops->set_frag_threshold)
			tx->flags |= IEEE80211_TXRXD_FRAGMENTED;
		else
			tx->flags &= ~IEEE80211_TXRXD_FRAGMENTED;
	}

1028
	if (!tx->sta)
1029 1030 1031 1032
		control->flags |= IEEE80211_TXCTL_CLEAR_PS_FILT;
	else if (tx->sta->flags & WLAN_STA_CLEAR_PS_FILT) {
		control->flags |= IEEE80211_TXCTL_CLEAR_PS_FILT;
		tx->sta->flags &= ~WLAN_STA_CLEAR_PS_FILT;
1033
	}
1034

1035 1036 1037 1038 1039 1040 1041
	hdrlen = ieee80211_get_hdrlen(tx->fc);
	if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
		u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
		tx->ethertype = (pos[0] << 8) | pos[1];
	}
	control->flags |= IEEE80211_TXCTL_FIRST_FRAGMENT;

1042
	return TX_CONTINUE;
1043 1044
}

1045
/*
1046 1047 1048 1049 1050 1051
 * NB: @tx is uninitialised when passed in here
 */
static int ieee80211_tx_prepare(struct ieee80211_txrx_data *tx,
				struct sk_buff *skb,
				struct net_device *mdev,
				struct ieee80211_tx_control *control)
1052 1053 1054 1055 1056
{
	struct ieee80211_tx_packet_data *pkt_data;
	struct net_device *dev;

	pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
1057
	dev = dev_get_by_index(&init_net, pkt_data->ifindex);
1058 1059 1060 1061 1062 1063
	if (unlikely(dev && !is_ieee80211_device(dev, mdev))) {
		dev_put(dev);
		dev = NULL;
	}
	if (unlikely(!dev))
		return -ENODEV;
1064
	/* initialises tx with control */
1065
	__ieee80211_tx_prepare(tx, skb, dev, control);
1066
	dev_put(dev);
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	return 0;
}

static int __ieee80211_tx(struct ieee80211_local *local, struct sk_buff *skb,
			  struct ieee80211_txrx_data *tx)
{
	struct ieee80211_tx_control *control = tx->u.tx.control;
	int ret, i;

	if (!ieee80211_qdisc_installed(local->mdev) &&
	    __ieee80211_queue_stopped(local, 0)) {
		netif_stop_queue(local->mdev);
		return IEEE80211_TX_AGAIN;
	}
	if (skb) {
1082 1083
		ieee80211_dump_frame(wiphy_name(local->hw.wiphy),
				     "TX to low-level driver", skb);
1084 1085 1086 1087 1088 1089 1090 1091 1092
		ret = local->ops->tx(local_to_hw(local), skb, control);
		if (ret)
			return IEEE80211_TX_AGAIN;
		local->mdev->trans_start = jiffies;
		ieee80211_led_tx(local, 1);
	}
	if (tx->u.tx.extra_frag) {
		control->flags &= ~(IEEE80211_TXCTL_USE_RTS_CTS |
				    IEEE80211_TXCTL_USE_CTS_PROTECT |
1093
				    IEEE80211_TXCTL_CLEAR_PS_FILT |
1094 1095 1096 1097 1098 1099 1100
				    IEEE80211_TXCTL_FIRST_FRAGMENT);
		for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
			if (!tx->u.tx.extra_frag[i])
				continue;
			if (__ieee80211_queue_stopped(local, control->queue))
				return IEEE80211_TX_FRAG_AGAIN;
			if (i == tx->u.tx.num_extra_frag) {
1101 1102
				control->tx_rate = tx->u.tx.last_frag_rate;

1103
				if (tx->flags & IEEE80211_TXRXD_TXPROBE_LAST_FRAG)
1104 1105 1106 1107 1108 1109 1110
					control->flags |=
						IEEE80211_TXCTL_RATE_CTRL_PROBE;
				else
					control->flags &=
						~IEEE80211_TXCTL_RATE_CTRL_PROBE;
			}

1111
			ieee80211_dump_frame(wiphy_name(local->hw.wiphy),
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
					     "TX to low-level driver",
					     tx->u.tx.extra_frag[i]);
			ret = local->ops->tx(local_to_hw(local),
					    tx->u.tx.extra_frag[i],
					    control);
			if (ret)
				return IEEE80211_TX_FRAG_AGAIN;
			local->mdev->trans_start = jiffies;
			ieee80211_led_tx(local, 1);
			tx->u.tx.extra_frag[i] = NULL;
		}
		kfree(tx->u.tx.extra_frag);
		tx->u.tx.extra_frag = NULL;
	}
	return IEEE80211_TX_OK;
}

static int ieee80211_tx(struct net_device *dev, struct sk_buff *skb,
1130
			struct ieee80211_tx_control *control)
1131 1132 1133 1134 1135
{
	struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
	struct sta_info *sta;
	ieee80211_tx_handler *handler;
	struct ieee80211_txrx_data tx;
1136
	ieee80211_tx_result res = TX_DROP, res_prepare;
1137 1138 1139 1140 1141 1142 1143 1144 1145
	int ret, i;

