hpsa.c 146.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 *    Disk Array driver for HP Smart Array SAS controllers
 *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; version 2 of the License.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/pci.h>
M
Matthew Garrett 已提交
26
#include <linux/pci-aspm.h>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/timer.h>
#include <linux/seq_file.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <linux/blktrace_api.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
46
#include <scsi/scsi_tcq.h>
47 48 49
#include <linux/cciss_ioctl.h>
#include <linux/string.h>
#include <linux/bitmap.h>
A
Arun Sharma 已提交
50
#include <linux/atomic.h>
51
#include <linux/kthread.h>
52
#include <linux/jiffies.h>
53 54 55 56
#include "hpsa_cmd.h"
#include "hpsa.h"

/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57
#define HPSA_DRIVER_VERSION "3.4.0-1"
58
#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59
#define HPSA "hpsa"
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

/* How long to wait (in milliseconds) for board to go into simple mode */
#define MAX_CONFIG_WAIT 30000
#define MAX_IOCTL_CONFIG_WAIT 1000

/*define how many times we will try a command because of bus resets */
#define MAX_CMD_RETRIES 3

/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Hewlett-Packard Company");
MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
	HPSA_DRIVER_VERSION);
MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
MODULE_VERSION(HPSA_DRIVER_VERSION);
MODULE_LICENSE("GPL");

static int hpsa_allow_any;
module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_allow_any,
		"Allow hpsa driver to access unknown HP Smart Array hardware");
80 81 82 83
static int hpsa_simple_mode;
module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_simple_mode,
	"Use 'simple mode' rather than 'performant mode'");
84 85 86 87 88 89 90 91

/* define the PCI info for the cards we can control */
static const struct pci_device_id hpsa_pci_device_id[] = {
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92 93
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
94
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95 96 97 98
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x334D},
100 101 102
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
103 104 105 106 107 108 109
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
110 111 112 113 114 115 116 117 118 119 120 121 122
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
123
	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
124
		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
	{0,}
};

MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);

/*  board_id = Subsystem Device ID & Vendor ID
 *  product = Marketing Name for the board
 *  access = Address of the struct of function pointers
 */
static struct board_type products[] = {
	{0x3241103C, "Smart Array P212", &SA5_access},
	{0x3243103C, "Smart Array P410", &SA5_access},
	{0x3245103C, "Smart Array P410i", &SA5_access},
	{0x3247103C, "Smart Array P411", &SA5_access},
	{0x3249103C, "Smart Array P812", &SA5_access},
140 141
	{0x324A103C, "Smart Array P712m", &SA5_access},
	{0x324B103C, "Smart Array P711m", &SA5_access},
142 143 144 145
	{0x3350103C, "Smart Array P222", &SA5_access},
	{0x3351103C, "Smart Array P420", &SA5_access},
	{0x3352103C, "Smart Array P421", &SA5_access},
	{0x3353103C, "Smart Array P822", &SA5_access},
146
	{0x334D103C, "Smart Array P822se", &SA5_access},
147 148 149
	{0x3354103C, "Smart Array P420i", &SA5_access},
	{0x3355103C, "Smart Array P220i", &SA5_access},
	{0x3356103C, "Smart Array P721m", &SA5_access},
150 151 152 153 154 155 156
	{0x1921103C, "Smart Array P830i", &SA5_access},
	{0x1922103C, "Smart Array P430", &SA5_access},
	{0x1923103C, "Smart Array P431", &SA5_access},
	{0x1924103C, "Smart Array P830", &SA5_access},
	{0x1926103C, "Smart Array P731m", &SA5_access},
	{0x1928103C, "Smart Array P230i", &SA5_access},
	{0x1929103C, "Smart Array P530", &SA5_access},
157 158 159 160 161 162 163 164 165 166 167 168
	{0x21BD103C, "Smart Array", &SA5_access},
	{0x21BE103C, "Smart Array", &SA5_access},
	{0x21BF103C, "Smart Array", &SA5_access},
	{0x21C0103C, "Smart Array", &SA5_access},
	{0x21C1103C, "Smart Array", &SA5_access},
	{0x21C2103C, "Smart Array", &SA5_access},
	{0x21C3103C, "Smart Array", &SA5_access},
	{0x21C4103C, "Smart Array", &SA5_access},
	{0x21C5103C, "Smart Array", &SA5_access},
	{0x21C7103C, "Smart Array", &SA5_access},
	{0x21C8103C, "Smart Array", &SA5_access},
	{0x21C9103C, "Smart Array", &SA5_access},
169 170 171 172 173
	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
};

static int number_of_controllers;

174 175 176 177
static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
static spinlock_t lockup_detector_lock;
static struct task_struct *hpsa_lockup_detector;

178 179
static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
180 181 182 183 184 185 186 187 188 189 190
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
static void start_io(struct ctlr_info *h);

#ifdef CONFIG_COMPAT
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
#endif

static void cmd_free(struct ctlr_info *h, struct CommandList *c);
static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
static struct CommandList *cmd_alloc(struct ctlr_info *h);
static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
191
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
192
	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
193 194
	int cmd_type);

J
Jeff Garzik 已提交
195
static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
196 197 198
static void hpsa_scan_start(struct Scsi_Host *);
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time);
199 200
static int hpsa_change_queue_depth(struct scsi_device *sdev,
	int qdepth, int reason);
201 202

static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
203
static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
204 205 206 207 208 209 210 211
static int hpsa_slave_alloc(struct scsi_device *sdev);
static void hpsa_slave_destroy(struct scsi_device *sdev);

static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
212 213 214
/* performant mode helper functions */
static void calc_bucket_map(int *bucket, int num_buckets,
	int nsgs, int *bucket_map);
215
static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
216
static inline u32 next_command(struct ctlr_info *h, u8 q);
217 218 219 220 221 222 223 224
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset);
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar);
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready);
225
static inline void finish_cmd(struct CommandList *c);
226 227
#define BOARD_NOT_READY 0
#define BOARD_READY 1
228 229 230 231 232 233 234

static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
{
	unsigned long *priv = shost_priv(sdev->host);
	return (struct ctlr_info *) *priv;
}

235 236 237 238 239 240
static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
{
	unsigned long *priv = shost_priv(sh);
	return (struct ctlr_info *) *priv;
}

241 242 243 244 245 246 247 248
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
		return 0;

	switch (c->err_info->SenseInfo[12]) {
	case STATE_CHANGED:
249
		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
250 251 252
			"detected, command retried\n", h->ctlr);
		break;
	case LUN_FAILED:
253
		dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
254 255 256
			"detected, action required\n", h->ctlr);
		break;
	case REPORT_LUNS_CHANGED:
257
		dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
M
Mike Miller 已提交
258
			"changed, action required\n", h->ctlr);
259
	/*
260 261
	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
	 * target (array) devices.
262 263 264
	 */
		break;
	case POWER_OR_RESET:
265
		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
266 267 268
			"or device reset detected\n", h->ctlr);
		break;
	case UNIT_ATTENTION_CLEARED:
269
		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
270 271 272
		    "cleared by another initiator\n", h->ctlr);
		break;
	default:
273
		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
274 275 276 277 278 279
			"unit attention detected\n", h->ctlr);
		break;
	}
	return 1;
}

280 281 282 283 284 285 286 287 288 289
static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
{
	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
		return 0;
	dev_warn(&h->pdev->dev, HPSA "device busy");
	return 1;
}

290 291 292 293 294 295
static ssize_t host_store_rescan(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
296
	h = shost_to_hba(shost);
M
Mike Miller 已提交
297
	hpsa_scan_start(h->scsi_host);
298 299 300
	return count;
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
static ssize_t host_show_firmware_revision(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	unsigned char *fwrev;

	h = shost_to_hba(shost);
	if (!h->hba_inquiry_data)
		return 0;
	fwrev = &h->hba_inquiry_data[32];
	return snprintf(buf, 20, "%c%c%c%c\n",
		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
}

316 317 318 319 320 321 322 323 324
static ssize_t host_show_commands_outstanding(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct Scsi_Host *shost = class_to_shost(dev);
	struct ctlr_info *h = shost_to_hba(shost);

	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
}

325 326 327 328 329 330 331 332
static ssize_t host_show_transport_mode(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 20, "%s\n",
333
		h->transMethod & CFGTBL_Trans_Performant ?
334 335 336
			"performant" : "simple");
}

337
/* List of controllers which cannot be hard reset on kexec with reset_devices */
338 339 340 341 342 343 344 345 346 347 348 349 350
static u32 unresettable_controller[] = {
	0x324a103C, /* Smart Array P712m */
	0x324b103C, /* SmartArray P711m */
	0x3223103C, /* Smart Array P800 */
	0x3234103C, /* Smart Array P400 */
	0x3235103C, /* Smart Array P400i */
	0x3211103C, /* Smart Array E200i */
	0x3212103C, /* Smart Array E200 */
	0x3213103C, /* Smart Array E200i */
	0x3214103C, /* Smart Array E200i */
	0x3215103C, /* Smart Array E200i */
	0x3237103C, /* Smart Array E500 */
	0x323D103C, /* Smart Array P700m */
351
	0x40800E11, /* Smart Array 5i */
352 353
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
354 355 356 357 358 359
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
360 361
};

362 363
/* List of controllers which cannot even be soft reset */
static u32 soft_unresettable_controller[] = {
364
	0x40800E11, /* Smart Array 5i */
365 366 367 368 369 370
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
371 372 373 374 375 376 377 378 379 380 381 382
	/* Exclude 640x boards.  These are two pci devices in one slot
	 * which share a battery backed cache module.  One controls the
	 * cache, the other accesses the cache through the one that controls
	 * it.  If we reset the one controlling the cache, the other will
	 * likely not be happy.  Just forbid resetting this conjoined mess.
	 * The 640x isn't really supported by hpsa anyway.
	 */
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
};

static int ctlr_is_hard_resettable(u32 board_id)
383 384 385 386
{
	int i;

	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
387 388 389 390 391 392 393 394 395 396 397
		if (unresettable_controller[i] == board_id)
			return 0;
	return 1;
}

static int ctlr_is_soft_resettable(u32 board_id)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
		if (soft_unresettable_controller[i] == board_id)
398 399 400 401
			return 0;
	return 1;
}

402 403 404 405 406 407
static int ctlr_is_resettable(u32 board_id)
{
	return ctlr_is_hard_resettable(board_id) ||
		ctlr_is_soft_resettable(board_id);
}

408 409 410 411 412 413 414
static ssize_t host_show_resettable(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
415
	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
416 417
}

418 419 420 421 422 423
static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
{
	return (scsi3addr[3] & 0xC0) == 0x40;
}

static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
424
	"1(ADM)", "UNKNOWN"
425 426 427 428 429 430 431
};
#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)

static ssize_t raid_level_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	ssize_t l = 0;
432
	unsigned char rlevel;
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}

	/* Is this even a logical drive? */
	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
		spin_unlock_irqrestore(&h->lock, flags);
		l = snprintf(buf, PAGE_SIZE, "N/A\n");
		return l;
	}

	rlevel = hdev->raid_level;
	spin_unlock_irqrestore(&h->lock, flags);
456
	if (rlevel > RAID_UNKNOWN)
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
		rlevel = RAID_UNKNOWN;
	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
	return l;
}

static ssize_t lunid_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char lunid[8];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		lunid[0], lunid[1], lunid[2], lunid[3],
		lunid[4], lunid[5], lunid[6], lunid[7]);
}

static ssize_t unique_id_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char sn[16];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(sn, hdev->device_id, sizeof(sn));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 16 * 2 + 2,
			"%02X%02X%02X%02X%02X%02X%02X%02X"
			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
			sn[0], sn[1], sn[2], sn[3],
			sn[4], sn[5], sn[6], sn[7],
			sn[8], sn[9], sn[10], sn[11],
			sn[12], sn[13], sn[14], sn[15]);
}

514 515 516 517 518 519 520 521 522 523
static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
static DEVICE_ATTR(firmware_revision, S_IRUGO,
	host_show_firmware_revision, NULL);
static DEVICE_ATTR(commands_outstanding, S_IRUGO,
	host_show_commands_outstanding, NULL);
static DEVICE_ATTR(transport_mode, S_IRUGO,
	host_show_transport_mode, NULL);
524 525
static DEVICE_ATTR(resettable, S_IRUGO,
	host_show_resettable, NULL);
526 527 528 529 530 531 532 533 534 535 536 537 538

static struct device_attribute *hpsa_sdev_attrs[] = {
	&dev_attr_raid_level,
	&dev_attr_lunid,
	&dev_attr_unique_id,
	NULL,
};

static struct device_attribute *hpsa_shost_attrs[] = {
	&dev_attr_rescan,
	&dev_attr_firmware_revision,
	&dev_attr_commands_outstanding,
	&dev_attr_transport_mode,
539
	&dev_attr_resettable,
540 541 542 543 544
	NULL,
};

static struct scsi_host_template hpsa_driver_template = {
	.module			= THIS_MODULE,
545 546
	.name			= HPSA,
	.proc_name		= HPSA,
547 548 549 550 551 552
	.queuecommand		= hpsa_scsi_queue_command,
	.scan_start		= hpsa_scan_start,
	.scan_finished		= hpsa_scan_finished,
	.change_queue_depth	= hpsa_change_queue_depth,
	.this_id		= -1,
	.use_clustering		= ENABLE_CLUSTERING,
553
	.eh_abort_handler	= hpsa_eh_abort_handler,
554 555 556 557 558 559 560 561 562
	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
	.ioctl			= hpsa_ioctl,
	.slave_alloc		= hpsa_slave_alloc,
	.slave_destroy		= hpsa_slave_destroy,
#ifdef CONFIG_COMPAT
	.compat_ioctl		= hpsa_compat_ioctl,
#endif
	.sdev_attrs = hpsa_sdev_attrs,
	.shost_attrs = hpsa_shost_attrs,
563
	.max_sectors = 8192,
564 565 566 567 568 569 570 571 572
};


/* Enqueuing and dequeuing functions for cmdlists. */
static inline void addQ(struct list_head *list, struct CommandList *c)
{
	list_add_tail(&c->list, list);
}

573
static inline u32 next_command(struct ctlr_info *h, u8 q)
574 575
{
	u32 a;
576
	struct reply_pool *rq = &h->reply_queue[q];
577
	unsigned long flags;
578 579

	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
580
		return h->access.command_completed(h, q);
581

582 583 584
	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
		a = rq->head[rq->current_entry];
		rq->current_entry++;
585
		spin_lock_irqsave(&h->lock, flags);
586
		h->commands_outstanding--;
587
		spin_unlock_irqrestore(&h->lock, flags);
588 589 590 591
	} else {
		a = FIFO_EMPTY;
	}
	/* Check for wraparound */
592 593 594
	if (rq->current_entry == h->max_commands) {
		rq->current_entry = 0;
		rq->wraparound ^= 1;
595 596 597 598 599 600 601 602 603 604
	}
	return a;
}

/* set_performant_mode: Modify the tag for cciss performant
 * set bit 0 for pull model, bits 3-1 for block fetch
 * register number
 */
static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
{
605
	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
606
		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
607 608
		if (likely(h->msix_vector))
			c->Header.ReplyQueue =
609
				raw_smp_processor_id() % h->nreply_queues;
610
	}
611 612
}

