dev.c 18.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/*
 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the version 2 of the GNU General Public License
 * as published by the Free Software Foundation
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/netlink.h>
#include <net/rtnetlink.h>

#define MOD_DESC "CAN device driver interface"

MODULE_DESCRIPTION(MOD_DESC);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");

#ifdef CONFIG_CAN_CALC_BITTIMING
#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */

/*
 * Bit-timing calculation derived from:
 *
 * Code based on LinCAN sources and H8S2638 project
 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
 * Copyright 2005      Stanislav Marek
 * email: pisa@cmp.felk.cvut.cz
 *
 * Calculates proper bit-timing parameters for a specified bit-rate
 * and sample-point, which can then be used to set the bit-timing
 * registers of the CAN controller. You can find more information
 * in the header file linux/can/netlink.h.
 */
static int can_update_spt(const struct can_bittiming_const *btc,
			  int sampl_pt, int tseg, int *tseg1, int *tseg2)
{
	*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
	if (*tseg2 < btc->tseg2_min)
		*tseg2 = btc->tseg2_min;
	if (*tseg2 > btc->tseg2_max)
		*tseg2 = btc->tseg2_max;
	*tseg1 = tseg - *tseg2;
	if (*tseg1 > btc->tseg1_max) {
		*tseg1 = btc->tseg1_max;
		*tseg2 = tseg - *tseg1;
	}
	return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
}

static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
{
	struct can_priv *priv = netdev_priv(dev);
	const struct can_bittiming_const *btc = priv->bittiming_const;
	long rate, best_rate = 0;
	long best_error = 1000000000, error = 0;
	int best_tseg = 0, best_brp = 0, brp = 0;
	int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
	int spt_error = 1000, spt = 0, sampl_pt;
	u64 v64;

	if (!priv->bittiming_const)
		return -ENOTSUPP;

	/* Use CIA recommended sample points */
	if (bt->sample_point) {
		sampl_pt = bt->sample_point;
	} else {
		if (bt->bitrate > 800000)
			sampl_pt = 750;
		else if (bt->bitrate > 500000)
			sampl_pt = 800;
		else
			sampl_pt = 875;
	}

	/* tseg even = round down, odd = round up */
	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
		tsegall = 1 + tseg / 2;
		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
		/* chose brp step which is possible in system */
		brp = (brp / btc->brp_inc) * btc->brp_inc;
		if ((brp < btc->brp_min) || (brp > btc->brp_max))
			continue;
		rate = priv->clock.freq / (brp * tsegall);
		error = bt->bitrate - rate;
		/* tseg brp biterror */
		if (error < 0)
			error = -error;
		if (error > best_error)
			continue;
		best_error = error;
		if (error == 0) {
			spt = can_update_spt(btc, sampl_pt, tseg / 2,
					     &tseg1, &tseg2);
			error = sampl_pt - spt;
			if (error < 0)
				error = -error;
			if (error > spt_error)
				continue;
			spt_error = error;
		}
		best_tseg = tseg / 2;
		best_brp = brp;
		best_rate = rate;
		if (error == 0)
			break;
	}

	if (best_error) {
		/* Error in one-tenth of a percent */
		error = (best_error * 1000) / bt->bitrate;
		if (error > CAN_CALC_MAX_ERROR) {
			dev_err(dev->dev.parent,
				"bitrate error %ld.%ld%% too high\n",
				error / 10, error % 10);
			return -EDOM;
		} else {
			dev_warn(dev->dev.parent, "bitrate error %ld.%ld%%\n",
				 error / 10, error % 10);
		}
	}