	WARN_ON(__ieee80211_queue_pending(local, control->queue));

	if (unlikely(skb->len < 10)) {
		dev_kfree_skb(skb);
		return 0;
	}

1146
	/* initialises tx */
1147 1148
	res_prepare = __ieee80211_tx_prepare(&tx, skb, dev, control);

1149
	if (res_prepare == TX_DROP) {
1150 1151 1152 1153
		dev_kfree_skb(skb);
		return 0;
	}

1154 1155 1156 1157 1158 1159
	/*
	 * key references are protected using RCU and this requires that
	 * we are in a read-site RCU section during receive processing
	 */
	rcu_read_lock();

1160
	sta = tx.sta;
1161
	tx.u.tx.channel = local->hw.conf.channel;
1162

1163
	for (handler = ieee80211_tx_handlers; *handler != NULL;
1164 1165
	     handler++) {
		res = (*handler)(&tx);
1166
		if (res != TX_CONTINUE)
1167
			break;
1168 1169 1170 1171 1172 1173 1174
	}

	skb = tx.skb; /* handlers are allowed to change skb */

	if (sta)
		sta_info_put(sta);

1175
	if (unlikely(res == TX_DROP)) {
1176 1177 1178 1179
		I802_DEBUG_INC(local->tx_handlers_drop);
		goto drop;
	}

1180
	if (unlikely(res == TX_QUEUED)) {
1181
		I802_DEBUG_INC(local->tx_handlers_queued);
1182
		rcu_read_unlock();
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
		return 0;
	}

	if (tx.u.tx.extra_frag) {
		for (i = 0; i < tx.u.tx.num_extra_frag; i++) {
			int next_len, dur;
			struct ieee80211_hdr *hdr =
				(struct ieee80211_hdr *)
				tx.u.tx.extra_frag[i]->data;

			if (i + 1 < tx.u.tx.num_extra_frag) {
				next_len = tx.u.tx.extra_frag[i + 1]->len;
			} else {
				next_len = 0;
				tx.u.tx.rate = tx.u.tx.last_frag_rate;
			}
			dur = ieee80211_duration(&tx, 0, next_len);
			hdr->duration_id = cpu_to_le16(dur);
		}
	}

retry:
	ret = __ieee80211_tx(local, skb, &tx);
	if (ret) {
		struct ieee80211_tx_stored_packet *store =
			&local->pending_packet[control->queue];

		if (ret == IEEE80211_TX_FRAG_AGAIN)
			skb = NULL;
		set_bit(IEEE80211_LINK_STATE_PENDING,
			&local->state[control->queue]);
		smp_mb();
		/* When the driver gets out of buffers during sending of
		 * fragments and calls ieee80211_stop_queue, there is
		 * a small window between IEEE80211_LINK_STATE_XOFF and
		 * IEEE80211_LINK_STATE_PENDING flags are set. If a buffer
		 * gets available in that window (i.e. driver calls
		 * ieee80211_wake_queue), we would end up with ieee80211_tx
		 * called with IEEE80211_LINK_STATE_PENDING. Prevent this by
		 * continuing transmitting here when that situation is
		 * possible to have happened. */
		if (!__ieee80211_queue_stopped(local, control->queue)) {
			clear_bit(IEEE80211_LINK_STATE_PENDING,
				  &local->state[control->queue]);
			goto retry;
		}
		memcpy(&store->control, control,
		       sizeof(struct ieee80211_tx_control));
		store->skb = skb;
		store->extra_frag = tx.u.tx.extra_frag;
		store->num_extra_frag = tx.u.tx.num_extra_frag;
		store->last_frag_rate = tx.u.tx.last_frag_rate;
1235 1236
		store->last_frag_rate_ctrl_probe =
			!!(tx.flags & IEEE80211_TXRXD_TXPROBE_LAST_FRAG);
1237
	}
1238
	rcu_read_unlock();
1239 1240 1241 1242 1243 1244 1245 1246 1247
	return 0;

 drop:
	if (skb)
		dev_kfree_skb(skb);
	for (i = 0; i < tx.u.tx.num_extra_frag; i++)
		if (tx.u.tx.extra_frag[i])
			dev_kfree_skb(tx.u.tx.extra_frag[i]);
	kfree(tx.u.tx.extra_frag);
1248
	rcu_read_unlock();
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	return 0;
}