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
static int is_firmware_flash_cmd(u8 *cdb)
{
	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
}

/*
 * During firmware flash, the heartbeat register may not update as frequently
 * as it should.  So we dial down lockup detection during firmware flash. and
 * dial it back up when firmware flash completes.
 */
#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
		struct CommandList *c)
{
	if (!is_firmware_flash_cmd(c->Request.CDB))
		return;
	atomic_inc(&h->firmware_flash_in_progress);
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
}

static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
		struct CommandList *c)
{
	if (is_firmware_flash_cmd(c->Request.CDB) &&
		atomic_dec_and_test(&h->firmware_flash_in_progress))
		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
}

642 643 644 645 646 647
static void enqueue_cmd_and_start_io(struct ctlr_info *h,
	struct CommandList *c)
{
	unsigned long flags;

	set_performant_mode(h, c);
648
	dial_down_lockup_detection_during_fw_flash(h, c);
649 650 651 652
	spin_lock_irqsave(&h->lock, flags);
	addQ(&h->reqQ, c);
	h->Qdepth++;
	spin_unlock_irqrestore(&h->lock, flags);
653
	start_io(h);
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
}

static inline void removeQ(struct CommandList *c)
{
	if (WARN_ON(list_empty(&c->list)))
		return;
	list_del_init(&c->list);
}

static inline int is_hba_lunid(unsigned char scsi3addr[])
{
	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
}

static inline int is_scsi_rev_5(struct ctlr_info *h)
{
	if (!h->hba_inquiry_data)
		return 0;
	if ((h->hba_inquiry_data[2] & 0x07) == 5)
		return 1;
	return 0;
}

677 678 679 680 681 682 683
static int hpsa_find_target_lun(struct ctlr_info *h,
	unsigned char scsi3addr[], int bus, int *target, int *lun)
{
	/* finds an unused bus, target, lun for a new physical device
	 * assumes h->devlock is held
	 */
	int i, found = 0;
684
	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
685

686
	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
687 688 689

	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
690
			__set_bit(h->dev[i]->target, lun_taken);
691 692
	}

693 694 695 696 697 698
	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
	if (i < HPSA_MAX_DEVICES) {
		/* *bus = 1; */
		*target = i;
		*lun = 0;
		found = 1;
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
	}
	return !found;
}

/* Add an entry into h->dev[] array. */
static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
		struct hpsa_scsi_dev_t *device,
		struct hpsa_scsi_dev_t *added[], int *nadded)
{
	/* assumes h->devlock is held */
	int n = h->ndevices;
	int i;
	unsigned char addr1[8], addr2[8];
	struct hpsa_scsi_dev_t *sd;

714
	if (n >= HPSA_MAX_DEVICES) {
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
		dev_err(&h->pdev->dev, "too many devices, some will be "
			"inaccessible.\n");
		return -1;
	}

	/* physical devices do not have lun or target assigned until now. */
	if (device->lun != -1)
		/* Logical device, lun is already assigned. */
		goto lun_assigned;

	/* If this device a non-zero lun of a multi-lun device
	 * byte 4 of the 8-byte LUN addr will contain the logical
	 * unit no, zero otherise.
	 */
	if (device->scsi3addr[4] == 0) {
		/* This is not a non-zero lun of a multi-lun device */
		if (hpsa_find_target_lun(h, device->scsi3addr,
			device->bus, &device->target, &device->lun) != 0)
			return -1;
		goto lun_assigned;
	}

	/* This is a non-zero lun of a multi-lun device.
	 * Search through our list and find the device which
	 * has the same 8 byte LUN address, excepting byte 4.
	 * Assign the same bus and target for this new LUN.
	 * Use the logical unit number from the firmware.
	 */
	memcpy(addr1, device->scsi3addr, 8);
	addr1[4] = 0;
	for (i = 0; i < n; i++) {
		sd = h->dev[i];
		memcpy(addr2, sd->scsi3addr, 8);
		addr2[4] = 0;
		/* differ only in byte 4? */
		if (memcmp(addr1, addr2, 8) == 0) {
			device->bus = sd->bus;
			device->target = sd->target;
			device->lun = device->scsi3addr[4];
			break;
		}
	}
	if (device->lun == -1) {
		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
			" suspect firmware bug or unsupported hardware "
			"configuration.\n");
			return -1;
	}

lun_assigned:

	h->dev[n] = device;
	h->ndevices++;
	added[*nadded] = device;
	(*nadded)++;

	/* initially, (before registering with scsi layer) we don't
	 * know our hostno and we don't want to print anything first
	 * time anyway (the scsi layer's inquiries will show that info)
	 */
	/* if (hostno != -1) */
		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
			scsi_device_type(device->devtype), hostno,
			device->bus, device->target, device->lun);
	return 0;
}

782 783 784 785 786 787 788 789 790 791 792 793 794 795
/* Update an entry in h->dev[] array. */
static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry)
{
	/* assumes h->devlock is held */
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);

	/* Raid level changed. */
	h->dev[entry]->raid_level = new_entry->raid_level;
	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
		new_entry->target, new_entry->lun);
}

796 797 798 799 800 801 802
/* Replace an entry from h->dev[] array. */
static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry,
	struct hpsa_scsi_dev_t *added[], int *nadded,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
803
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
804 805
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;
806 807 808 809 810 811 812 813 814 815

	/*
	 * New physical devices won't have target/lun assigned yet
	 * so we need to preserve the values in the slot we are replacing.
	 */
	if (new_entry->target == -1) {
		new_entry->target = h->dev[entry]->target;
		new_entry->lun = h->dev[entry]->lun;
	}

816 817 818 819 820 821 822 823
	h->dev[entry] = new_entry;
	added[*nadded] = new_entry;
	(*nadded)++;
	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
			new_entry->target, new_entry->lun);
}

824 825 826 827 828 829 830 831
/* Remove an entry from h->dev[] array. */
static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
	int i;
	struct hpsa_scsi_dev_t *sd;

832
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901

	sd = h->dev[entry];
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;

	for (i = entry; i < h->ndevices-1; i++)
		h->dev[i] = h->dev[i+1];
	h->ndevices--;
	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
		sd->lun);
}

#define SCSI3ADDR_EQ(a, b) ( \
	(a)[7] == (b)[7] && \
	(a)[6] == (b)[6] && \
	(a)[5] == (b)[5] && \
	(a)[4] == (b)[4] && \
	(a)[3] == (b)[3] && \
	(a)[2] == (b)[2] && \
	(a)[1] == (b)[1] && \
	(a)[0] == (b)[0])

static void fixup_botched_add(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *added)
{
	/* called when scsi_add_device fails in order to re-adjust
	 * h->dev[] to match the mid layer's view.
	 */
	unsigned long flags;
	int i, j;

	spin_lock_irqsave(&h->lock, flags);
	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i] == added) {
			for (j = i; j < h->ndevices-1; j++)
				h->dev[j] = h->dev[j+1];
			h->ndevices--;
			break;
		}
	}
	spin_unlock_irqrestore(&h->lock, flags);
	kfree(added);
}

static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* we compare everything except lun and target as these
	 * are not yet assigned.  Compare parts likely
	 * to differ first
	 */
	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
		sizeof(dev1->scsi3addr)) != 0)
		return 0;
	if (memcmp(dev1->device_id, dev2->device_id,
		sizeof(dev1->device_id)) != 0)
		return 0;
	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
		return 0;
	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
		return 0;
	if (dev1->devtype != dev2->devtype)
		return 0;
	if (dev1->bus != dev2->bus)
		return 0;
	return 1;
}

902 903 904 905 906 907 908 909 910 911 912 913
static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* Device attributes that can change, but don't mean
	 * that the device is a different device, nor that the OS
	 * needs to be told anything about the change.
	 */
	if (dev1->raid_level != dev2->raid_level)
		return 1;
	return 0;
}

914 915 916
/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
 * and return needle location in *index.  If scsi3addr matches, but not
 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
917 918 919 920
 * location in *index.
 * In the case of a minor device attribute change, such as RAID level, just
 * return DEVICE_UPDATED, along with the updated device's location in index.
 * If needle not found, return DEVICE_NOT_FOUND.
921 922 923 924 925 926 927 928 929
 */
static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
	int *index)
{
	int i;
#define DEVICE_NOT_FOUND 0
#define DEVICE_CHANGED 1
#define DEVICE_SAME 2
930
#define DEVICE_UPDATED 3
931
	for (i = 0; i < haystack_size; i++) {
932 933
		if (haystack[i] == NULL) /* previously removed. */
			continue;
934 935
		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
			*index = i;
936 937 938
			if (device_is_the_same(needle, haystack[i])) {
				if (device_updated(needle, haystack[i]))
					return DEVICE_UPDATED;
939
				return DEVICE_SAME;
940
			} else {
941
				return DEVICE_CHANGED;
942
			}
943 944 945 946 947 948
		}
	}
	*index = -1;
	return DEVICE_NOT_FOUND;
}

949
static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
950 951 952 953 954 955 956 957 958 959 960 961 962
	struct hpsa_scsi_dev_t *sd[], int nsds)
{
	/* sd contains scsi3 addresses and devtypes, and inquiry
	 * data.  This function takes what's in sd to be the current
	 * reality and updates h->dev[] to reflect that reality.
	 */
	int i, entry, device_change, changes = 0;
	struct hpsa_scsi_dev_t *csd;
	unsigned long flags;
	struct hpsa_scsi_dev_t **added, **removed;
	int nadded, nremoved;
	struct Scsi_Host *sh = NULL;

963 964
	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
965 966 967 968 969 970 971 972 973 974 975 976 977

	if (!added || !removed) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"adjust_hpsa_scsi_table\n");
		goto free_and_out;
	}

	spin_lock_irqsave(&h->devlock, flags);

	/* find any devices in h->dev[] that are not in
	 * sd[] and remove them from h->dev[], and for any
	 * devices which have changed, remove the old device
	 * info and add the new device info.
978 979
	 * If minor device attributes change, just update
	 * the existing device structure.
980 981 982 983 984 985 986 987 988 989 990 991 992 993
	 */
	i = 0;
	nremoved = 0;
	nadded = 0;
	while (i < h->ndevices) {
		csd = h->dev[i];
		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			hpsa_scsi_remove_entry(h, hostno, i,
				removed, &nremoved);
			continue; /* remove ^^^, hence i not incremented */
		} else if (device_change == DEVICE_CHANGED) {
			changes++;
994 995
			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
				added, &nadded, removed, &nremoved);
996 997 998 999
			/* Set it to NULL to prevent it from being freed
			 * at the bottom of hpsa_update_scsi_devices()
			 */
			sd[entry] = NULL;
1000 1001
		} else if (device_change == DEVICE_UPDATED) {
			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
		}
		i++;
	}

	/* Now, make sure every device listed in sd[] is also
	 * listed in h->dev[], adding them if they aren't found
	 */

	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
					h->ndevices, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			if (hpsa_scsi_add_entry(h, hostno, sd[i],
				added, &nadded) != 0)
				break;
			sd[i] = NULL; /* prevent from being freed later. */
		} else if (device_change == DEVICE_CHANGED) {
			/* should never happen... */
			changes++;
			dev_warn(&h->pdev->dev,
				"device unexpectedly changed.\n");
			/* but if it does happen, we just ignore that device */
		}
	}
	spin_unlock_irqrestore(&h->devlock, flags);

	/* Don't notify scsi mid layer of any changes the first time through
	 * (or if there are no changes) scsi_scan_host will do it later the
	 * first time through.
	 */
	if (hostno == -1 || !changes)
		goto free_and_out;

	sh = h->scsi_host;
	/* Notify scsi mid layer of any removed devices */
	for (i = 0; i < nremoved; i++) {
		struct scsi_device *sdev =
			scsi_device_lookup(sh, removed[i]->bus,
				removed[i]->target, removed[i]->lun);
		if (sdev != NULL) {
			scsi_remove_device(sdev);
			scsi_device_put(sdev);
		} else {
			/* We don't expect to get here.
			 * future cmds to this device will get selection
			 * timeout as if the device was gone.
			 */
			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
				" for removal.", hostno, removed[i]->bus,
				removed[i]->target, removed[i]->lun);
		}
		kfree(removed[i]);
		removed[i] = NULL;
	}

	/* Notify scsi mid layer of any added devices */
	for (i = 0; i < nadded; i++) {
		if (scsi_add_device(sh, added[i]->bus,
			added[i]->target, added[i]->lun) == 0)
			continue;
		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
			"device not added.\n", hostno, added[i]->bus,
			added[i]->target, added[i]->lun);
		/* now we have to remove it from h->dev,
		 * since it didn't get added to scsi mid layer
		 */
		fixup_botched_add(h, added[i]);
	}

free_and_out:
	kfree(added);
	kfree(removed);
}

/*
1080
 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
 * Assume's h->devlock is held.
 */
static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
	int bus, int target, int lun)
{
	int i;
	struct hpsa_scsi_dev_t *sd;

	for (i = 0; i < h->ndevices; i++) {
		sd = h->dev[i];
		if (sd->bus == bus && sd->target == target && sd->lun == lun)
			return sd;
	}
	return NULL;
}

/* link sdev->hostdata to our per-device structure. */
static int hpsa_slave_alloc(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	unsigned long flags;
	struct ctlr_info *h;

	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->devlock, flags);
	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
		sdev_id(sdev), sdev->lun);
	if (sd != NULL)
		sdev->hostdata = sd;
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
}

static void hpsa_slave_destroy(struct scsi_device *sdev)
{
1116
	/* nothing to do. */
1117 1118
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (!h->cmd_sg_list)
		return;
	for (i = 0; i < h->nr_cmds; i++) {
		kfree(h->cmd_sg_list[i]);
		h->cmd_sg_list[i] = NULL;
	}
	kfree(h->cmd_sg_list);
	h->cmd_sg_list = NULL;
}

static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (h->chainsize <= 0)
		return 0;

	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
				GFP_KERNEL);
	if (!h->cmd_sg_list)
		return -ENOMEM;
	for (i = 0; i < h->nr_cmds; i++) {
		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
						h->chainsize, GFP_KERNEL);
		if (!h->cmd_sg_list[i])
			goto clean;
	}
	return 0;

clean:
	hpsa_free_sg_chain_blocks(h);
	return -ENOMEM;
}

1157
static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg, *chain_block;
	u64 temp64;

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
	chain_block = h->cmd_sg_list[c->cmdindex];
	chain_sg->Ext = HPSA_SG_CHAIN;
	chain_sg->Len = sizeof(*chain_sg) *
		(c->Header.SGTotal - h->max_cmd_sg_entries);
	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
				PCI_DMA_TODEVICE);
1170 1171 1172 1173 1174 1175
	if (dma_mapping_error(&h->pdev->dev, temp64)) {
		/* prevent subsequent unmapping */
		chain_sg->Addr.lower = 0;
		chain_sg->Addr.upper = 0;
		return -1;
	}
1176 1177
	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1178
	return 0;
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
}

static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg;
	union u64bit temp64;

	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
		return;

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
	temp64.val32.lower = chain_sg->Addr.lower;
	temp64.val32.upper = chain_sg->Addr.upper;
	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
}