	/* real sample point */
	bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
					  &tseg1, &tseg2);

	v64 = (u64)best_brp * 1000000000UL;
	do_div(v64, priv->clock.freq);
	bt->tq = (u32)v64;
	bt->prop_seg = tseg1 / 2;
	bt->phase_seg1 = tseg1 - bt->prop_seg;
	bt->phase_seg2 = tseg2;
	bt->sjw = 1;
	bt->brp = best_brp;
	/* real bit-rate */
	bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));

	return 0;
}
#else /* !CONFIG_CAN_CALC_BITTIMING */
static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
{
	dev_err(dev->dev.parent, "bit-timing calculation not available\n");
	return -EINVAL;
}
#endif /* CONFIG_CAN_CALC_BITTIMING */

/*
 * Checks the validity of the specified bit-timing parameters prop_seg,
 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
 * prescaler value brp. You can find more information in the header
 * file linux/can/netlink.h.
 */
static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt)
{
	struct can_priv *priv = netdev_priv(dev);
	const struct can_bittiming_const *btc = priv->bittiming_const;
	int tseg1, alltseg;
	u64 brp64;

	if (!priv->bittiming_const)
		return -ENOTSUPP;

	tseg1 = bt->prop_seg + bt->phase_seg1;
	if (!bt->sjw)
		bt->sjw = 1;
	if (bt->sjw > btc->sjw_max ||
	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
		return -ERANGE;

	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
	if (btc->brp_inc > 1)
		do_div(brp64, btc->brp_inc);
	brp64 += 500000000UL - 1;
	do_div(brp64, 1000000000UL); /* the practicable BRP */
	if (btc->brp_inc > 1)
		brp64 *= btc->brp_inc;
	bt->brp = (u32)brp64;

	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
		return -EINVAL;

	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;

	return 0;
}

int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt)
{
	struct can_priv *priv = netdev_priv(dev);
	int err;

	/* Check if the CAN device has bit-timing parameters */
	if (priv->bittiming_const) {

		/* Non-expert mode? Check if the bitrate has been pre-defined */
		if (!bt->tq)
			/* Determine bit-timing parameters */
			err = can_calc_bittiming(dev, bt);
		else
			/* Check bit-timing params and calculate proper brp */
			err = can_fixup_bittiming(dev, bt);
		if (err)
			return err;
	}

	return 0;
}

/*
 * Local echo of CAN messages
 *
 * CAN network devices *should* support a local echo functionality
 * (see Documentation/networking/can.txt). To test the handling of CAN
 * interfaces that do not support the local echo both driver types are
 * implemented. In the case that the driver does not support the echo
 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
 * to perform the echo as a fallback solution.
 */
static void can_flush_echo_skb(struct net_device *dev)
{
	struct can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	int i;

248
	for (i = 0; i < priv->echo_skb_max; i++) {
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
		if (priv->echo_skb[i]) {
			kfree_skb(priv->echo_skb[i]);
			priv->echo_skb[i] = NULL;
			stats->tx_dropped++;
			stats->tx_aborted_errors++;
		}
	}
}

/*
 * Put the skb on the stack to be looped backed locally lateron
 *
 * The function is typically called in the start_xmit function
 * of the device driver. The driver must protect access to
 * priv->echo_skb, if necessary.
 */
265 266
void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
		      unsigned int idx)
267 268 269
{
	struct can_priv *priv = netdev_priv(dev);

270 271
	BUG_ON(idx >= priv->echo_skb_max);

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	/* check flag whether this packet has to be looped back */
	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK) {
		kfree_skb(skb);
		return;
	}

	if (!priv->echo_skb[idx]) {
		struct sock *srcsk = skb->sk;

		if (atomic_read(&skb->users) != 1) {
			struct sk_buff *old_skb = skb;

			skb = skb_clone(old_skb, GFP_ATOMIC);
			kfree_skb(old_skb);
			if (!skb)
				return;
		} else
			skb_orphan(skb);

		skb->sk = srcsk;

		/* make settings for echo to reduce code in irq context */
		skb->protocol = htons(ETH_P_CAN);
		skb->pkt_type = PACKET_BROADCAST;
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		skb->dev = dev;