/* device xmit handlers */

int ieee80211_master_start_xmit(struct sk_buff *skb,
				struct net_device *dev)
{
	struct ieee80211_tx_control control;
	struct ieee80211_tx_packet_data *pkt_data;
	struct net_device *odev = NULL;
	struct ieee80211_sub_if_data *osdata;
	int headroom;
	int ret;

	/*
	 * copy control out of the skb so other people can use skb->cb
	 */
	pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
	memset(&control, 0, sizeof(struct ieee80211_tx_control));

	if (pkt_data->ifindex)
1271
		odev = dev_get_by_index(&init_net, pkt_data->ifindex);
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	if (unlikely(odev && !is_ieee80211_device(odev, dev))) {
		dev_put(odev);
		odev = NULL;
	}
	if (unlikely(!odev)) {
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
		printk(KERN_DEBUG "%s: Discarded packet with nonexistent "
		       "originating device\n", dev->name);
#endif
		dev_kfree_skb(skb);
		return 0;
	}
	osdata = IEEE80211_DEV_TO_SUB_IF(odev);

	headroom = osdata->local->tx_headroom + IEEE80211_ENCRYPT_HEADROOM;
	if (skb_headroom(skb) < headroom) {
		if (pskb_expand_head(skb, headroom, 0, GFP_ATOMIC)) {
			dev_kfree_skb(skb);
			dev_put(odev);
			return 0;
		}
	}

1295
	control.vif = &osdata->vif;
1296
	control.type = osdata->vif.type;
1297
	if (pkt_data->flags & IEEE80211_TXPD_REQ_TX_STATUS)
1298
		control.flags |= IEEE80211_TXCTL_REQ_TX_STATUS;
1299
	if (pkt_data->flags & IEEE80211_TXPD_DO_NOT_ENCRYPT)
1300
		control.flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT;
1301
	if (pkt_data->flags & IEEE80211_TXPD_REQUEUE)
1302
		control.flags |= IEEE80211_TXCTL_REQUEUE;
1303 1304
	if (pkt_data->flags & IEEE80211_TXPD_EAPOL_FRAME)
		control.flags |= IEEE80211_TXCTL_EAPOL_FRAME;
1305 1306
	if (pkt_data->flags & IEEE80211_TXPD_AMPDU)
		control.flags |= IEEE80211_TXCTL_AMPDU;
1307 1308
	control.queue = pkt_data->queue;

1309
	ret = ieee80211_tx(odev, skb, &control);
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
	dev_put(odev);

	return ret;
}

int ieee80211_monitor_start_xmit(struct sk_buff *skb,
				 struct net_device *dev)
{
	struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
	struct ieee80211_tx_packet_data *pkt_data;
	struct ieee80211_radiotap_header *prthdr =
		(struct ieee80211_radiotap_header *)skb->data;
1322
	u16 len_rthdr;
1323

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	/* check for not even having the fixed radiotap header part */
	if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
		goto fail; /* too short to be possibly valid */

	/* is it a header version we can trust to find length from? */
	if (unlikely(prthdr->it_version))
		goto fail; /* only version 0 is supported */

	/* then there must be a radiotap header with a length we can use */
	len_rthdr = ieee80211_get_radiotap_len(skb->data);

	/* does the skb contain enough to deliver on the alleged length? */
	if (unlikely(skb->len < len_rthdr))
		goto fail; /* skb too short for claimed rt header extent */
1338 1339 1340 1341 1342

	skb->dev = local->mdev;

	pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
	memset(pkt_data, 0, sizeof(*pkt_data));
1343
	/* needed because we set skb device to master */
1344
	pkt_data->ifindex = dev->ifindex;
1345

1346
	pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT;
1347 1348 1349 1350 1351 1352 1353

	/*
	 * fix up the pointers accounting for the radiotap
	 * header still being in there.  We are being given
	 * a precooked IEEE80211 header so no need for
	 * normal processing
	 */
1354
	skb_set_mac_header(skb, len_rthdr);
1355
	/*
1356 1357
	 * these are just fixed to the end of the rt area since we
	 * don't have any better information and at this point, nobody cares
1358
	 */
1359 1360
	skb_set_network_header(skb, len_rthdr);
	skb_set_transport_header(skb, len_rthdr);
1361

1362 1363
	/* pass the radiotap header up to the next stage intact */
	dev_queue_xmit(skb);
1364
	return NETDEV_TX_OK;
1365 1366 1367 1368

fail:
	dev_kfree_skb(skb);
	return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
}