1196
static void complete_scsi_command(struct CommandList *cp)
1197 1198 1199 1200 1201 1202 1203 1204
{
	struct scsi_cmnd *cmd;
	struct ctlr_info *h;
	struct ErrorInfo *ei;

	unsigned char sense_key;
	unsigned char asc;      /* additional sense code */
	unsigned char ascq;     /* additional sense code qualifier */
1205
	unsigned long sense_data_size;
1206 1207 1208 1209 1210 1211

	ei = cp->err_info;
	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
	h = cp->h;

	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1212 1213
	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
		hpsa_unmap_sg_chain_block(h, cp);
1214 1215 1216

	cmd->result = (DID_OK << 16); 		/* host byte */
	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1217
	cmd->result |= ei->ScsiStatus;
1218 1219

	/* copy the sense data whether we need to or not. */
1220 1221 1222 1223 1224 1225 1226 1227
	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
		sense_data_size = SCSI_SENSE_BUFFERSIZE;
	else
		sense_data_size = sizeof(ei->SenseInfo);
	if (ei->SenseLen < sense_data_size)
		sense_data_size = ei->SenseLen;

	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1228 1229 1230 1231
	scsi_set_resid(cmd, ei->ResidualCnt);

	if (ei->CommandStatus == 0) {
		cmd_free(h, cp);
1232
		cmd->scsi_done(cmd);
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
		return;
	}

	/* an error has occurred */
	switch (ei->CommandStatus) {

	case CMD_TARGET_STATUS:
		if (ei->ScsiStatus) {
			/* Get sense key */
			sense_key = 0xf & ei->SenseInfo[2];
			/* Get additional sense code */
			asc = ei->SenseInfo[12];
			/* Get addition sense code qualifier */
			ascq = ei->SenseInfo[13];
		}

		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
			if (check_for_unit_attention(h, cp)) {
				cmd->result = DID_SOFT_ERROR << 16;
				break;
			}
			if (sense_key == ILLEGAL_REQUEST) {
				/*
				 * SCSI REPORT_LUNS is commonly unsupported on
				 * Smart Array.  Suppress noisy complaint.
				 */
				if (cp->Request.CDB[0] == REPORT_LUNS)
					break;

				/* If ASC/ASCQ indicate Logical Unit
				 * Not Supported condition,
				 */
				if ((asc == 0x25) && (ascq == 0x0)) {
					dev_warn(&h->pdev->dev, "cp %p "
						"has check condition\n", cp);
					break;
				}
			}

			if (sense_key == NOT_READY) {
				/* If Sense is Not Ready, Logical Unit
				 * Not ready, Manual Intervention
				 * required
				 */
				if ((asc == 0x04) && (ascq == 0x03)) {
					dev_warn(&h->pdev->dev, "cp %p "
						"has check condition: unit "
						"not ready, manual "
						"intervention required\n", cp);
					break;
				}
			}
1285 1286 1287 1288 1289 1290 1291 1292 1293
			if (sense_key == ABORTED_COMMAND) {
				/* Aborted command is retryable */
				dev_warn(&h->pdev->dev, "cp %p "
					"has check condition: aborted command: "
					"ASC: 0x%x, ASCQ: 0x%x\n",
					cp, asc, ascq);
				cmd->result = DID_SOFT_ERROR << 16;
				break;
			}
1294
			/* Must be some other type of check condition */
1295
			dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1296 1297 1298 1299
					"unknown type: "
					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
					"Returning result: 0x%x, "
					"cmd=[%02x %02x %02x %02x %02x "
1300
					"%02x %02x %02x %02x %02x %02x "
1301 1302 1303 1304 1305 1306 1307
					"%02x %02x %02x %02x %02x]\n",
					cp, sense_key, asc, ascq,
					cmd->result,
					cmd->cmnd[0], cmd->cmnd[1],
					cmd->cmnd[2], cmd->cmnd[3],
					cmd->cmnd[4], cmd->cmnd[5],
					cmd->cmnd[6], cmd->cmnd[7],
1308 1309 1310 1311
					cmd->cmnd[8], cmd->cmnd[9],
					cmd->cmnd[10], cmd->cmnd[11],
					cmd->cmnd[12], cmd->cmnd[13],
					cmd->cmnd[14], cmd->cmnd[15]);
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
			break;
		}


		/* Problem was not a check condition
		 * Pass it up to the upper layers...
		 */
		if (ei->ScsiStatus) {
			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
				"Returning result: 0x%x\n",
				cp, ei->ScsiStatus,
				sense_key, asc, ascq,
				cmd->result);
		} else {  /* scsi status is zero??? How??? */
			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
				"Returning no connection.\n", cp),

			/* Ordinarily, this case should never happen,
			 * but there is a bug in some released firmware
			 * revisions that allows it to happen if, for
			 * example, a 4100 backplane loses power and
			 * the tape drive is in it.  We assume that
			 * it's a fatal error of some kind because we
			 * can't show that it wasn't. We will make it
			 * look like selection timeout since that is
			 * the most common reason for this to occur,
			 * and it's severe enough.
			 */

			cmd->result = DID_NO_CONNECT << 16;
		}
		break;

	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
		dev_warn(&h->pdev->dev, "cp %p has"
			" completed with data overrun "
			"reported\n", cp);
		break;
	case CMD_INVALID: {
		/* print_bytes(cp, sizeof(*cp), 1, 0);
		print_cmd(cp); */
		/* We get CMD_INVALID if you address a non-existent device
		 * instead of a selection timeout (no response).  You will
		 * see this if you yank out a drive, then try to access it.
		 * This is kind of a shame because it means that any other
		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
		 * missing target. */
		cmd->result = DID_NO_CONNECT << 16;
	}
		break;
	case CMD_PROTOCOL_ERR:
1366
		cmd->result = DID_ERROR << 16;
1367
		dev_warn(&h->pdev->dev, "cp %p has "
1368
			"protocol error\n", cp);
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
		break;
	case CMD_HARDWARE_ERR:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
		break;
	case CMD_CONNECTION_LOST:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
		break;
	case CMD_ABORTED:
		cmd->result = DID_ABORT << 16;
		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
				cp, ei->ScsiStatus);
		break;
	case CMD_ABORT_FAILED:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
		break;
	case CMD_UNSOLICITED_ABORT:
1388 1389
		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1390 1391 1392 1393 1394 1395
			"abort\n", cp);
		break;
	case CMD_TIMEOUT:
		cmd->result = DID_TIME_OUT << 16;
		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
		break;
1396 1397 1398 1399
	case CMD_UNABORTABLE:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "Command unabortable\n");
		break;
1400 1401 1402 1403 1404 1405
	default:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
				cp, ei->CommandStatus);
	}
	cmd_free(h, cp);
1406
	cmd->scsi_done(cmd);
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
}

static void hpsa_pci_unmap(struct pci_dev *pdev,
	struct CommandList *c, int sg_used, int data_direction)
{
	int i;
	union u64bit addr64;

	for (i = 0; i < sg_used; i++) {
		addr64.val32.lower = c->SG[i].Addr.lower;
		addr64.val32.upper = c->SG[i].Addr.upper;
		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
			data_direction);
	}
}

1423
static int hpsa_map_one(struct pci_dev *pdev,
1424 1425 1426 1427 1428
		struct CommandList *cp,
		unsigned char *buf,
		size_t buflen,
		int data_direction)
{
1429
	u64 addr64;
1430 1431 1432 1433

	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
		cp->Header.SGList = 0;
		cp->Header.SGTotal = 0;
1434
		return 0;
1435 1436
	}

1437
	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1438
	if (dma_mapping_error(&pdev->dev, addr64)) {
1439
		/* Prevent subsequent unmap of something never mapped */
1440 1441
		cp->Header.SGList = 0;
		cp->Header.SGTotal = 0;
1442
		return -1;
1443
	}
1444
	cp->SG[0].Addr.lower =
1445
	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1446
	cp->SG[0].Addr.upper =
1447
	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1448
	cp->SG[0].Len = buflen;
1449 1450
	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1451
	return 0;
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
}

static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
	struct CommandList *c)
{
	DECLARE_COMPLETION_ONSTACK(wait);

	c->waiting = &wait;
	enqueue_cmd_and_start_io(h, c);
	wait_for_completion(&wait);
}

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
	struct CommandList *c)
{
	unsigned long flags;

	/* If controller lockup detected, fake a hardware error. */
	spin_lock_irqsave(&h->lock, flags);
	if (unlikely(h->lockup_detected)) {
		spin_unlock_irqrestore(&h->lock, flags);
		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
	} else {
		spin_unlock_irqrestore(&h->lock, flags);
		hpsa_scsi_do_simple_cmd_core(h, c);
	}
}

1480
#define MAX_DRIVER_CMD_RETRIES 25
1481 1482 1483
static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
	struct CommandList *c, int data_direction)
{
1484
	int backoff_time = 10, retry_count = 0;
1485 1486

	do {
1487
		memset(c->err_info, 0, sizeof(*c->err_info));
1488 1489
		hpsa_scsi_do_simple_cmd_core(h, c);
		retry_count++;
1490 1491 1492 1493 1494
		if (retry_count > 3) {
			msleep(backoff_time);
			if (backoff_time < 1000)
				backoff_time *= 2;
		}
1495
	} while ((check_for_unit_attention(h, c) ||
1496 1497
			check_for_busy(h, c)) &&
			retry_count <= MAX_DRIVER_CMD_RETRIES);
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
}

static void hpsa_scsi_interpret_error(struct CommandList *cp)
{
	struct ErrorInfo *ei;
	struct device *d = &cp->h->pdev->dev;

	ei = cp->err_info;
	switch (ei->CommandStatus) {
	case CMD_TARGET_STATUS:
		dev_warn(d, "cmd %p has completed with errors\n", cp);
		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
				ei->ScsiStatus);
		if (ei->ScsiStatus == 0)
			dev_warn(d, "SCSI status is abnormally zero.  "
			"(probably indicates selection timeout "
			"reported incorrectly due to a known "
			"firmware bug, circa July, 2001.)\n");
		break;
	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
			dev_info(d, "UNDERRUN\n");
		break;
	case CMD_DATA_OVERRUN:
		dev_warn(d, "cp %p has completed with data overrun\n", cp);
		break;
	case CMD_INVALID: {
		/* controller unfortunately reports SCSI passthru's
		 * to non-existent targets as invalid commands.
		 */
		dev_warn(d, "cp %p is reported invalid (probably means "
			"target device no longer present)\n", cp);
		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
		print_cmd(cp);  */
		}
		break;
	case CMD_PROTOCOL_ERR:
		dev_warn(d, "cp %p has protocol error \n", cp);
		break;
	case CMD_HARDWARE_ERR:
		/* cmd->result = DID_ERROR << 16; */
		dev_warn(d, "cp %p had hardware error\n", cp);
		break;
	case CMD_CONNECTION_LOST:
		dev_warn(d, "cp %p had connection lost\n", cp);
		break;
	case CMD_ABORTED:
		dev_warn(d, "cp %p was aborted\n", cp);
		break;
	case CMD_ABORT_FAILED:
		dev_warn(d, "cp %p reports abort failed\n", cp);
		break;
	case CMD_UNSOLICITED_ABORT:
		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
		break;
	case CMD_TIMEOUT:
		dev_warn(d, "cp %p timed out\n", cp);
		break;
1556 1557 1558
	case CMD_UNABORTABLE:
		dev_warn(d, "Command unabortable\n");
		break;
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	default:
		dev_warn(d, "cp %p returned unknown status %x\n", cp,
				ei->CommandStatus);
	}
}

static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
			unsigned char page, unsigned char *buf,
			unsigned char bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_special_alloc(h);

	if (c == NULL) {			/* trouble... */
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1577
		return -ENOMEM;
1578 1579
	}

1580 1581 1582 1583 1584
	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
1585 1586 1587 1588 1589 1590
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(c);
		rc = -1;
	}
1591
out:
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
	cmd_special_free(h, c);
	return rc;
}

static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_special_alloc(h);

	if (c == NULL) {			/* trouble... */
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1606
		return -ENOMEM;
1607 1608
	}

1609 1610 1611
	/* fill_cmd can't fail here, no data buffer to map. */
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h,
			NULL, 0, 0, scsi3addr, TYPE_MSG);
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	hpsa_scsi_do_simple_cmd_core(h, c);
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	if (ei->CommandStatus != 0) {
		hpsa_scsi_interpret_error(c);
		rc = -1;
	}
	cmd_special_free(h, c);
	return rc;
}

static void hpsa_get_raid_level(struct ctlr_info *h,
	unsigned char *scsi3addr, unsigned char *raid_level)
{
	int rc;
	unsigned char *buf;

	*raid_level = RAID_UNKNOWN;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
	if (rc == 0)
		*raid_level = buf[8];
	if (*raid_level > RAID_UNKNOWN)
		*raid_level = RAID_UNKNOWN;
	kfree(buf);
	return;
}

/* Get the device id from inquiry page 0x83 */
static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
	unsigned char *device_id, int buflen)
{
	int rc;
	unsigned char *buf;

	if (buflen > 16)
		buflen = 16;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return -1;
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
	if (rc == 0)
		memcpy(device_id, &buf[8], buflen);
	kfree(buf);
	return rc != 0;
}

static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
		struct ReportLUNdata *buf, int bufsize,
		int extended_response)
{
	int rc = IO_OK;
	struct CommandList *c;
	unsigned char scsi3addr[8];
	struct ErrorInfo *ei;

	c = cmd_special_alloc(h);
	if (c == NULL) {			/* trouble... */
		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
		return -1;
	}
1676 1677
	/* address the controller */
	memset(scsi3addr, 0, sizeof(scsi3addr));
1678 1679 1680 1681 1682
	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
1683 1684 1685 1686 1687 1688 1689 1690 1691
	if (extended_response)
		c->Request.CDB[1] = extended_response;
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 &&
	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(c);
		rc = -1;
	}
1692
out:
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	cmd_special_free(h, c);
	return rc;
}

static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
		struct ReportLUNdata *buf,
		int bufsize, int extended_response)
{
	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
}

static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
		struct ReportLUNdata *buf, int bufsize)
{
	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
}

static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
	int bus, int target, int lun)
{
	device->bus = bus;
	device->target = target;
	device->lun = lun;
}

static int hpsa_update_device_info(struct ctlr_info *h,
1719 1720
	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
	unsigned char *is_OBDR_device)
1721
{
1722 1723 1724 1725 1726 1727

#define OBDR_SIG_OFFSET 43
#define OBDR_TAPE_SIG "$DR-10"
#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)

1728
	unsigned char *inq_buff;
1729
	unsigned char *obdr_sig;
1730

1731
	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	if (!inq_buff)
		goto bail_out;

	/* Do an inquiry to the device to see what it is. */
	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
		/* Inquiry failed (msg printed already) */
		dev_err(&h->pdev->dev,
			"hpsa_update_device_info: inquiry failed\n");
		goto bail_out;
	}

	this_device->devtype = (inq_buff[0] & 0x1f);
	memcpy(this_device->scsi3addr, scsi3addr, 8);
	memcpy(this_device->vendor, &inq_buff[8],
		sizeof(this_device->vendor));
	memcpy(this_device->model, &inq_buff[16],
		sizeof(this_device->model));
	memset(this_device->device_id, 0,
		sizeof(this_device->device_id));
	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
		sizeof(this_device->device_id));

	if (this_device->devtype == TYPE_DISK &&
		is_logical_dev_addr_mode(scsi3addr))
		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
	else
		this_device->raid_level = RAID_UNKNOWN;