		/* save this skb for tx interrupt echo handling */
		priv->echo_skb[idx] = skb;
	} else {
		/* locking problem with netif_stop_queue() ?? */
		dev_err(dev->dev.parent, "%s: BUG! echo_skb is occupied!\n",
			__func__);
		kfree_skb(skb);
	}
}
EXPORT_SYMBOL_GPL(can_put_echo_skb);

/*
 * Get the skb from the stack and loop it back locally
 *
 * The function is typically called when the TX done interrupt
 * is handled in the device driver. The driver must protect
 * access to priv->echo_skb, if necessary.
 */
317
void can_get_echo_skb(struct net_device *dev, unsigned int idx)
318 319 320
{
	struct can_priv *priv = netdev_priv(dev);

321 322
	BUG_ON(idx >= priv->echo_skb_max);

323
	if (priv->echo_skb[idx]) {
324 325 326 327 328 329
		netif_rx(priv->echo_skb[idx]);
		priv->echo_skb[idx] = NULL;
	}
}
EXPORT_SYMBOL_GPL(can_get_echo_skb);

330 331 332 333 334
/*
  * Remove the skb from the stack and free it.
  *
  * The function is typically called when TX failed.
  */
335
void can_free_echo_skb(struct net_device *dev, unsigned int idx)
336 337 338
{
	struct can_priv *priv = netdev_priv(dev);

339 340
	BUG_ON(idx >= priv->echo_skb_max);

341 342 343 344 345 346 347
	if (priv->echo_skb[idx]) {
		kfree_skb(priv->echo_skb[idx]);
		priv->echo_skb[idx] = NULL;
	}
}
EXPORT_SYMBOL_GPL(can_free_echo_skb);

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
/*
 * CAN device restart for bus-off recovery
 */
void can_restart(unsigned long data)
{
	struct net_device *dev = (struct net_device *)data;
	struct can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct sk_buff *skb;
	struct can_frame *cf;
	int err;

	BUG_ON(netif_carrier_ok(dev));

	/*
	 * No synchronization needed because the device is bus-off and
	 * no messages can come in or go out.
	 */
	can_flush_echo_skb(dev);

	/* send restart message upstream */
369
	skb = alloc_can_err_skb(dev, &cf);
370 371
	if (skb == NULL) {
		err = -ENOMEM;
372
		goto restart;
373
	}
374
	cf->can_id |= CAN_ERR_RESTARTED;
375 376 377 378 379 380

	netif_rx(skb);

	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;

381
restart:
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
	dev_dbg(dev->dev.parent, "restarted\n");
	priv->can_stats.restarts++;

	/* Now restart the device */
	err = priv->do_set_mode(dev, CAN_MODE_START);

	netif_carrier_on(dev);
	if (err)
		dev_err(dev->dev.parent, "Error %d during restart", err);
}

int can_restart_now(struct net_device *dev)
{
	struct can_priv *priv = netdev_priv(dev);

	/*
	 * A manual restart is only permitted if automatic restart is
	 * disabled and the device is in the bus-off state
	 */
	if (priv->restart_ms)
		return -EINVAL;
	if (priv->state != CAN_STATE_BUS_OFF)
		return -EBUSY;

	/* Runs as soon as possible in the timer context */
	mod_timer(&priv->restart_timer, jiffies);

	return 0;
}

/*
 * CAN bus-off
 *
 * This functions should be called when the device goes bus-off to
 * tell the netif layer that no more packets can be sent or received.
 * If enabled, a timer is started to trigger bus-off recovery.
 */
void can_bus_off(struct net_device *dev)
{
	struct can_priv *priv = netdev_priv(dev);

	dev_dbg(dev->dev.parent, "bus-off\n");

	netif_carrier_off(dev);
	priv->can_stats.bus_off++;

	if (priv->restart_ms)
		mod_timer(&priv->restart_timer,
			  jiffies + (priv->restart_ms * HZ) / 1000);
}
EXPORT_SYMBOL_GPL(can_bus_off);

static void can_setup(struct net_device *dev)
{
	dev->type = ARPHRD_CAN;
	dev->mtu = sizeof(struct can_frame);
	dev->hard_header_len = 0;
	dev->addr_len = 0;
	dev->tx_queue_len = 10;