/**
 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
 * subinterfaces (wlan#, WDS, and VLAN interfaces)
 * @skb: packet to be sent
 * @dev: incoming interface
 *
 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
 * not be freed, and caller is responsible for either retrying later or freeing
 * skb).
 *
 * This function takes in an Ethernet header and encapsulates it with suitable
 * IEEE 802.11 header based on which interface the packet is coming in. The
 * encapsulated packet will then be passed to master interface, wlan#.11, for
 * transmission (through low-level driver).
 */
int ieee80211_subif_start_xmit(struct sk_buff *skb,
			       struct net_device *dev)
{
	struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
	struct ieee80211_tx_packet_data *pkt_data;
	struct ieee80211_sub_if_data *sdata;
	int ret = 1, head_need;
1393
	u16 ethertype, hdrlen,  meshhdrlen = 0, fc;
1394
	struct ieee80211_hdr hdr;
1395
	struct ieee80211s_hdr mesh_hdr;
1396 1397
	const u8 *encaps_data;
	int encaps_len, skip_header_bytes;
1398
	int nh_pos, h_pos;
1399
	struct sta_info *sta;
1400
	u32 sta_flags = 0;
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

	sdata = IEEE80211_DEV_TO_SUB_IF(dev);
	if (unlikely(skb->len < ETH_HLEN)) {
		printk(KERN_DEBUG "%s: short skb (len=%d)\n",
		       dev->name, skb->len);
		ret = 0;
		goto fail;
	}

	nh_pos = skb_network_header(skb) - skb->data;
	h_pos = skb_transport_header(skb) - skb->data;

	/* convert Ethernet header to proper 802.11 header (based on
	 * operation mode) */
	ethertype = (skb->data[12] << 8) | skb->data[13];
	fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA;

1418
	switch (sdata->vif.type) {
1419 1420
	case IEEE80211_IF_TYPE_AP:
	case IEEE80211_IF_TYPE_VLAN:
1421 1422 1423 1424 1425 1426
		fc |= IEEE80211_FCTL_FROMDS;
		/* DA BSSID SA */
		memcpy(hdr.addr1, skb->data, ETH_ALEN);
		memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
		hdrlen = 24;
1427 1428
		break;
	case IEEE80211_IF_TYPE_WDS:
1429 1430 1431 1432 1433 1434 1435
		fc |= IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS;
		/* RA TA DA SA */
		memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
		memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
		memcpy(hdr.addr3, skb->data, ETH_ALEN);
		memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
		hdrlen = 30;
1436
		break;
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
#ifdef CONFIG_MAC80211_MESH
	case IEEE80211_IF_TYPE_MESH_POINT:
		fc |= IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS;
		/* RA TA DA SA */
		if (is_multicast_ether_addr(skb->data))
			memcpy(hdr.addr1, skb->data, ETH_ALEN);
		else if (mesh_nexthop_lookup(hdr.addr1, skb, dev))
				return 0;
		memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
		memcpy(hdr.addr3, skb->data, ETH_ALEN);
		memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
		if (skb->pkt_type == PACKET_OTHERHOST) {
			/* Forwarded frame, keep mesh ttl and seqnum */
			struct ieee80211s_hdr *prev_meshhdr;
			prev_meshhdr = ((struct ieee80211s_hdr *)skb->cb);
			meshhdrlen = ieee80211_get_mesh_hdrlen(prev_meshhdr);
			memcpy(&mesh_hdr, prev_meshhdr, meshhdrlen);
			sdata->u.sta.mshstats.fwded_frames++;
		} else {
			if (!sdata->u.sta.mshcfg.dot11MeshTTL) {
				/* Do not send frames with mesh_ttl == 0 */
				sdata->u.sta.mshstats.dropped_frames_ttl++;
				ret = 0;
				goto fail;
			}
			meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr,
					sdata);
		}
		hdrlen = 30;
		break;
#endif
1468
	case IEEE80211_IF_TYPE_STA:
1469 1470 1471 1472 1473 1474
		fc |= IEEE80211_FCTL_TODS;
		/* BSSID SA DA */
		memcpy(hdr.addr1, sdata->u.sta.bssid, ETH_ALEN);
		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
		memcpy(hdr.addr3, skb->data, ETH_ALEN);
		hdrlen = 24;
1475 1476
		break;
	case IEEE80211_IF_TYPE_IBSS:
1477 1478 1479 1480 1481
		/* DA SA BSSID */
		memcpy(hdr.addr1, skb->data, ETH_ALEN);
		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
		memcpy(hdr.addr3, sdata->u.sta.bssid, ETH_ALEN);
		hdrlen = 24;
1482 1483
		break;
	default:
1484 1485 1486 1487
		ret = 0;
		goto fail;
	}