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	if (is_OBDR_device) {
		/* See if this is a One-Button-Disaster-Recovery device
		 * by looking for "$DR-10" at offset 43 in inquiry data.
		 */
		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
					strncmp(obdr_sig, OBDR_TAPE_SIG,
						OBDR_SIG_LEN) == 0);
	}

1771 1772 1773 1774 1775 1776 1777 1778
	kfree(inq_buff);
	return 0;

bail_out:
	kfree(inq_buff);
	return 1;
}

1779
static unsigned char *ext_target_model[] = {
1780 1781 1782 1783
	"MSA2012",
	"MSA2024",
	"MSA2312",
	"MSA2324",
1784
	"P2000 G3 SAS",
1785 1786 1787
	NULL,
};

1788
static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1789 1790 1791
{
	int i;

1792 1793 1794
	for (i = 0; ext_target_model[i]; i++)
		if (strncmp(device->model, ext_target_model[i],
			strlen(ext_target_model[i])) == 0)
1795 1796 1797 1798 1799
			return 1;
	return 0;
}

/* Helper function to assign bus, target, lun mapping of devices.
1800
 * Puts non-external target logical volumes on bus 0, external target logical
1801 1802 1803 1804 1805 1806
 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
 * Logical drive target and lun are assigned at this time, but
 * physical device lun and target assignment are deferred (assigned
 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
 */
static void figure_bus_target_lun(struct ctlr_info *h,
1807
	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1808
{
1809 1810 1811 1812
	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));

	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
		/* physical device, target and lun filled in later */
1813
		if (is_hba_lunid(lunaddrbytes))
1814
			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1815
		else
1816 1817 1818 1819 1820
			/* defer target, lun assignment for physical devices */
			hpsa_set_bus_target_lun(device, 2, -1, -1);
		return;
	}
	/* It's a logical device */
1821 1822
	if (is_ext_target(h, device)) {
		/* external target way, put logicals on bus 1
1823 1824 1825 1826 1827 1828
		 * and match target/lun numbers box
		 * reports, other smart array, bus 0, target 0, match lunid
		 */
		hpsa_set_bus_target_lun(device,
			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
		return;
1829
	}
1830
	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1831 1832 1833 1834
}

/*
 * If there is no lun 0 on a target, linux won't find any devices.
1835
 * For the external targets (arrays), we have to manually detect the enclosure
1836 1837 1838 1839 1840 1841 1842 1843
 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
 * it for some reason.  *tmpdevice is the target we're adding,
 * this_device is a pointer into the current element of currentsd[]
 * that we're building up in update_scsi_devices(), below.
 * lunzerobits is a bitmap that tracks which targets already have a
 * lun 0 assigned.
 * Returns 1 if an enclosure was added, 0 if not.
 */
1844
static int add_ext_target_dev(struct ctlr_info *h,
1845
	struct hpsa_scsi_dev_t *tmpdevice,
1846
	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1847
	unsigned long lunzerobits[], int *n_ext_target_devs)
1848 1849 1850
{
	unsigned char scsi3addr[8];

1851
	if (test_bit(tmpdevice->target, lunzerobits))
1852 1853 1854 1855 1856
		return 0; /* There is already a lun 0 on this target. */

	if (!is_logical_dev_addr_mode(lunaddrbytes))
		return 0; /* It's the logical targets that may lack lun 0. */

1857 1858
	if (!is_ext_target(h, tmpdevice))
		return 0; /* Only external target devices have this problem. */
1859

1860
	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1861 1862
		return 0;

1863
	memset(scsi3addr, 0, 8);
1864
	scsi3addr[3] = tmpdevice->target;
1865 1866 1867
	if (is_hba_lunid(scsi3addr))
		return 0; /* Don't add the RAID controller here. */

1868 1869 1870
	if (is_scsi_rev_5(h))
		return 0; /* p1210m doesn't need to do this. */

1871
	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1872 1873
		dev_warn(&h->pdev->dev, "Maximum number of external "
			"target devices exceeded.  Check your hardware "
1874 1875 1876 1877
			"configuration.");
		return 0;
	}

1878
	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1879
		return 0;
1880
	(*n_ext_target_devs)++;
1881 1882 1883
	hpsa_set_bus_target_lun(this_device,
				tmpdevice->bus, tmpdevice->target, 0);
	set_bit(tmpdevice->target, lunzerobits);
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	return 1;
}

/*
 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
 * logdev.  The number of luns in physdev and logdev are returned in
 * *nphysicals and *nlogicals, respectively.
 * Returns 0 on success, -1 otherwise.
 */
static int hpsa_gather_lun_info(struct ctlr_info *h,
	int reportlunsize,
1895 1896
	struct ReportLUNdata *physdev, u32 *nphysicals,
	struct ReportLUNdata *logdev, u32 *nlogicals)
1897 1898 1899 1900 1901
{
	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
		return -1;
	}
1902
	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
			*nphysicals - HPSA_MAX_PHYS_LUN);
		*nphysicals = HPSA_MAX_PHYS_LUN;
	}
	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
		return -1;
	}
1913
	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	/* Reject Logicals in excess of our max capability. */
	if (*nlogicals > HPSA_MAX_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical LUNs (%d) exceeded.  "
			"%d LUNs ignored.\n", HPSA_MAX_LUN,
			*nlogicals - HPSA_MAX_LUN);
			*nlogicals = HPSA_MAX_LUN;
	}
	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical + physical LUNs (%d) exceeded. "
			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
	}
	return 0;
}

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
	struct ReportLUNdata *logdev_list)
{
	/* Helper function, figure out where the LUN ID info is coming from
	 * given index i, lists of physical and logical devices, where in
	 * the list the raid controller is supposed to appear (first or last)
	 */

	int logicals_start = nphysicals + (raid_ctlr_position == 0);
	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);

	if (i == raid_ctlr_position)
		return RAID_CTLR_LUNID;

	if (i < logicals_start)
		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];

	if (i < last_device)
		return &logdev_list->LUN[i - nphysicals -
			(raid_ctlr_position == 0)][0];
	BUG();
	return NULL;
}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
{
	/* the idea here is we could get notified
	 * that some devices have changed, so we do a report
	 * physical luns and report logical luns cmd, and adjust
	 * our list of devices accordingly.
	 *
	 * The scsi3addr's of devices won't change so long as the
	 * adapter is not reset.  That means we can rescan and
	 * tell which devices we already know about, vs. new
	 * devices, vs.  disappearing devices.
	 */
	struct ReportLUNdata *physdev_list = NULL;
	struct ReportLUNdata *logdev_list = NULL;
1971 1972 1973
	u32 nphysicals = 0;
	u32 nlogicals = 0;
	u32 ndev_allocated = 0;
1974 1975 1976
	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
	int ncurrent = 0;
	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1977
	int i, n_ext_target_devs, ndevs_to_allocate;
1978
	int raid_ctlr_position;
1979
	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1980

1981
	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1982 1983 1984 1985
	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);

1986
	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1987 1988 1989 1990 1991 1992 1993 1994 1995
		dev_err(&h->pdev->dev, "out of memory\n");
		goto out;
	}
	memset(lunzerobits, 0, sizeof(lunzerobits));

	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
			logdev_list, &nlogicals))
		goto out;

1996 1997 1998
	/* We might see up to the maximum number of logical and physical disks
	 * plus external target devices, and a device for the local RAID
	 * controller.
1999
	 */
2000
	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
2001 2002 2003

	/* Allocate the per device structures */
	for (i = 0; i < ndevs_to_allocate; i++) {
2004 2005 2006 2007 2008 2009 2010
		if (i >= HPSA_MAX_DEVICES) {
			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
				ndevs_to_allocate - HPSA_MAX_DEVICES);
			break;
		}

2011 2012 2013 2014 2015 2016 2017 2018 2019
		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
		if (!currentsd[i]) {
			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
				__FILE__, __LINE__);
			goto out;
		}
		ndev_allocated++;
	}

2020 2021 2022 2023 2024
	if (unlikely(is_scsi_rev_5(h)))
		raid_ctlr_position = 0;
	else
		raid_ctlr_position = nphysicals + nlogicals;

2025
	/* adjust our table of devices */
2026
	n_ext_target_devs = 0;
2027
	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
2028
		u8 *lunaddrbytes, is_OBDR = 0;
2029 2030

		/* Figure out where the LUN ID info is coming from */
2031 2032
		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
			i, nphysicals, nlogicals, physdev_list, logdev_list);
2033
		/* skip masked physical devices. */
2034 2035
		if (lunaddrbytes[3] & 0xC0 &&
			i < nphysicals + (raid_ctlr_position == 0))
2036 2037 2038
			continue;

		/* Get device type, vendor, model, device id */
2039 2040
		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
							&is_OBDR))
2041
			continue; /* skip it if we can't talk to it. */
2042
		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
2043 2044 2045
		this_device = currentsd[ncurrent];

		/*
2046
		 * For external target devices, we have to insert a LUN 0 which
2047 2048 2049 2050 2051
		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
		 * is nonetheless an enclosure device there.  We have to
		 * present that otherwise linux won't find anything if
		 * there is no lun 0.
		 */
2052
		if (add_ext_target_dev(h, tmpdevice, this_device,
2053
				lunaddrbytes, lunzerobits,
2054
				&n_ext_target_devs)) {
2055 2056 2057 2058 2059 2060 2061
			ncurrent++;
			this_device = currentsd[ncurrent];
		}

		*this_device = *tmpdevice;

		switch (this_device->devtype) {
2062
		case TYPE_ROM:
2063 2064 2065 2066 2067 2068 2069
			/* We don't *really* support actual CD-ROM devices,
			 * just "One Button Disaster Recovery" tape drive
			 * which temporarily pretends to be a CD-ROM drive.
			 * So we check that the device is really an OBDR tape
			 * device by checking for "$DR-10" in bytes 43-48 of
			 * the inquiry data.
			 */
2070 2071
			if (is_OBDR)
				ncurrent++;
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
			break;
		case TYPE_DISK:
			if (i < nphysicals)
				break;
			ncurrent++;
			break;
		case TYPE_TAPE:
		case TYPE_MEDIUM_CHANGER:
			ncurrent++;
			break;
		case TYPE_RAID:
			/* Only present the Smartarray HBA as a RAID controller.
			 * If it's a RAID controller other than the HBA itself
			 * (an external RAID controller, MSA500 or similar)
			 * don't present it.
			 */
			if (!is_hba_lunid(lunaddrbytes))
				break;
			ncurrent++;
			break;
		default:
			break;
		}
2095
		if (ncurrent >= HPSA_MAX_DEVICES)
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
			break;
	}
	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
out:
	kfree(tmpdevice);
	for (i = 0; i < ndev_allocated; i++)
		kfree(currentsd[i]);
	kfree(currentsd);
	kfree(physdev_list);
	kfree(logdev_list);
}

/* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
 * dma mapping  and fills in the scatter gather entries of the
 * hpsa command, cp.
 */
2112
static int hpsa_scatter_gather(struct ctlr_info *h,
2113 2114 2115 2116 2117
		struct CommandList *cp,
		struct scsi_cmnd *cmd)
{
	unsigned int len;
	struct scatterlist *sg;
2118
	u64 addr64;
2119 2120
	int use_sg, i, sg_index, chained;
	struct SGDescriptor *curr_sg;
2121

2122
	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2123 2124 2125 2126 2127 2128 2129 2130

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (!use_sg)
		goto sglist_finished;

2131 2132 2133
	curr_sg = cp->SG;
	chained = 0;
	sg_index = 0;
2134
	scsi_for_each_sg(cmd, sg, use_sg, i) {
2135 2136 2137 2138 2139 2140
		if (i == h->max_cmd_sg_entries - 1 &&
			use_sg > h->max_cmd_sg_entries) {
			chained = 1;
			curr_sg = h->cmd_sg_list[cp->cmdindex];
			sg_index = 0;
		}
2141
		addr64 = (u64) sg_dma_address(sg);
2142
		len  = sg_dma_len(sg);
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
		curr_sg->Len = len;
		curr_sg->Ext = 0;  /* we are not chaining */
		curr_sg++;
	}

	if (use_sg + chained > h->maxSG)
		h->maxSG = use_sg + chained;

	if (chained) {
		cp->Header.SGList = h->max_cmd_sg_entries;
		cp->Header.SGTotal = (u16) (use_sg + 1);
2156 2157 2158 2159
		if (hpsa_map_sg_chain_block(h, cp)) {
			scsi_dma_unmap(cmd);
			return -1;
		}
2160
		return 0;
2161 2162 2163 2164
	}

sglist_finished:

2165 2166
	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2167 2168 2169 2170
	return 0;
}


J
Jeff Garzik 已提交
2171
static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	void (*done)(struct scsi_cmnd *))
{
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	unsigned char scsi3addr[8];
	struct CommandList *c;
	unsigned long flags;

	/* Get the ptr to our adapter structure out of cmd->host. */
	h = sdev_to_hba(cmd->device);
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
		done(cmd);
		return 0;
	}
	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));

	spin_lock_irqsave(&h->lock, flags);
2191 2192 2193 2194 2195 2196
	if (unlikely(h->lockup_detected)) {
		spin_unlock_irqrestore(&h->lock, flags);
		cmd->result = DID_ERROR << 16;
		done(cmd);
		return 0;
	}
2197
	spin_unlock_irqrestore(&h->lock, flags);
2198
	c = cmd_alloc(h);
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
	if (c == NULL) {			/* trouble... */
		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
		return SCSI_MLQUEUE_HOST_BUSY;
	}

	/* Fill in the command list header */

	cmd->scsi_done = done;    /* save this for use by completion code */

	/* save c in case we have to abort it  */
	cmd->host_scribble = (unsigned char *) c;

	c->cmd_type = CMD_SCSI;
	c->scsi_cmd = cmd;
	c->Header.ReplyQueue = 0;  /* unused in simple mode */
	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2215 2216
	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260

	/* Fill in the request block... */

	c->Request.Timeout = 0;
	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
	c->Request.CDBLen = cmd->cmd_len;
	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
	c->Request.Type.Type = TYPE_CMD;
	c->Request.Type.Attribute = ATTR_SIMPLE;
	switch (cmd->sc_data_direction) {
	case DMA_TO_DEVICE:
		c->Request.Type.Direction = XFER_WRITE;
		break;
	case DMA_FROM_DEVICE:
		c->Request.Type.Direction = XFER_READ;
		break;
	case DMA_NONE:
		c->Request.Type.Direction = XFER_NONE;
		break;
	case DMA_BIDIRECTIONAL:
		/* This can happen if a buggy application does a scsi passthru
		 * and sets both inlen and outlen to non-zero. ( see
		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
		 */

		c->Request.Type.Direction = XFER_RSVD;
		/* This is technically wrong, and hpsa controllers should
		 * reject it with CMD_INVALID, which is the most correct
		 * response, but non-fibre backends appear to let it
		 * slide by, and give the same results as if this field
		 * were set correctly.  Either way is acceptable for
		 * our purposes here.
		 */

		break;

	default:
		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
		BUG();
		break;
	}