	/* New-style flags. */
	dev->flags = IFF_NOARP;
	dev->features = NETIF_F_NO_CSUM;
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
{
	struct sk_buff *skb;

	skb = netdev_alloc_skb(dev, sizeof(struct can_frame));
	if (unlikely(!skb))
		return NULL;

	skb->protocol = htons(ETH_P_CAN);
	skb->pkt_type = PACKET_BROADCAST;
	skb->ip_summed = CHECKSUM_UNNECESSARY;
	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
	memset(*cf, 0, sizeof(struct can_frame));

	return skb;
}
EXPORT_SYMBOL_GPL(alloc_can_skb);

struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
{
	struct sk_buff *skb;

	skb = alloc_can_skb(dev, cf);
	if (unlikely(!skb))
		return NULL;

	(*cf)->can_id = CAN_ERR_FLAG;
	(*cf)->can_dlc = CAN_ERR_DLC;

	return skb;
}
EXPORT_SYMBOL_GPL(alloc_can_err_skb);

480 481 482
/*
 * Allocate and setup space for the CAN network device
 */
483
struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
484 485 486
{
	struct net_device *dev;
	struct can_priv *priv;
487
	int size;
488

489 490 491 492 493 494 495
	if (echo_skb_max)
		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
			echo_skb_max * sizeof(struct sk_buff *);
	else
		size = sizeof_priv;

	dev = alloc_netdev(size, "can%d", can_setup);
496 497 498 499 500
	if (!dev)
		return NULL;

	priv = netdev_priv(dev);

501 502 503 504 505 506
	if (echo_skb_max) {
		priv->echo_skb_max = echo_skb_max;
		priv->echo_skb = (void *)priv +
			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
	}

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
	priv->state = CAN_STATE_STOPPED;

	init_timer(&priv->restart_timer);

	return dev;
}
EXPORT_SYMBOL_GPL(alloc_candev);

/*
 * Free space of the CAN network device
 */
void free_candev(struct net_device *dev)
{
	free_netdev(dev);
}
EXPORT_SYMBOL_GPL(free_candev);

/*
 * Common open function when the device gets opened.
 *
 * This function should be called in the open function of the device
 * driver.
 */
int open_candev(struct net_device *dev)
{
	struct can_priv *priv = netdev_priv(dev);

	if (!priv->bittiming.tq && !priv->bittiming.bitrate) {
		dev_err(dev->dev.parent, "bit-timing not yet defined\n");
		return -EINVAL;
	}

539 540 541 542
	/* Switch carrier on if device was stopped while in bus-off state */
	if (!netif_carrier_ok(dev))
		netif_carrier_on(dev);

543 544 545 546
	setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);

	return 0;
}
547
EXPORT_SYMBOL_GPL(open_candev);
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676

/*
 * Common close function for cleanup before the device gets closed.
 *
 * This function should be called in the close function of the device
 * driver.
 */
void close_candev(struct net_device *dev)
{
	struct can_priv *priv = netdev_priv(dev);

	if (del_timer_sync(&priv->restart_timer))
		dev_put(dev);
	can_flush_echo_skb(dev);
}
EXPORT_SYMBOL_GPL(close_candev);

/*
 * CAN netlink interface
 */
static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
	[IFLA_CAN_BITTIMING_CONST]
				= { .len = sizeof(struct can_bittiming_const) },
	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
};

static int can_changelink(struct net_device *dev,
			  struct nlattr *tb[], struct nlattr *data[])
{
	struct can_priv *priv = netdev_priv(dev);
	int err;

	/* We need synchronization with dev->stop() */
	ASSERT_RTNL();

	if (data[IFLA_CAN_CTRLMODE]) {
		struct can_ctrlmode *cm;