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	/*
	 * There's no need to try to look up the destination
	 * if it is a multicast address (which can only happen
	 * in AP mode)
	 */
	if (!is_multicast_ether_addr(hdr.addr1)) {
		sta = sta_info_get(local, hdr.addr1);
		if (sta) {
			sta_flags = sta->flags;
			sta_info_put(sta);
		}
1499 1500
	}

1501 1502 1503 1504 1505 1506 1507
	/* receiver is QoS enabled, use a QoS type frame */
	if (sta_flags & WLAN_STA_WME) {
		fc |= IEEE80211_STYPE_QOS_DATA;
		hdrlen += 2;
	}

	/*
1508 1509
	 * Drop unicast frames to unauthorised stations unless they are
	 * EAPOL frames from the local station.
1510
	 */
1511
	if (unlikely(!is_multicast_ether_addr(hdr.addr1) &&
1512 1513
		      !(sta_flags & WLAN_STA_AUTHORIZED) &&
		      !(ethertype == ETH_P_PAE &&
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
		       compare_ether_addr(dev->dev_addr,
					  skb->data + ETH_ALEN) == 0))) {
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
		DECLARE_MAC_BUF(mac);

		if (net_ratelimit())
			printk(KERN_DEBUG "%s: dropped frame to %s"
			       " (unauthorized port)\n", dev->name,
			       print_mac(mac, hdr.addr1));
#endif

		I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);

		ret = 0;
		goto fail;
	}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	hdr.frame_control = cpu_to_le16(fc);
	hdr.duration_id = 0;
	hdr.seq_ctrl = 0;

	skip_header_bytes = ETH_HLEN;
	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
		encaps_data = bridge_tunnel_header;
		encaps_len = sizeof(bridge_tunnel_header);
		skip_header_bytes -= 2;
	} else if (ethertype >= 0x600) {
		encaps_data = rfc1042_header;
		encaps_len = sizeof(rfc1042_header);
		skip_header_bytes -= 2;
	} else {
		encaps_data = NULL;
		encaps_len = 0;
	}

	skb_pull(skb, skip_header_bytes);
	nh_pos -= skip_header_bytes;
	h_pos -= skip_header_bytes;

	/* TODO: implement support for fragments so that there is no need to
	 * reallocate and copy payload; it might be enough to support one
	 * extra fragment that would be copied in the beginning of the frame
	 * data.. anyway, it would be nice to include this into skb structure
	 * somehow
	 *
	 * There are few options for this:
	 * use skb->cb as an extra space for 802.11 header
	 * allocate new buffer if not enough headroom
	 * make sure that there is enough headroom in every skb by increasing
	 * build in headroom in __dev_alloc_skb() (linux/skbuff.h) and
	 * alloc_skb() (net/core/skbuff.c)
	 */
1566
	head_need = hdrlen + encaps_len + meshhdrlen + local->tx_headroom;
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	head_need -= skb_headroom(skb);

	/* We are going to modify skb data, so make a copy of it if happens to
	 * be cloned. This could happen, e.g., with Linux bridge code passing
	 * us broadcast frames. */

	if (head_need > 0 || skb_cloned(skb)) {
#if 0
		printk(KERN_DEBUG "%s: need to reallocate buffer for %d bytes "
		       "of headroom\n", dev->name, head_need);
#endif

		if (skb_cloned(skb))
			I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
		else
			I802_DEBUG_INC(local->tx_expand_skb_head);
		/* Since we have to reallocate the buffer, make sure that there
		 * is enough room for possible WEP IV/ICV and TKIP (8 bytes
		 * before payload and 12 after). */
		if (pskb_expand_head(skb, (head_need > 0 ? head_need + 8 : 8),
				     12, GFP_ATOMIC)) {
			printk(KERN_DEBUG "%s: failed to reallocate TX buffer"
			       "\n", dev->name);
			goto fail;
		}
	}

	if (encaps_data) {
		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
		nh_pos += encaps_len;
		h_pos += encaps_len;
	}
1599

1600 1601 1602 1603 1604 1605
	if (meshhdrlen > 0) {
		memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
		nh_pos += meshhdrlen;
		h_pos += meshhdrlen;
	}

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
	if (fc & IEEE80211_STYPE_QOS_DATA) {
		__le16 *qos_control;

		qos_control = (__le16*) skb_push(skb, 2);
		memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
		/*
		 * Maybe we could actually set some fields here, for now just
		 * initialise to zero to indicate no special operation.
		 */
		*qos_control = 0;
	} else
		memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);

1619 1620 1621 1622 1623 1624
	nh_pos += hdrlen;
	h_pos += hdrlen;

	pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
	memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
	pkt_data->ifindex = dev->ifindex;
1625 1626
	if (ethertype == ETH_P_PAE)
		pkt_data->flags |= IEEE80211_TXPD_EAPOL_FRAME;
1627 1628

	skb->dev = local->mdev;
1629 1630
	dev->stats.tx_packets++;
	dev->stats.tx_bytes += skb->len;
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690