2261
	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2262 2263 2264 2265 2266 2267 2268 2269
		cmd_free(h, c);
		return SCSI_MLQUEUE_HOST_BUSY;
	}
	enqueue_cmd_and_start_io(h, c);
	/* the cmd'll come back via intr handler in complete_scsi_command()  */
	return 0;
}

J
Jeff Garzik 已提交
2270 2271
static DEF_SCSI_QCMD(hpsa_scsi_queue_command)

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
static void hpsa_scan_start(struct Scsi_Host *sh)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;

	/* wait until any scan already in progress is finished. */
	while (1) {
		spin_lock_irqsave(&h->scan_lock, flags);
		if (h->scan_finished)
			break;
		spin_unlock_irqrestore(&h->scan_lock, flags);
		wait_event(h->scan_wait_queue, h->scan_finished);
		/* Note: We don't need to worry about a race between this
		 * thread and driver unload because the midlayer will
		 * have incremented the reference count, so unload won't
		 * happen if we're in here.
		 */
	}
	h->scan_finished = 0; /* mark scan as in progress */
	spin_unlock_irqrestore(&h->scan_lock, flags);

	hpsa_update_scsi_devices(h, h->scsi_host->host_no);

	spin_lock_irqsave(&h->scan_lock, flags);
	h->scan_finished = 1; /* mark scan as finished. */
	wake_up_all(&h->scan_wait_queue);
	spin_unlock_irqrestore(&h->scan_lock, flags);
}

static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;
	int finished;

	spin_lock_irqsave(&h->scan_lock, flags);
	finished = h->scan_finished;
	spin_unlock_irqrestore(&h->scan_lock, flags);
	return finished;
}

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
static int hpsa_change_queue_depth(struct scsi_device *sdev,
	int qdepth, int reason)
{
	struct ctlr_info *h = sdev_to_hba(sdev);

	if (reason != SCSI_QDEPTH_DEFAULT)
		return -ENOTSUPP;

	if (qdepth < 1)
		qdepth = 1;
	else
		if (qdepth > h->nr_cmds)
			qdepth = h->nr_cmds;
	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
	return sdev->queue_depth;
}

2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
static void hpsa_unregister_scsi(struct ctlr_info *h)
{
	/* we are being forcibly unloaded, and may not refuse. */
	scsi_remove_host(h->scsi_host);
	scsi_host_put(h->scsi_host);
	h->scsi_host = NULL;
}

static int hpsa_register_scsi(struct ctlr_info *h)
{
2341 2342
	struct Scsi_Host *sh;
	int error;
2343

2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
	if (sh == NULL)
		goto fail;

	sh->io_port = 0;
	sh->n_io_port = 0;
	sh->this_id = -1;
	sh->max_channel = 3;
	sh->max_cmd_len = MAX_COMMAND_SIZE;
	sh->max_lun = HPSA_MAX_LUN;
	sh->max_id = HPSA_MAX_LUN;
	sh->can_queue = h->nr_cmds;
	sh->cmd_per_lun = h->nr_cmds;
	sh->sg_tablesize = h->maxsgentries;
	h->scsi_host = sh;
	sh->hostdata[0] = (unsigned long) h;
	sh->irq = h->intr[h->intr_mode];
	sh->unique_id = sh->irq;
	error = scsi_add_host(sh, &h->pdev->dev);
	if (error)
		goto fail_host_put;
	scsi_scan_host(sh);
	return 0;

 fail_host_put:
	dev_err(&h->pdev->dev, "%s: scsi_add_host"
		" failed for controller %d\n", __func__, h->ctlr);
	scsi_host_put(sh);
	return error;
 fail:
	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
		" failed for controller %d\n", __func__, h->ctlr);
	return -ENOMEM;
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
}

static int wait_for_device_to_become_ready(struct ctlr_info *h,
	unsigned char lunaddr[])
{
	int rc = 0;
	int count = 0;
	int waittime = 1; /* seconds */
	struct CommandList *c;

	c = cmd_special_alloc(h);
	if (!c) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"wait_for_device_to_become_ready.\n");
		return IO_ERROR;
	}

	/* Send test unit ready until device ready, or give up. */
	while (count < HPSA_TUR_RETRY_LIMIT) {

		/* Wait for a bit.  do this first, because if we send
		 * the TUR right away, the reset will just abort it.
		 */
		msleep(1000 * waittime);
		count++;

		/* Increase wait time with each try, up to a point. */
		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
			waittime = waittime * 2;

2407 2408 2409
		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
		(void) fill_cmd(c, TEST_UNIT_READY, h,
				NULL, 0, 0, lunaddr, TYPE_CMD);
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
		hpsa_scsi_do_simple_cmd_core(h, c);
		/* no unmap needed here because no data xfer. */

		if (c->err_info->CommandStatus == CMD_SUCCESS)
			break;

		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
			(c->err_info->SenseInfo[2] == NO_SENSE ||
			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
			break;

		dev_warn(&h->pdev->dev, "waiting %d secs "
			"for device to become ready.\n", waittime);
		rc = 1; /* device not ready. */
	}

	if (rc)
		dev_warn(&h->pdev->dev, "giving up on device.\n");
	else
		dev_warn(&h->pdev->dev, "device is ready.\n");

	cmd_special_free(h, c);
	return rc;
}

/* Need at least one of these error handlers to keep ../scsi/hosts.c from
 * complaining.  Doing a host- or bus-reset can't do anything good here.
 */
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
{
	int rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;

	/* find the controller to which the command to be aborted was sent */
	h = sdev_to_hba(scsicmd->device);
	if (h == NULL) /* paranoia */
		return FAILED;
	dev = scsicmd->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
			"device lookup failed.\n");
		return FAILED;
	}
2455 2456
	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2457 2458 2459 2460 2461 2462 2463 2464 2465
	/* send a reset to the SCSI LUN which the command was sent to */
	rc = hpsa_send_reset(h, dev->scsi3addr);
	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
		return SUCCESS;

	dev_warn(&h->pdev->dev, "resetting device failed.\n");
	return FAILED;
}

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
static void swizzle_abort_tag(u8 *tag)
{
	u8 original_tag[8];

	memcpy(original_tag, tag, 8);
	tag[0] = original_tag[3];
	tag[1] = original_tag[2];
	tag[2] = original_tag[1];
	tag[3] = original_tag[0];
	tag[4] = original_tag[7];
	tag[5] = original_tag[6];
	tag[6] = original_tag[5];
	tag[7] = original_tag[4];
}

2481
static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2482
	struct CommandList *abort, int swizzle)
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_special_alloc(h);
	if (c == NULL) {	/* trouble... */
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
		return -ENOMEM;
	}

2494 2495 2496
	/* fill_cmd can't fail here, no buffer to map */
	(void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
		0, 0, scsi3addr, TYPE_MSG);
2497 2498
	if (swizzle)
		swizzle_abort_tag(&c->Request.CDB[4]);
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
	hpsa_scsi_do_simple_cmd_core(h, c);
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
		__func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	switch (ei->CommandStatus) {
	case CMD_SUCCESS:
		break;
	case CMD_UNABORTABLE: /* Very common, don't make noise. */
		rc = -1;
		break;
	default:
		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
			__func__, abort->Header.Tag.upper,
			abort->Header.Tag.lower);
		hpsa_scsi_interpret_error(c);
		rc = -1;
		break;
	}
	cmd_special_free(h, c);
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
		abort->Header.Tag.upper, abort->Header.Tag.lower);
	return rc;
}

/*
 * hpsa_find_cmd_in_queue
 *
 * Used to determine whether a command (find) is still present
 * in queue_head.   Optionally excludes the last element of queue_head.
 *
 * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
 * not yet been submitted, and so can be aborted by the driver without
 * sending an abort to the hardware.
 *
 * Returns pointer to command if found in queue, NULL otherwise.
 */
static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
			struct scsi_cmnd *find, struct list_head *queue_head)
{
	unsigned long flags;
	struct CommandList *c = NULL;	/* ptr into cmpQ */

	if (!find)
		return 0;
	spin_lock_irqsave(&h->lock, flags);
	list_for_each_entry(c, queue_head, list) {
		if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
			continue;
		if (c->scsi_cmd == find) {
			spin_unlock_irqrestore(&h->lock, flags);
			return c;
		}
	}
	spin_unlock_irqrestore(&h->lock, flags);
	return NULL;
}

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
					u8 *tag, struct list_head *queue_head)
{
	unsigned long flags;
	struct CommandList *c;

	spin_lock_irqsave(&h->lock, flags);
	list_for_each_entry(c, queue_head, list) {
		if (memcmp(&c->Header.Tag, tag, 8) != 0)
			continue;
		spin_unlock_irqrestore(&h->lock, flags);
		return c;
	}
	spin_unlock_irqrestore(&h->lock, flags);
	return NULL;
}

/* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
 * tell which kind we're dealing with, so we send the abort both ways.  There
 * shouldn't be any collisions between swizzled and unswizzled tags due to the
 * way we construct our tags but we check anyway in case the assumptions which
 * make this true someday become false.
 */
static int hpsa_send_abort_both_ways(struct ctlr_info *h,
	unsigned char *scsi3addr, struct CommandList *abort)
{
	u8 swizzled_tag[8];
	struct CommandList *c;
	int rc = 0, rc2 = 0;

	/* we do not expect to find the swizzled tag in our queue, but
	 * check anyway just to be sure the assumptions which make this
	 * the case haven't become wrong.
	 */
	memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
	swizzle_abort_tag(swizzled_tag);
	c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
	if (c != NULL) {
		dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
		return hpsa_send_abort(h, scsi3addr, abort, 0);
	}
	rc = hpsa_send_abort(h, scsi3addr, abort, 0);

	/* if the command is still in our queue, we can't conclude that it was
	 * aborted (it might have just completed normally) but in any case
	 * we don't need to try to abort it another way.
	 */
	c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
	if (c)
		rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
	return rc && rc2;
}

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
/* Send an abort for the specified command.
 *	If the device and controller support it,
 *		send a task abort request.
 */
static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
{

	int i, rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	struct CommandList *abort; /* pointer to command to be aborted */
	struct CommandList *found;
	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
	char msg[256];		/* For debug messaging. */
	int ml = 0;

	/* Find the controller of the command to be aborted */
	h = sdev_to_hba(sc->device);
	if (WARN(h == NULL,
			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
		return FAILED;

	/* Check that controller supports some kind of task abort */
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		return FAILED;

	memset(msg, 0, sizeof(msg));
	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
		h->scsi_host->host_no, sc->device->channel,
		sc->device->id, sc->device->lun);

	/* Find the device of the command to be aborted */
	dev = sc->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
				msg);
		return FAILED;
	}

	/* Get SCSI command to be aborted */
	abort = (struct CommandList *) sc->host_scribble;
	if (abort == NULL) {
		dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
				msg);
		return FAILED;
	}

	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
		abort->Header.Tag.upper, abort->Header.Tag.lower);
	as  = (struct scsi_cmnd *) abort->scsi_cmd;
	if (as != NULL)
		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
			as->cmnd[0], as->serial_number);
	dev_dbg(&h->pdev->dev, "%s\n", msg);
	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);

	/* Search reqQ to See if command is queued but not submitted,
	 * if so, complete the command with aborted status and remove
	 * it from the reqQ.
	 */
	found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
	if (found) {
		found->err_info->CommandStatus = CMD_ABORTED;
		finish_cmd(found);
		dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
				msg);
		return SUCCESS;
	}

	/* not in reqQ, if also not in cmpQ, must have already completed */
	found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
	if (!found)  {
2685
		dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
2686 2687 2688 2689 2690 2691 2692 2693 2694
				msg);
		return SUCCESS;
	}

	/*
	 * Command is in flight, or possibly already completed
	 * by the firmware (but not to the scsi mid layer) but we can't
	 * distinguish which.  Send the abort down.
	 */
2695
	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
	if (rc != 0) {
		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
			h->scsi_host->host_no,
			dev->bus, dev->target, dev->lun);
		return FAILED;
	}
	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);

	/* If the abort(s) above completed and actually aborted the
	 * command, then the command to be aborted should already be
	 * completed.  If not, wait around a bit more to see if they
	 * manage to complete normally.
	 */
#define ABORT_COMPLETE_WAIT_SECS 30
	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
		found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
		if (!found)
			return SUCCESS;
		msleep(100);
	}
	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
		msg, ABORT_COMPLETE_WAIT_SECS);
	return FAILED;
}


2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
/*
 * For operations that cannot sleep, a command block is allocated at init,
 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 * which ones are free or in use.  Lock must be held when calling this.
 * cmd_free() is the complement.
 */
static struct CommandList *cmd_alloc(struct ctlr_info *h)
{
	struct CommandList *c;
	int i;
	union u64bit temp64;
	dma_addr_t cmd_dma_handle, err_dma_handle;
2735
	unsigned long flags;
2736

2737
	spin_lock_irqsave(&h->lock, flags);
2738 2739
	do {
		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2740 2741
		if (i == h->nr_cmds) {
			spin_unlock_irqrestore(&h->lock, flags);
2742
			return NULL;
2743
		}
2744 2745 2746
	} while (test_and_set_bit
		 (i & (BITS_PER_LONG - 1),
		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2747 2748
	spin_unlock_irqrestore(&h->lock, flags);

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
	c = h->cmd_pool + i;
	memset(c, 0, sizeof(*c));
	cmd_dma_handle = h->cmd_pool_dhandle
	    + i * sizeof(*c);
	c->err_info = h->errinfo_pool + i;
	memset(c->err_info, 0, sizeof(*c->err_info));
	err_dma_handle = h->errinfo_pool_dhandle
	    + i * sizeof(*c->err_info);

	c->cmdindex = i;

2760
	INIT_LIST_HEAD(&c->list);
2761 2762
	c->busaddr = (u32) cmd_dma_handle;
	temp64.val = (u64) err_dma_handle;
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
	c->ErrDesc.Addr.lower = temp64.val32.lower;
	c->ErrDesc.Addr.upper = temp64.val32.upper;
	c->ErrDesc.Len = sizeof(*c->err_info);

	c->h = h;
	return c;
}

/* For operations that can wait for kmalloc to possibly sleep,
 * this routine can be called. Lock need not be held to call
 * cmd_special_alloc. cmd_special_free() is the complement.
 */
static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
{
	struct CommandList *c;
	union u64bit temp64;
	dma_addr_t cmd_dma_handle, err_dma_handle;

	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
	if (c == NULL)
		return NULL;
	memset(c, 0, sizeof(*c));

	c->cmdindex = -1;

	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
		    &err_dma_handle);

	if (c->err_info == NULL) {
		pci_free_consistent(h->pdev,
			sizeof(*c), c, cmd_dma_handle);
		return NULL;
	}
	memset(c->err_info, 0, sizeof(*c->err_info));