		/* Do not allow changing controller mode while running */
		if (dev->flags & IFF_UP)
			return -EBUSY;
		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
		priv->ctrlmode &= ~cm->mask;
		priv->ctrlmode |= cm->flags;
	}

	if (data[IFLA_CAN_BITTIMING]) {
		struct can_bittiming bt;

		/* Do not allow changing bittiming while running */
		if (dev->flags & IFF_UP)
			return -EBUSY;
		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
		if ((!bt.bitrate && !bt.tq) || (bt.bitrate && bt.tq))
			return -EINVAL;
		err = can_get_bittiming(dev, &bt);
		if (err)
			return err;
		memcpy(&priv->bittiming, &bt, sizeof(bt));

		if (priv->do_set_bittiming) {
			/* Finally, set the bit-timing registers */
			err = priv->do_set_bittiming(dev);
			if (err)
				return err;
		}
	}

	if (data[IFLA_CAN_RESTART_MS]) {
		/* Do not allow changing restart delay while running */
		if (dev->flags & IFF_UP)
			return -EBUSY;
		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
	}

	if (data[IFLA_CAN_RESTART]) {
		/* Do not allow a restart while not running */
		if (!(dev->flags & IFF_UP))
			return -EINVAL;
		err = can_restart_now(dev);
		if (err)
			return err;
	}

	return 0;
}

static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
{
	struct can_priv *priv = netdev_priv(dev);
	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
	enum can_state state = priv->state;

	if (priv->do_get_state)
		priv->do_get_state(dev, &state);
	NLA_PUT_U32(skb, IFLA_CAN_STATE, state);
	NLA_PUT(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm);
	NLA_PUT_U32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms);
	NLA_PUT(skb, IFLA_CAN_BITTIMING,
		sizeof(priv->bittiming), &priv->bittiming);
	NLA_PUT(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock);
	if (priv->bittiming_const)
		NLA_PUT(skb, IFLA_CAN_BITTIMING_CONST,
			sizeof(*priv->bittiming_const), priv->bittiming_const);

	return 0;

nla_put_failure:
	return -EMSGSIZE;
}

static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
{
	struct can_priv *priv = netdev_priv(dev);

	NLA_PUT(skb, IFLA_INFO_XSTATS,
		sizeof(priv->can_stats), &priv->can_stats);

	return 0;

nla_put_failure:
	return -EMSGSIZE;
}

677 678 679 680 681 682
static int can_newlink(struct net_device *dev,
		       struct nlattr *tb[], struct nlattr *data[])
{
	return -EOPNOTSUPP;
}

683 684 685 686 687
static struct rtnl_link_ops can_link_ops __read_mostly = {
	.kind		= "can",
	.maxtype	= IFLA_CAN_MAX,
	.policy		= can_policy,
	.setup		= can_setup,
688
	.newlink	= can_newlink,
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
	.changelink	= can_changelink,
	.fill_info	= can_fill_info,
	.fill_xstats	= can_fill_xstats,
};

/*
 * Register the CAN network device
 */
int register_candev(struct net_device *dev)
{
	dev->rtnl_link_ops = &can_link_ops;
	return register_netdev(dev);
}
EXPORT_SYMBOL_GPL(register_candev);

/*
 * Unregister the CAN network device
 */
void unregister_candev(struct net_device *dev)
{
	unregister_netdev(dev);
}
EXPORT_SYMBOL_GPL(unregister_candev);

static __init int can_dev_init(void)
{
	int err;

	err = rtnl_link_register(&can_link_ops);
	if (!err)
		printk(KERN_INFO MOD_DESC "\n");

	return err;
}
module_init(can_dev_init);

static __exit void can_dev_exit(void)
{
	rtnl_link_unregister(&can_link_ops);
}
module_exit(can_dev_exit);

MODULE_ALIAS_RTNL_LINK("can");