	/* Update skb pointers to various headers since this modified frame
	 * is going to go through Linux networking code that may potentially
	 * need things like pointer to IP header. */
	skb_set_mac_header(skb, 0);
	skb_set_network_header(skb, nh_pos);
	skb_set_transport_header(skb, h_pos);

	dev->trans_start = jiffies;
	dev_queue_xmit(skb);

	return 0;

 fail:
	if (!ret)
		dev_kfree_skb(skb);

	return ret;
}

/* helper functions for pending packets for when queues are stopped */

void ieee80211_clear_tx_pending(struct ieee80211_local *local)
{
	int i, j;
	struct ieee80211_tx_stored_packet *store;

	for (i = 0; i < local->hw.queues; i++) {
		if (!__ieee80211_queue_pending(local, i))
			continue;
		store = &local->pending_packet[i];
		kfree_skb(store->skb);
		for (j = 0; j < store->num_extra_frag; j++)
			kfree_skb(store->extra_frag[j]);
		kfree(store->extra_frag);
		clear_bit(IEEE80211_LINK_STATE_PENDING, &local->state[i]);
	}
}

void ieee80211_tx_pending(unsigned long data)
{
	struct ieee80211_local *local = (struct ieee80211_local *)data;
	struct net_device *dev = local->mdev;
	struct ieee80211_tx_stored_packet *store;
	struct ieee80211_txrx_data tx;
	int i, ret, reschedule = 0;

	netif_tx_lock_bh(dev);
	for (i = 0; i < local->hw.queues; i++) {
		if (__ieee80211_queue_stopped(local, i))
			continue;
		if (!__ieee80211_queue_pending(local, i)) {
			reschedule = 1;
			continue;
		}
		store = &local->pending_packet[i];
		tx.u.tx.control = &store->control;
		tx.u.tx.extra_frag = store->extra_frag;
		tx.u.tx.num_extra_frag = store->num_extra_frag;
		tx.u.tx.last_frag_rate = store->last_frag_rate;
1691 1692 1693
		tx.flags = 0;
		if (store->last_frag_rate_ctrl_probe)
			tx.flags |= IEEE80211_TXRXD_TXPROBE_LAST_FRAG;
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
		ret = __ieee80211_tx(local, store->skb, &tx);
		if (ret) {
			if (ret == IEEE80211_TX_FRAG_AGAIN)
				store->skb = NULL;
		} else {
			clear_bit(IEEE80211_LINK_STATE_PENDING,
				  &local->state[i]);
			reschedule = 1;
		}
	}
	netif_tx_unlock_bh(dev);
	if (reschedule) {
		if (!ieee80211_qdisc_installed(dev)) {
			if (!__ieee80211_queue_stopped(local, 0))
				netif_wake_queue(dev);
		} else
			netif_schedule(dev);
	}
}

/* functions for drivers to get certain frames */

static void ieee80211_beacon_add_tim(struct ieee80211_local *local,
				     struct ieee80211_if_ap *bss,
1718 1719
				     struct sk_buff *skb,
				     struct beacon_data *beacon)
1720 1721 1722 1723 1724 1725 1726
{
	u8 *pos, *tim;
	int aid0 = 0;
	int i, have_bits = 0, n1, n2;

	/* Generate bitmap for TIM only if there are any STAs in power save
	 * mode. */
1727
	read_lock_bh(&local->sta_lock);
1728 1729 1730 1731 1732 1733 1734
	if (atomic_read(&bss->num_sta_ps) > 0)
		/* in the hope that this is faster than
		 * checking byte-for-byte */
		have_bits = !bitmap_empty((unsigned long*)bss->tim,
					  IEEE80211_MAX_AID+1);

	if (bss->dtim_count == 0)
1735
		bss->dtim_count = beacon->dtim_period - 1;
1736 1737 1738 1739 1740 1741 1742
	else
		bss->dtim_count--;

	tim = pos = (u8 *) skb_put(skb, 6);
	*pos++ = WLAN_EID_TIM;
	*pos++ = 4;
	*pos++ = bss->dtim_count;
1743
	*pos++ = beacon->dtim_period;
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777

	if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
		aid0 = 1;

	if (have_bits) {
		/* Find largest even number N1 so that bits numbered 1 through
		 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
		 * (N2 + 1) x 8 through 2007 are 0. */
		n1 = 0;
		for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
			if (bss->tim[i]) {
				n1 = i & 0xfe;
				break;
			}
		}
		n2 = n1;
		for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
			if (bss->tim[i]) {
				n2 = i;
				break;
			}
		}