2798
	INIT_LIST_HEAD(&c->list);
2799 2800
	c->busaddr = (u32) cmd_dma_handle;
	temp64.val = (u64) err_dma_handle;
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
	c->ErrDesc.Addr.lower = temp64.val32.lower;
	c->ErrDesc.Addr.upper = temp64.val32.upper;
	c->ErrDesc.Len = sizeof(*c->err_info);

	c->h = h;
	return c;
}

static void cmd_free(struct ctlr_info *h, struct CommandList *c)
{
	int i;
2812
	unsigned long flags;
2813 2814

	i = c - h->cmd_pool;
2815
	spin_lock_irqsave(&h->lock, flags);
2816 2817
	clear_bit(i & (BITS_PER_LONG - 1),
		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2818
	spin_unlock_irqrestore(&h->lock, flags);
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
}

static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
{
	union u64bit temp64;

	temp64.val32.lower = c->ErrDesc.Addr.lower;
	temp64.val32.upper = c->ErrDesc.Addr.upper;
	pci_free_consistent(h->pdev, sizeof(*c->err_info),
			    c->err_info, (dma_addr_t) temp64.val);
	pci_free_consistent(h->pdev, sizeof(*c),
2830
			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
}

#ifdef CONFIG_COMPAT

static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
{
	IOCTL32_Command_struct __user *arg32 =
	    (IOCTL32_Command_struct __user *) arg;
	IOCTL_Command_struct arg64;
	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

2844
	memset(&arg64, 0, sizeof(arg64));
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

2860
	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}

static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
	int cmd, void *arg)
{
	BIG_IOCTL32_Command_struct __user *arg32 =
	    (BIG_IOCTL32_Command_struct __user *) arg;
	BIG_IOCTL_Command_struct arg64;
	BIG_IOCTL_Command_struct __user *p =
	    compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

2881
	memset(&arg64, 0, sizeof(arg64));
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

2898
	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2899 2900 2901 2902 2903 2904 2905 2906
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936

static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
{
	switch (cmd) {
	case CCISS_GETPCIINFO:
	case CCISS_GETINTINFO:
	case CCISS_SETINTINFO:
	case CCISS_GETNODENAME:
	case CCISS_SETNODENAME:
	case CCISS_GETHEARTBEAT:
	case CCISS_GETBUSTYPES:
	case CCISS_GETFIRMVER:
	case CCISS_GETDRIVVER:
	case CCISS_REVALIDVOLS:
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
	case CCISS_RESCANDISK:
	case CCISS_GETLUNINFO:
		return hpsa_ioctl(dev, cmd, arg);

	case CCISS_PASSTHRU32:
		return hpsa_ioctl32_passthru(dev, cmd, arg);
	case CCISS_BIG_PASSTHRU32:
		return hpsa_ioctl32_big_passthru(dev, cmd, arg);

	default:
		return -ENOIOCTLCMD;
	}
}
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
#endif

static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
{
	struct hpsa_pci_info pciinfo;

	if (!argp)
		return -EINVAL;
	pciinfo.domain = pci_domain_nr(h->pdev->bus);
	pciinfo.bus = h->pdev->bus->number;
	pciinfo.dev_fn = h->pdev->devfn;
	pciinfo.board_id = h->board_id;
	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
		return -EFAULT;
	return 0;
}

static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
{
	DriverVer_type DriverVer;
	unsigned char vmaj, vmin, vsubmin;
	int rc;

	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
		&vmaj, &vmin, &vsubmin);
	if (rc != 3) {
		dev_info(&h->pdev->dev, "driver version string '%s' "
			"unrecognized.", HPSA_DRIVER_VERSION);
		vmaj = 0;
		vmin = 0;
		vsubmin = 0;
	}
	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
	if (!argp)
		return -EINVAL;
	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
		return -EFAULT;
	return 0;
}

static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	IOCTL_Command_struct iocommand;
	struct CommandList *c;
	char *buff = NULL;
	union u64bit temp64;
2983
	int rc = 0;
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
		return -EFAULT;
	if ((iocommand.buf_size < 1) &&
	    (iocommand.Request.Type.Direction != XFER_NONE)) {
		return -EINVAL;
	}
	if (iocommand.buf_size > 0) {
		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
		if (buff == NULL)
			return -EFAULT;
2999 3000 3001 3002
		if (iocommand.Request.Type.Direction == XFER_WRITE) {
			/* Copy the data into the buffer we created */
			if (copy_from_user(buff, iocommand.buf,
				iocommand.buf_size)) {
3003 3004
				rc = -EFAULT;
				goto out_kfree;
3005 3006 3007
			}
		} else {
			memset(buff, 0, iocommand.buf_size);
3008
		}
3009
	}
3010 3011
	c = cmd_special_alloc(h);
	if (c == NULL) {
3012 3013
		rc = -ENOMEM;
		goto out_kfree;
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
	}
	/* Fill in the command type */
	c->cmd_type = CMD_IOCTL_PEND;
	/* Fill in Command Header */
	c->Header.ReplyQueue = 0; /* unused in simple mode */
	if (iocommand.buf_size > 0) {	/* buffer to fill */
		c->Header.SGList = 1;
		c->Header.SGTotal = 1;
	} else	{ /* no buffers to fill */
		c->Header.SGList = 0;
		c->Header.SGTotal = 0;
	}
	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
	/* use the kernel address the cmd block for tag */
	c->Header.Tag.lower = c->busaddr;

	/* Fill in Request block */
	memcpy(&c->Request, &iocommand.Request,
		sizeof(c->Request));

	/* Fill in the scatter gather information */
	if (iocommand.buf_size > 0) {
		temp64.val = pci_map_single(h->pdev, buff,
			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
3038 3039 3040 3041 3042 3043 3044
		if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
			c->SG[0].Addr.lower = 0;
			c->SG[0].Addr.upper = 0;
			c->SG[0].Len = 0;
			rc = -ENOMEM;
			goto out;
		}
3045 3046 3047 3048 3049
		c->SG[0].Addr.lower = temp64.val32.lower;
		c->SG[0].Addr.upper = temp64.val32.upper;
		c->SG[0].Len = iocommand.buf_size;
		c->SG[0].Ext = 0; /* we are not chaining*/
	}
3050
	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3051 3052
	if (iocommand.buf_size > 0)
		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
3053 3054 3055 3056 3057 3058
	check_ioctl_unit_attention(h, c);

	/* Copy the error information out */
	memcpy(&iocommand.error_info, c->err_info,
		sizeof(iocommand.error_info));
	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
3059 3060
		rc = -EFAULT;
		goto out;
3061
	}
3062 3063
	if (iocommand.Request.Type.Direction == XFER_READ &&
		iocommand.buf_size > 0) {
3064 3065
		/* Copy the data out of the buffer we created */
		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
3066 3067
			rc = -EFAULT;
			goto out;
3068 3069
		}
	}
3070
out:
3071
	cmd_special_free(h, c);
3072 3073 3074
out_kfree:
	kfree(buff);
	return rc;
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
}

static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	BIG_IOCTL_Command_struct *ioc;
	struct CommandList *c;
	unsigned char **buff = NULL;
	int *buff_size = NULL;
	union u64bit temp64;
	BYTE sg_used = 0;
	int status = 0;
	int i;
3087 3088
	u32 left;
	u32 sz;
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
	BYTE __user *data_ptr;

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	ioc = (BIG_IOCTL_Command_struct *)
	    kmalloc(sizeof(*ioc), GFP_KERNEL);
	if (!ioc) {
		status = -ENOMEM;
		goto cleanup1;
	}
	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
		status = -EFAULT;
		goto cleanup1;
	}
	if ((ioc->buf_size < 1) &&
	    (ioc->Request.Type.Direction != XFER_NONE)) {
		status = -EINVAL;
		goto cleanup1;
	}
	/* Check kmalloc limits  using all SGs */
	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
		status = -EINVAL;
		goto cleanup1;
	}
3115
	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3116 3117 3118
		status = -EINVAL;
		goto cleanup1;
	}
3119
	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3120 3121 3122 3123
	if (!buff) {
		status = -ENOMEM;
		goto cleanup1;
	}
3124
	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
	if (!buff_size) {
		status = -ENOMEM;
		goto cleanup1;
	}
	left = ioc->buf_size;
	data_ptr = ioc->buf;
	while (left) {
		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
		buff_size[sg_used] = sz;
		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
		if (buff[sg_used] == NULL) {
			status = -ENOMEM;
			goto cleanup1;
		}
		if (ioc->Request.Type.Direction == XFER_WRITE) {
			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
				status = -ENOMEM;
				goto cleanup1;
			}
		} else
			memset(buff[sg_used], 0, sz);
		left -= sz;
		data_ptr += sz;
		sg_used++;
	}
	c = cmd_special_alloc(h);
	if (c == NULL) {
		status = -ENOMEM;
		goto cleanup1;
	}
	c->cmd_type = CMD_IOCTL_PEND;
	c->Header.ReplyQueue = 0;
3157
	c->Header.SGList = c->Header.SGTotal = sg_used;
3158 3159 3160 3161 3162 3163 3164 3165
	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
	c->Header.Tag.lower = c->busaddr;
	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
	if (ioc->buf_size > 0) {
		int i;
		for (i = 0; i < sg_used; i++) {
			temp64.val = pci_map_single(h->pdev, buff[i],
				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
3166 3167 3168 3169 3170 3171 3172 3173 3174
			if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
				c->SG[i].Addr.lower = 0;
				c->SG[i].Addr.upper = 0;
				c->SG[i].Len = 0;
				hpsa_pci_unmap(h->pdev, c, i,
					PCI_DMA_BIDIRECTIONAL);
				status = -ENOMEM;
				goto cleanup1;
			}
3175 3176 3177 3178 3179 3180 3181
			c->SG[i].Addr.lower = temp64.val32.lower;
			c->SG[i].Addr.upper = temp64.val32.upper;
			c->SG[i].Len = buff_size[i];
			/* we are not chaining */
			c->SG[i].Ext = 0;
		}
	}
3182
	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3183 3184
	if (sg_used)
		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3185 3186 3187 3188 3189 3190 3191 3192
	check_ioctl_unit_attention(h, c);
	/* Copy the error information out */
	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
		cmd_special_free(h, c);
		status = -EFAULT;
		goto cleanup1;
	}
3193
	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
		/* Copy the data out of the buffer we created */
		BYTE __user *ptr = ioc->buf;
		for (i = 0; i < sg_used; i++) {
			if (copy_to_user(ptr, buff[i], buff_size[i])) {
				cmd_special_free(h, c);
				status = -EFAULT;
				goto cleanup1;
			}
			ptr += buff_size[i];
		}
	}
	cmd_special_free(h, c);
	status = 0;
cleanup1:
	if (buff) {
		for (i = 0; i < sg_used; i++)
			kfree(buff[i]);
		kfree(buff);
	}
	kfree(buff_size);
	kfree(ioc);
	return status;
}

static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
		(void) check_for_unit_attention(h, c);
}
/*
 * ioctl
 */
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
{
	struct ctlr_info *h;
	void __user *argp = (void __user *)arg;

	h = sdev_to_hba(dev);

	switch (cmd) {
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
3239
		hpsa_scan_start(h->scsi_host);
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
		return 0;
	case CCISS_GETPCIINFO:
		return hpsa_getpciinfo_ioctl(h, argp);
	case CCISS_GETDRIVVER:
		return hpsa_getdrivver_ioctl(h, argp);
	case CCISS_PASSTHRU:
		return hpsa_passthru_ioctl(h, argp);
	case CCISS_BIG_PASSTHRU:
		return hpsa_big_passthru_ioctl(h, argp);
	default:
		return -ENOTTY;
	}
}

3254 3255
static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
				u8 reset_type)
3256 3257 3258 3259 3260 3261
{
	struct CommandList *c;

	c = cmd_alloc(h);
	if (!c)
		return -ENOMEM;
3262 3263
	/* fill_cmd can't fail here, no data buffer to map */
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
		RAID_CTLR_LUNID, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
	c->waiting = NULL;
	enqueue_cmd_and_start_io(h, c);
	/* Don't wait for completion, the reset won't complete.  Don't free
	 * the command either.  This is the last command we will send before
	 * re-initializing everything, so it doesn't matter and won't leak.
	 */
	return 0;
}

3275
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3276
	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3277 3278 3279
	int cmd_type)
{
	int pci_dir = XFER_NONE;
3280
	struct CommandList *a; /* for commands to be aborted */
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331

	c->cmd_type = CMD_IOCTL_PEND;
	c->Header.ReplyQueue = 0;
	if (buff != NULL && size > 0) {
		c->Header.SGList = 1;
		c->Header.SGTotal = 1;
	} else {
		c->Header.SGList = 0;
		c->Header.SGTotal = 0;
	}
	c->Header.Tag.lower = c->busaddr;
	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);

	c->Request.Type.Type = cmd_type;
	if (cmd_type == TYPE_CMD) {
		switch (cmd) {
		case HPSA_INQUIRY:
			/* are we trying to read a vital product page */
			if (page_code != 0) {
				c->Request.CDB[1] = 0x01;
				c->Request.CDB[2] = page_code;
			}
			c->Request.CDBLen = 6;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_READ;
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_INQUIRY;
			c->Request.CDB[4] = size & 0xFF;
			break;
		case HPSA_REPORT_LOG:
		case HPSA_REPORT_PHYS:
			/* Talking to controller so It's a physical command
			   mode = 00 target = 0.  Nothing to write.
			 */
			c->Request.CDBLen = 12;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_READ;
			c->Request.Timeout = 0;
			c->Request.CDB[0] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
		case HPSA_CACHE_FLUSH:
			c->Request.CDBLen = 12;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_WRITE;
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_WRITE;
			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3332 3333
			c->Request.CDB[7] = (size >> 8) & 0xFF;
			c->Request.CDB[8] = size & 0xFF;
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
			break;
		case TEST_UNIT_READY:
			c->Request.CDBLen = 6;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_NONE;
			c->Request.Timeout = 0;
			break;
		default:
			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
			BUG();
3344
			return -1;
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
		}
	} else if (cmd_type == TYPE_MSG) {
		switch (cmd) {

		case  HPSA_DEVICE_RESET_MSG:
			c->Request.CDBLen = 16;
			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_NONE;
			c->Request.Timeout = 0; /* Don't time out */
3355 3356
			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
			c->Request.CDB[0] =  cmd;
3357
			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
3358 3359 3360 3361 3362 3363
			/* If bytes 4-7 are zero, it means reset the */
			/* LunID device */
			c->Request.CDB[4] = 0x00;
			c->Request.CDB[5] = 0x00;
			c->Request.CDB[6] = 0x00;
			c->Request.CDB[7] = 0x00;
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
			break;
		case  HPSA_ABORT_MSG:
			a = buff;       /* point to command to be aborted */
			dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
				a->Header.Tag.upper, a->Header.Tag.lower,
				c->Header.Tag.upper, c->Header.Tag.lower);
			c->Request.CDBLen = 16;
			c->Request.Type.Type = TYPE_MSG;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_WRITE;
			c->Request.Timeout = 0; /* Don't time out */
			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
			c->Request.CDB[2] = 0x00; /* reserved */
			c->Request.CDB[3] = 0x00; /* reserved */
			/* Tag to abort goes in CDB[4]-CDB[11] */
			c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
			c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
			c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
			c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
			c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
			c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
			c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
			c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
			c->Request.CDB[12] = 0x00; /* reserved */
			c->Request.CDB[13] = 0x00; /* reserved */
			c->Request.CDB[14] = 0x00; /* reserved */
			c->Request.CDB[15] = 0x00; /* reserved */
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
		break;
		default:
			dev_warn(&h->pdev->dev, "unknown message type %d\n",
				cmd);
			BUG();
		}
	} else {
		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
		BUG();
	}

	switch (c->Request.Type.Direction) {
	case XFER_READ:
		pci_dir = PCI_DMA_FROMDEVICE;
		break;
	case XFER_WRITE:
		pci_dir = PCI_DMA_TODEVICE;
		break;
	case XFER_NONE:
		pci_dir = PCI_DMA_NONE;
		break;
	default:
		pci_dir = PCI_DMA_BIDIRECTIONAL;
	}
3416 3417 3418
	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
		return -1;
	return 0;
3419 3420 3421 3422 3423 3424 3425 3426 3427
}