		/* Bitmap control */
		*pos++ = n1 | aid0;
		/* Part Virt Bitmap */
		memcpy(pos, bss->tim + n1, n2 - n1 + 1);

		tim[1] = n2 - n1 + 4;
		skb_put(skb, n2 - n1);
	} else {
		*pos++ = aid0; /* Bitmap control */
		*pos++ = 0; /* Part Virt Bitmap */
	}
1778
	read_unlock_bh(&local->sta_lock);
1779 1780
}

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
#ifdef CONFIG_MAC80211_MESH
static struct sk_buff *ieee80211_mesh_beacon_get(struct net_device *dev)
{
	struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
	struct sk_buff *skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400);
	struct ieee80211_mgmt *mgmt;
	u8 *pos;

	if (!skb)
		return NULL;
	skb_reserve(skb, local->hw.extra_tx_headroom);
	mgmt = (struct ieee80211_mgmt *)
		skb_put(skb, 24 + sizeof(mgmt->u.beacon));
	memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
	mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
					   IEEE80211_STYPE_BEACON);
	memset(mgmt->da, 0xff, ETH_ALEN);
	memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
	/* BSSID is left zeroed, wildcard value */
	mgmt->u.beacon.beacon_int =
		cpu_to_le16(local->hw.conf.beacon_int);
	mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */

	pos = skb_put(skb, 2);
	*pos++ = WLAN_EID_SSID;
	*pos++ = 0x0;

	mesh_mgmt_ies_add(skb, dev);

	return skb;
}
#endif


1815 1816
struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
				     struct ieee80211_vif *vif,
1817 1818 1819 1820 1821 1822 1823
				     struct ieee80211_tx_control *control)
{
	struct ieee80211_local *local = hw_to_local(hw);
	struct sk_buff *skb;
	struct net_device *bdev;
	struct ieee80211_sub_if_data *sdata = NULL;
	struct ieee80211_if_ap *ap = NULL;
1824
	struct rate_selection rsel;
1825
	struct beacon_data *beacon;
1826
	struct ieee80211_supported_band *sband;
1827 1828
	int *num_beacons;
	int err = 0;
1829 1830

	sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
1831 1832

	rcu_read_lock();
1833

1834 1835
	sdata = vif_to_sdata(vif);
	bdev = sdata->dev;
1836

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	switch (sdata->vif.type) {
	case IEEE80211_IF_TYPE_AP:
		ap = &sdata->u.ap;
		beacon = rcu_dereference(ap->beacon);
		if (!ap || !beacon) {
			err = -1;
			break;
		}

		/* headroom, head length, tail length and maximum TIM length */
		skb = dev_alloc_skb(local->tx_headroom + beacon->head_len +
				    beacon->tail_len + 256);
		if (!skb)
			goto out;

		skb_reserve(skb, local->tx_headroom);
		memcpy(skb_put(skb, beacon->head_len), beacon->head,
		       beacon->head_len);

		ieee80211_include_sequence(sdata,
					   (struct ieee80211_hdr *)skb->data);

		ieee80211_beacon_add_tim(local, ap, skb, beacon);

		if (beacon->tail)
			memcpy(skb_put(skb, beacon->tail_len), beacon->tail,
			       beacon->tail_len);

		num_beacons = &ap->num_beacons;
		break;

#ifdef CONFIG_MAC80211_MESH
	case IEEE80211_IF_TYPE_MESH_POINT:
		skb = ieee80211_mesh_beacon_get(bdev);
		num_beacons = &sdata->u.sta.num_beacons;
		break;
#endif

	default:
		err = -1;
		break;
	}
1879

1880
	if (err) {
1881 1882
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
		if (net_ratelimit())
1883 1884
			printk(KERN_DEBUG "no beacon data avail for %s\n",
			       bdev->name);
1885
#endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
1886 1887
		skb = NULL;
		goto out;
1888 1889 1890
	}

	if (control) {
1891
		rate_control_get_rate(local->mdev, sband, skb, &rsel);
1892
		if (!rsel.rate) {
1893
			if (net_ratelimit()) {
1894 1895 1896
				printk(KERN_DEBUG "%s: ieee80211_beacon_get: "
				       "no rate found\n",
				       wiphy_name(local->hw.wiphy));
1897 1898
			}
			dev_kfree_skb(skb);
1899 1900
			skb = NULL;
			goto out;
1901 1902
		}

I
Ivo van Doorn 已提交
1903
		control->vif = vif;
1904 1905 1906 1907
		control->tx_rate = rsel.rate;
		if (sdata->bss_conf.use_short_preamble &&
		    rsel.rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
			control->flags |= IEEE80211_TXCTL_SHORT_PREAMBLE;
1908 1909 1910
		control->antenna_sel_tx = local->hw.conf.antenna_sel_tx;
		control->flags |= IEEE80211_TXCTL_NO_ACK;
		control->retry_limit = 1;
1911
		control->flags |= IEEE80211_TXCTL_CLEAR_PS_FILT;
1912
	}
1913 1914
	(*num_beacons)++;
out:
1915
	rcu_read_unlock();
1916 1917 1918 1919
	return skb;
}
EXPORT_SYMBOL(ieee80211_beacon_get);

1920
void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1921 1922 1923 1924 1925 1926 1927 1928 1929
		       const void *frame, size_t frame_len,
		       const struct ieee80211_tx_control *frame_txctl,
		       struct ieee80211_rts *rts)
{
	const struct ieee80211_hdr *hdr = frame;
	u16 fctl;

	fctl = IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS;
	rts->frame_control = cpu_to_le16(fctl);
1930 1931
	rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
					       frame_txctl);
1932 1933 1934 1935 1936
	memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
	memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
}
EXPORT_SYMBOL(ieee80211_rts_get);

1937
void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1938 1939 1940 1941 1942 1943 1944 1945 1946
			     const void *frame, size_t frame_len,
			     const struct ieee80211_tx_control *frame_txctl,
			     struct ieee80211_cts *cts)
{
	const struct ieee80211_hdr *hdr = frame;
	u16 fctl;

	fctl = IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS;
	cts->frame_control = cpu_to_le16(fctl);
1947 1948
	cts->duration = ieee80211_ctstoself_duration(hw, vif,
						     frame_len, frame_txctl);
1949 1950 1951 1952 1953
	memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
}
EXPORT_SYMBOL(ieee80211_ctstoself_get);

struct sk_buff *
1954 1955
ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
			  struct ieee80211_vif *vif,
1956 1957 1958 1959 1960 1961 1962
			  struct ieee80211_tx_control *control)
{
	struct ieee80211_local *local = hw_to_local(hw);
	struct sk_buff *skb;
	struct sta_info *sta;
	ieee80211_tx_handler *handler;
	struct ieee80211_txrx_data tx;
1963
	ieee80211_tx_result res = TX_DROP;
1964 1965 1966
	struct net_device *bdev;
	struct ieee80211_sub_if_data *sdata;
	struct ieee80211_if_ap *bss = NULL;
1967
	struct beacon_data *beacon;
1968

1969 1970 1971
	sdata = vif_to_sdata(vif);
	bdev = sdata->dev;

1972 1973

	if (!bss)
1974 1975
		return NULL;

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	rcu_read_lock();
	beacon = rcu_dereference(bss->beacon);

	if (sdata->vif.type != IEEE80211_IF_TYPE_AP || !beacon ||
	    !beacon->head) {
		rcu_read_unlock();
		return NULL;
	}
	rcu_read_unlock();

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	if (bss->dtim_count != 0)
		return NULL; /* send buffered bc/mc only after DTIM beacon */
	memset(control, 0, sizeof(*control));
	while (1) {
		skb = skb_dequeue(&bss->ps_bc_buf);
		if (!skb)
			return NULL;
		local->total_ps_buffered--;

		if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
			struct ieee80211_hdr *hdr =
				(struct ieee80211_hdr *) skb->data;
			/* more buffered multicast/broadcast frames ==> set
			 * MoreData flag in IEEE 802.11 header to inform PS
			 * STAs */
			hdr->frame_control |=
				cpu_to_le16(IEEE80211_FCTL_MOREDATA);
		}

2005
		if (!ieee80211_tx_prepare(&tx, skb, local->mdev, control))
2006 2007 2008 2009
			break;
		dev_kfree_skb_any(skb);
	}
	sta = tx.sta;
2010
	tx.flags |= IEEE80211_TXRXD_TXPS_BUFFERED;
2011
	tx.u.tx.channel = local->hw.conf.channel;
2012

2013
	for (handler = ieee80211_tx_handlers; *handler != NULL; handler++) {
2014
		res = (*handler)(&tx);
2015
		if (res == TX_DROP || res == TX_QUEUED)
2016 2017 2018 2019
			break;
	}
	skb = tx.skb; /* handlers are allowed to change skb */

2020
	if (res == TX_DROP) {
2021 2022 2023
		I802_DEBUG_INC(local->tx_handlers_drop);
		dev_kfree_skb(skb);
		skb = NULL;
2024
	} else if (res == TX_QUEUED) {
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
		I802_DEBUG_INC(local->tx_handlers_queued);
		skb = NULL;
	}

	if (sta)
		sta_info_put(sta);

	return skb;
}
EXPORT_SYMBOL(ieee80211_get_buffered_bc);