/*
 * Map (physical) PCI mem into (virtual) kernel space
 */
static void __iomem *remap_pci_mem(ulong base, ulong size)
{
	ulong page_base = ((ulong) base) & PAGE_MASK;
	ulong page_offs = ((ulong) base) - page_base;
3428 3429
	void __iomem *page_remapped = ioremap_nocache(page_base,
		page_offs + size);
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439

	return page_remapped ? (page_remapped + page_offs) : NULL;
}

/* Takes cmds off the submission queue and sends them to the hardware,
 * then puts them on the queue of cmds waiting for completion.
 */
static void start_io(struct ctlr_info *h)
{
	struct CommandList *c;
3440
	unsigned long flags;
3441

3442
	spin_lock_irqsave(&h->lock, flags);
3443 3444
	while (!list_empty(&h->reqQ)) {
		c = list_entry(h->reqQ.next, struct CommandList, list);
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
		/* can't do anything if fifo is full */
		if ((h->access.fifo_full(h))) {
			dev_warn(&h->pdev->dev, "fifo full\n");
			break;
		}

		/* Get the first entry from the Request Q */
		removeQ(c);
		h->Qdepth--;

		/* Put job onto the completed Q */
		addQ(&h->cmpQ, c);
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469

		/* Must increment commands_outstanding before unlocking
		 * and submitting to avoid race checking for fifo full
		 * condition.
		 */
		h->commands_outstanding++;
		if (h->commands_outstanding > h->max_outstanding)
			h->max_outstanding = h->commands_outstanding;

		/* Tell the controller execute command */
		spin_unlock_irqrestore(&h->lock, flags);
		h->access.submit_command(h, c);
		spin_lock_irqsave(&h->lock, flags);
3470
	}
3471
	spin_unlock_irqrestore(&h->lock, flags);
3472 3473
}

3474
static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3475
{
3476
	return h->access.command_completed(h, q);
3477 3478
}

3479
static inline bool interrupt_pending(struct ctlr_info *h)
3480 3481 3482 3483 3484 3485
{
	return h->access.intr_pending(h);
}

static inline long interrupt_not_for_us(struct ctlr_info *h)
{
3486 3487
	return (h->access.intr_pending(h) == 0) ||
		(h->interrupts_enabled == 0);
3488 3489
}

3490 3491
static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
	u32 raw_tag)
3492 3493 3494 3495 3496 3497 3498 3499
{
	if (unlikely(tag_index >= h->nr_cmds)) {
		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
		return 1;
	}
	return 0;
}

3500
static inline void finish_cmd(struct CommandList *c)
3501
{
3502 3503 3504
	unsigned long flags;

	spin_lock_irqsave(&c->h->lock, flags);
3505
	removeQ(c);
3506
	spin_unlock_irqrestore(&c->h->lock, flags);
3507
	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3508
	if (likely(c->cmd_type == CMD_SCSI))
3509
		complete_scsi_command(c);
3510 3511 3512 3513
	else if (c->cmd_type == CMD_IOCTL_PEND)
		complete(c->waiting);
}

3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
static inline u32 hpsa_tag_contains_index(u32 tag)
{
	return tag & DIRECT_LOOKUP_BIT;
}

static inline u32 hpsa_tag_to_index(u32 tag)
{
	return tag >> DIRECT_LOOKUP_SHIFT;
}

3524 3525

static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3526
{
3527 3528
#define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
#define HPSA_SIMPLE_ERROR_BITS 0x03
3529
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3530 3531
		return tag & ~HPSA_SIMPLE_ERROR_BITS;
	return tag & ~HPSA_PERF_ERROR_BITS;
3532 3533
}

3534
/* process completion of an indexed ("direct lookup") command */
3535
static inline void process_indexed_cmd(struct ctlr_info *h,
3536 3537 3538 3539 3540 3541
	u32 raw_tag)
{
	u32 tag_index;
	struct CommandList *c;

	tag_index = hpsa_tag_to_index(raw_tag);
3542 3543 3544 3545
	if (!bad_tag(h, tag_index, raw_tag)) {
		c = h->cmd_pool + tag_index;
		finish_cmd(c);
	}
3546 3547 3548
}

/* process completion of a non-indexed command */
3549
static inline void process_nonindexed_cmd(struct ctlr_info *h,
3550 3551 3552 3553
	u32 raw_tag)
{
	u32 tag;
	struct CommandList *c = NULL;
3554
	unsigned long flags;
3555

3556
	tag = hpsa_tag_discard_error_bits(h, raw_tag);
3557
	spin_lock_irqsave(&h->lock, flags);
3558
	list_for_each_entry(c, &h->cmpQ, list) {
3559
		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3560
			spin_unlock_irqrestore(&h->lock, flags);
3561
			finish_cmd(c);
3562
			return;
3563 3564
		}
	}
3565
	spin_unlock_irqrestore(&h->lock, flags);
3566 3567 3568
	bad_tag(h, h->nr_cmds + 1, raw_tag);
}

3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
/* Some controllers, like p400, will give us one interrupt
 * after a soft reset, even if we turned interrupts off.
 * Only need to check for this in the hpsa_xxx_discard_completions
 * functions.
 */
static int ignore_bogus_interrupt(struct ctlr_info *h)
{
	if (likely(!reset_devices))
		return 0;

	if (likely(h->interrupts_enabled))
		return 0;

	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
		"(known firmware bug.)  Ignoring.\n");

	return 1;
}

3588 3589 3590 3591 3592 3593
/*
 * Convert &h->q[x] (passed to interrupt handlers) back to h.
 * Relies on (h-q[x] == x) being true for x such that
 * 0 <= x < MAX_REPLY_QUEUES.
 */
static struct ctlr_info *queue_to_hba(u8 *queue)
3594
{
3595 3596 3597 3598 3599 3600 3601
	return container_of((queue - *queue), struct ctlr_info, q[0]);
}

static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
{
	struct ctlr_info *h = queue_to_hba(queue);
	u8 q = *(u8 *) queue;
3602 3603 3604 3605 3606 3607 3608
	u32 raw_tag;

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
3609
	h->last_intr_timestamp = get_jiffies_64();
3610
	while (interrupt_pending(h)) {
3611
		raw_tag = get_next_completion(h, q);
3612
		while (raw_tag != FIFO_EMPTY)
3613
			raw_tag = next_command(h, q);
3614 3615 3616 3617
	}
	return IRQ_HANDLED;
}

3618
static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3619
{
3620
	struct ctlr_info *h = queue_to_hba(queue);
3621
	u32 raw_tag;
3622
	u8 q = *(u8 *) queue;
3623 3624 3625 3626

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

3627
	h->last_intr_timestamp = get_jiffies_64();
3628
	raw_tag = get_next_completion(h, q);
3629
	while (raw_tag != FIFO_EMPTY)
3630
		raw_tag = next_command(h, q);
3631 3632 3633
	return IRQ_HANDLED;
}

3634
static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3635
{
3636
	struct ctlr_info *h = queue_to_hba((u8 *) queue);
3637
	u32 raw_tag;
3638
	u8 q = *(u8 *) queue;
3639 3640 3641

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
3642
	h->last_intr_timestamp = get_jiffies_64();
3643
	while (interrupt_pending(h)) {
3644
		raw_tag = get_next_completion(h, q);
3645
		while (raw_tag != FIFO_EMPTY) {
3646 3647
			if (likely(hpsa_tag_contains_index(raw_tag)))
				process_indexed_cmd(h, raw_tag);
3648
			else
3649
				process_nonindexed_cmd(h, raw_tag);
3650
			raw_tag = next_command(h, q);
3651 3652 3653 3654 3655
		}
	}
	return IRQ_HANDLED;
}

3656
static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3657
{
3658
	struct ctlr_info *h = queue_to_hba(queue);
3659
	u32 raw_tag;
3660
	u8 q = *(u8 *) queue;
3661

3662
	h->last_intr_timestamp = get_jiffies_64();
3663
	raw_tag = get_next_completion(h, q);
3664
	while (raw_tag != FIFO_EMPTY) {
3665 3666
		if (likely(hpsa_tag_contains_index(raw_tag)))
			process_indexed_cmd(h, raw_tag);
3667
		else
3668
			process_nonindexed_cmd(h, raw_tag);
3669
		raw_tag = next_command(h, q);
3670 3671 3672 3673
	}
	return IRQ_HANDLED;
}

3674 3675 3676 3677
/* Send a message CDB to the firmware. Careful, this only works
 * in simple mode, not performant mode due to the tag lookup.
 * We only ever use this immediately after a controller reset.
 */
3678 3679
static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
			unsigned char type)
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
{
	struct Command {
		struct CommandListHeader CommandHeader;
		struct RequestBlock Request;
		struct ErrDescriptor ErrorDescriptor;
	};
	struct Command *cmd;
	static const size_t cmd_sz = sizeof(*cmd) +
					sizeof(cmd->ErrorDescriptor);
	dma_addr_t paddr64;
	uint32_t paddr32, tag;
	void __iomem *vaddr;
	int i, err;

	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL)
		return -ENOMEM;

	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
	 * CCISS commands, so they must be allocated from the lower 4GiB of
	 * memory.
	 */
	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
	if (err) {
		iounmap(vaddr);
		return -ENOMEM;
	}

	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
	if (cmd == NULL) {
		iounmap(vaddr);
		return -ENOMEM;
	}

	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
	 * although there's no guarantee, we assume that the address is at
	 * least 4-byte aligned (most likely, it's page-aligned).
	 */
	paddr32 = paddr64;

	cmd->CommandHeader.ReplyQueue = 0;
	cmd->CommandHeader.SGList = 0;
	cmd->CommandHeader.SGTotal = 0;
	cmd->CommandHeader.Tag.lower = paddr32;
	cmd->CommandHeader.Tag.upper = 0;
	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);

	cmd->Request.CDBLen = 16;
	cmd->Request.Type.Type = TYPE_MSG;
	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
	cmd->Request.Type.Direction = XFER_NONE;
	cmd->Request.Timeout = 0; /* Don't time out */
	cmd->Request.CDB[0] = opcode;
	cmd->Request.CDB[1] = type;
	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
	cmd->ErrorDescriptor.Addr.upper = 0;
	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);

	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);

	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3743
		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
			break;
		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
	}

	iounmap(vaddr);

	/* we leak the DMA buffer here ... no choice since the controller could
	 *  still complete the command.
	 */
	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
			opcode, type);
		return -ETIMEDOUT;
	}

	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);

	if (tag & HPSA_ERROR_BIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
			opcode, type);
		return -EIO;
	}

	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
		opcode, type);
	return 0;
}

#define hpsa_noop(p) hpsa_message(p, 3, 0)

3774
static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3775
	void * __iomem vaddr, u32 use_doorbell)
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
{
	u16 pmcsr;
	int pos;

	if (use_doorbell) {
		/* For everything after the P600, the PCI power state method
		 * of resetting the controller doesn't work, so we have this
		 * other way using the doorbell register.
		 */
		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3786
		writel(use_doorbell, vaddr + SA5_DOORBELL);
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
	} else { /* Try to do it the PCI power state way */

		/* Quoting from the Open CISS Specification: "The Power
		 * Management Control/Status Register (CSR) controls the power
		 * state of the device.  The normal operating state is D0,
		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
		 * the controller, place the interface device in D3 then to D0,
		 * this causes a secondary PCI reset which will reset the
		 * controller." */

		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
		if (pos == 0) {
			dev_err(&pdev->dev,
				"hpsa_reset_controller: "
				"PCI PM not supported\n");
			return -ENODEV;
		}
		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
		/* enter the D3hot power management state */
		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
		pmcsr |= PCI_D3hot;
		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);

		msleep(500);

		/* enter the D0 power management state */
		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
		pmcsr |= PCI_D0;
		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3817 3818 3819 3820 3821 3822 3823

		/*
		 * The P600 requires a small delay when changing states.
		 * Otherwise we may think the board did not reset and we bail.
		 * This for kdump only and is particular to the P600.
		 */
		msleep(500);
3824 3825 3826 3827
	}
	return 0;
}

3828
static void init_driver_version(char *driver_version, int len)
3829 3830
{
	memset(driver_version, 0, len);
3831
	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3832 3833
}

3834
static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
{
	char *driver_version;
	int i, size = sizeof(cfgtable->driver_version);

	driver_version = kmalloc(size, GFP_KERNEL);
	if (!driver_version)
		return -ENOMEM;

	init_driver_version(driver_version, size);
	for (i = 0; i < size; i++)
		writeb(driver_version[i], &cfgtable->driver_version[i]);
	kfree(driver_version);
	return 0;
}

3850 3851
static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
					  unsigned char *driver_ver)
3852 3853 3854 3855 3856 3857 3858
{
	int i;

	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
		driver_ver[i] = readb(&cfgtable->driver_version[i]);
}

3859
static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
{

	char *driver_ver, *old_driver_ver;
	int rc, size = sizeof(cfgtable->driver_version);

	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
	if (!old_driver_ver)
		return -ENOMEM;
	driver_ver = old_driver_ver + size;

	/* After a reset, the 32 bytes of "driver version" in the cfgtable
	 * should have been changed, otherwise we know the reset failed.
	 */
	init_driver_version(old_driver_ver, size);
	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
	rc = !memcmp(driver_ver, old_driver_ver, size);
	kfree(old_driver_ver);
	return rc;
}
3879
/* This does a hard reset of the controller using PCI power management
3880
 * states or the using the doorbell register.
3881
 */
3882
static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3883
{
3884 3885 3886 3887 3888
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
	void __iomem *vaddr;
	unsigned long paddr;
3889
	u32 misc_fw_support;
3890
	int rc;
3891
	struct CfgTable __iomem *cfgtable;
3892
	u32 use_doorbell;
3893
	u32 board_id;
3894
	u16 command_register;
3895

3896 3897
	/* For controllers as old as the P600, this is very nearly
	 * the same thing as
3898 3899 3900 3901 3902 3903
	 *
	 * pci_save_state(pci_dev);
	 * pci_set_power_state(pci_dev, PCI_D3hot);
	 * pci_set_power_state(pci_dev, PCI_D0);
	 * pci_restore_state(pci_dev);
	 *
3904 3905 3906
	 * For controllers newer than the P600, the pci power state
	 * method of resetting doesn't work so we have another way
	 * using the doorbell register.
3907
	 */
3908

3909
	rc = hpsa_lookup_board_id(pdev, &board_id);
3910
	if (rc < 0 || !ctlr_is_resettable(board_id)) {
3911 3912 3913
		dev_warn(&pdev->dev, "Not resetting device.\n");
		return -ENODEV;
	}
3914 3915 3916 3917

	/* if controller is soft- but not hard resettable... */
	if (!ctlr_is_hard_resettable(board_id))
		return -ENOTSUPP; /* try soft reset later. */
3918

3919 3920 3921 3922 3923 3924 3925
	/* Save the PCI command register */
	pci_read_config_word(pdev, 4, &command_register);
	/* Turn the board off.  This is so that later pci_restore_state()
	 * won't turn the board on before the rest of config space is ready.
	 */
	pci_disable_device(pdev);
	pci_save_state(pdev);
3926

3927 3928 3929 3930 3931 3932 3933
	/* find the first memory BAR, so we can find the cfg table */
	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
	if (rc)
		return rc;
	vaddr = remap_pci_mem(paddr, 0x250);
	if (!vaddr)
		return -ENOMEM;
3934

3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
	/* find cfgtable in order to check if reset via doorbell is supported */
	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
					&cfg_base_addr_index, &cfg_offset);
	if (rc)
		goto unmap_vaddr;
	cfgtable = remap_pci_mem(pci_resource_start(pdev,
		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
	if (!cfgtable) {
		rc = -ENOMEM;
		goto unmap_vaddr;
	}
3946 3947 3948
	rc = write_driver_ver_to_cfgtable(cfgtable);
	if (rc)
		goto unmap_vaddr;
3949

3950 3951 3952
	/* If reset via doorbell register is supported, use that.
	 * There are two such methods.  Favor the newest method.
	 */
3953
	misc_fw_support = readl(&cfgtable->misc_fw_support);
3954 3955 3956 3957 3958 3959
	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
	if (use_doorbell) {
		use_doorbell = DOORBELL_CTLR_RESET2;
	} else {
		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
		if (use_doorbell) {
3960 3961
			dev_warn(&pdev->dev, "Soft reset not supported. "
				"Firmware update is required.\n");
3962
			rc = -ENOTSUPP; /* try soft reset */
3963 3964 3965
			goto unmap_cfgtable;
		}
	}
3966

3967 3968 3969
	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
	if (rc)
		goto unmap_cfgtable;
3970

3971 3972 3973 3974 3975
	pci_restore_state(pdev);
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "failed to enable device.\n");
		goto unmap_cfgtable;
3976
	}
3977
	pci_write_config_word(pdev, 4, command_register);
3978

3979 3980 3981 3982
	/* Some devices (notably the HP Smart Array 5i Controller)
	   need a little pause here */
	msleep(HPSA_POST_RESET_PAUSE_MSECS);

3983
	/* Wait for board to become not ready, then ready. */
3984
	dev_info(&pdev->dev, "Waiting for board to reset.\n");
3985
	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3986
	if (rc) {
3987
		dev_warn(&pdev->dev,
3988 3989 3990 3991 3992
			"failed waiting for board to reset."
			" Will try soft reset.\n");
		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
		goto unmap_cfgtable;
	}
3993 3994 3995
	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
	if (rc) {
		dev_warn(&pdev->dev,
3996 3997
			"failed waiting for board to become ready "
			"after hard reset\n");
3998 3999 4000
		goto unmap_cfgtable;
	}

4001 4002 4003 4004
	rc = controller_reset_failed(vaddr);
	if (rc < 0)
		goto unmap_cfgtable;
	if (rc) {
4005 4006 4007
		dev_warn(&pdev->dev, "Unable to successfully reset "
			"controller. Will try soft reset.\n");
		rc = -ENOTSUPP;
4008
	} else {
4009
		dev_info(&pdev->dev, "board ready after hard reset.\n");
4010 4011 4012 4013 4014 4015 4016 4017
	}

unmap_cfgtable:
	iounmap(cfgtable);

unmap_vaddr:
	iounmap(vaddr);
	return rc;
4018 4019 4020 4021 4022 4023 4024 4025 4026
}

/*
 *  We cannot read the structure directly, for portability we must use
 *   the io functions.
 *   This is for debug only.
 */
static void print_cfg_table(struct device *dev, struct CfgTable *tb)
{
4027
#ifdef HPSA_DEBUG
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
	int i;
	char temp_name[17];

	dev_info(dev, "Controller Configuration information\n");
	dev_info(dev, "------------------------------------\n");
	for (i = 0; i < 4; i++)
		temp_name[i] = readb(&(tb->Signature[i]));
	temp_name[4] = '\0';
	dev_info(dev, "   Signature = %s\n", temp_name);
	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
	dev_info(dev, "   Transport methods supported = 0x%x\n",
	       readl(&(tb->TransportSupport)));
	dev_info(dev, "   Transport methods active = 0x%x\n",
	       readl(&(tb->TransportActive)));
	dev_info(dev, "   Requested transport Method = 0x%x\n",
	       readl(&(tb->HostWrite.TransportRequest)));
	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntDelay)));
	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntCount)));
	dev_info(dev, "   Max outstanding commands = 0x%d\n",
	       readl(&(tb->CmdsOutMax)));
	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
	for (i = 0; i < 16; i++)
		temp_name[i] = readb(&(tb->ServerName[i]));
	temp_name[16] = '\0';
	dev_info(dev, "   Server Name = %s\n", temp_name);
	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
		readl(&(tb->HeartBeat)));
#endif				/* HPSA_DEBUG */
4058
}
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098

static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
{
	int i, offset, mem_type, bar_type;

	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
		return 0;
	offset = 0;
	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
			offset += 4;
		else {
			mem_type = pci_resource_flags(pdev, i) &
			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
			switch (mem_type) {
			case PCI_BASE_ADDRESS_MEM_TYPE_32:
			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
				offset += 4;	/* 32 bit */
				break;
			case PCI_BASE_ADDRESS_MEM_TYPE_64:
				offset += 8;
				break;
			default:	/* reserved in PCI 2.2 */
				dev_warn(&pdev->dev,
				       "base address is invalid\n");
				return -1;
				break;
			}
		}
		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
			return i + 1;
	}
	return -1;
}

/* If MSI/MSI-X is supported by the kernel we will try to enable it on
 * controllers that are capable. If not, we use IO-APIC mode.
 */

4099
static void hpsa_interrupt_mode(struct ctlr_info *h)
4100 4101
{
#ifdef CONFIG_PCI_MSI
4102 4103 4104 4105 4106 4107 4108
	int err, i;
	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];

	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
		hpsa_msix_entries[i].vector = 0;
		hpsa_msix_entries[i].entry = i;
	}
4109 4110

	/* Some boards advertise MSI but don't really support it */
4111 4112
	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4113
		goto default_int_mode;
4114 4115
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
		dev_info(&h->pdev->dev, "MSIX\n");
4116 4117
		err = pci_enable_msix(h->pdev, hpsa_msix_entries,
						MAX_REPLY_QUEUES);
4118
		if (!err) {
4119 4120
			for (i = 0; i < MAX_REPLY_QUEUES; i++)
				h->intr[i] = hpsa_msix_entries[i].vector;
4121 4122 4123 4124
			h->msix_vector = 1;
			return;
		}
		if (err > 0) {
4125
			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4126 4127 4128
			       "available\n", err);
			goto default_int_mode;
		} else {
4129
			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4130 4131 4132 4133
			       err);
			goto default_int_mode;
		}
	}
4134 4135 4136
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
		dev_info(&h->pdev->dev, "MSI\n");
		if (!pci_enable_msi(h->pdev))
4137 4138
			h->msi_vector = 1;
		else
4139
			dev_warn(&h->pdev->dev, "MSI init failed\n");
4140 4141 4142 4143
	}
default_int_mode:
#endif				/* CONFIG_PCI_MSI */
	/* if we get here we're going to use the default interrupt mode */
4144
	h->intr[h->intr_mode] = h->pdev->irq;
4145 4146
}

4147
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
{
	int i;
	u32 subsystem_vendor_id, subsystem_device_id;

	subsystem_vendor_id = pdev->subsystem_vendor;
	subsystem_device_id = pdev->subsystem_device;
	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
		    subsystem_vendor_id;

	for (i = 0; i < ARRAY_SIZE(products); i++)
		if (*board_id == products[i].board_id)
			return i;

4161 4162 4163
	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
		!hpsa_allow_any) {
4164 4165 4166 4167 4168 4169 4170
		dev_warn(&pdev->dev, "unrecognized board ID: "
			"0x%08x, ignoring.\n", *board_id);
			return -ENODEV;
	}
	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
}

4171 4172
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar)
4173 4174 4175 4176
{
	int i;

	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4177
		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4178
			/* addressing mode bits already removed */
4179 4180
			*memory_bar = pci_resource_start(pdev, i);
			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4181 4182 4183
				*memory_bar);
			return 0;
		}
4184
	dev_warn(&pdev->dev, "no memory BAR found\n");
4185 4186 4187
	return -ENODEV;
}

4188 4189
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready)
4190
{
4191
	int i, iterations;
4192
	u32 scratchpad;
4193 4194 4195 4196
	if (wait_for_ready)
		iterations = HPSA_BOARD_READY_ITERATIONS;
	else
		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4197

4198 4199 4200 4201 4202 4203 4204 4205 4206
	for (i = 0; i < iterations; i++) {
		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
		if (wait_for_ready) {
			if (scratchpad == HPSA_FIRMWARE_READY)
				return 0;
		} else {
			if (scratchpad != HPSA_FIRMWARE_READY)
				return 0;
		}
4207 4208
		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
	}
4209
	dev_warn(&pdev->dev, "board not ready, timed out.\n");
4210 4211 4212
	return -ENODEV;
}

4213 4214 4215
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset)
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
{
	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
	*cfg_base_addr &= (u32) 0x0000ffff;
	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
	if (*cfg_base_addr_index == -1) {
		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
		return -ENODEV;
	}
	return 0;
}

4228
static int hpsa_find_cfgtables(struct ctlr_info *h)
4229
{
4230 4231 4232
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
4233
	u32 trans_offset;
4234
	int rc;
4235

4236 4237 4238 4239
	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
		&cfg_base_addr_index, &cfg_offset);
	if (rc)
		return rc;
4240
	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4241
		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4242 4243
	if (!h->cfgtable)
		return -ENOMEM;
4244 4245 4246
	rc = write_driver_ver_to_cfgtable(h->cfgtable);
	if (rc)
		return rc;
4247
	/* Find performant mode table. */
4248
	trans_offset = readl(&h->cfgtable->TransMethodOffset);
4249 4250 4251 4252 4253 4254 4255 4256
	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
				cfg_base_addr_index)+cfg_offset+trans_offset,
				sizeof(*h->transtable));
	if (!h->transtable)
		return -ENOMEM;
	return 0;
}

4257
static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4258 4259
{
	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4260 4261 4262 4263 4264

	/* Limit commands in memory limited kdump scenario. */
	if (reset_devices && h->max_commands > 32)
		h->max_commands = 32;

4265 4266 4267 4268 4269 4270 4271 4272 4273
	if (h->max_commands < 16) {
		dev_warn(&h->pdev->dev, "Controller reports "
			"max supported commands of %d, an obvious lie. "
			"Using 16.  Ensure that firmware is up to date.\n",
			h->max_commands);
		h->max_commands = 16;
	}
}

4274 4275 4276 4277
/* Interrogate the hardware for some limits:
 * max commands, max SG elements without chaining, and with chaining,
 * SG chain block size, etc.
 */
4278
static void hpsa_find_board_params(struct ctlr_info *h)
4279
{
4280
	hpsa_get_max_perf_mode_cmds(h);
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
	/*
	 * Limit in-command s/g elements to 32 save dma'able memory.
	 * Howvever spec says if 0, use 31
	 */
	h->max_cmd_sg_entries = 31;
	if (h->maxsgentries > 512) {
		h->max_cmd_sg_entries = 32;
		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
		h->maxsgentries--; /* save one for chain pointer */
	} else {
		h->maxsgentries = 31; /* default to traditional values */
		h->chainsize = 0;
	}
4296 4297 4298

	/* Find out what task management functions are supported and cache */
	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4299 4300
}

4301 4302
static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
{
A
Akinobu Mita 已提交
4303
	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4304 4305 4306 4307 4308 4309
		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
		return false;
	}
	return true;
}

4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
/* Need to enable prefetch in the SCSI core for 6400 in x86 */
static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
{
#ifdef CONFIG_X86
	u32 prefetch;

	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
	prefetch |= 0x100;
	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
#endif
}

4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
 * in a prefetch beyond physical memory.
 */
static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
{
	u32 dma_prefetch;

	if (h->board_id != 0x3225103C)
		return;
	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
	dma_prefetch |= 0x8000;
	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
}

4336
static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4337 4338
{
	int i;
4339 4340
	u32 doorbell_value;
	unsigned long flags;
4341 4342 4343 4344 4345 4346

	/* under certain very rare conditions, this can take awhile.
	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
	 * as we enter this code.)
	 */
	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4347 4348 4349
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
D
Dan Carpenter 已提交
4350
		if (!(doorbell_value & CFGTBL_ChangeReq))
4351 4352
			break;
		/* delay and try again */
4353
		usleep_range(10000, 20000);
4354
	}
4355 4356
}

4357
static int hpsa_enter_simple_mode(struct ctlr_info *h)
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
{
	u32 trans_support;

	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & SIMPLE_MODE))
		return -ENOTSUPP;

	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
	/* Update the field, and then ring the doorbell */
	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
	hpsa_wait_for_mode_change_ack(h);
4370 4371 4372 4373 4374 4375
	print_cfg_table(&h->pdev->dev, h->cfgtable);
	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
		dev_warn(&h->pdev->dev,
			"unable to get board into simple mode\n");
		return -ENODEV;
	}
4376
	h->transMethod = CFGTBL_Trans_Simple;
4377 4378 4379
	return 0;
}

4380
static int hpsa_pci_init(struct ctlr_info *h)
4381
{
4382
	int prod_index, err;
4383

4384 4385 4386 4387 4388
	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
	if (prod_index < 0)
		return -ENODEV;
	h->product_name = products[prod_index].product_name;
	h->access = *(products[prod_index].access);
4389

M
Matthew Garrett 已提交
4390 4391 4392
	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);

4393
	err = pci_enable_device(h->pdev);
4394
	if (err) {
4395
		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4396 4397 4398
		return err;
	}

4399 4400 4401
	/* Enable bus mastering (pci_disable_device may disable this) */
	pci_set_master(h->pdev);

4402
	err = pci_request_regions(h->pdev, HPSA);
4403
	if (err) {
4404 4405
		dev_err(&h->pdev->dev,
			"cannot obtain PCI resources, aborting\n");
4406 4407
		return err;
	}
4408
	hpsa_interrupt_mode(h);
4409
	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4410
	if (err)
4411 4412
		goto err_out_free_res;
	h->vaddr = remap_pci_mem(h->paddr, 0x250);
4413 4414 4415 4416
	if (!h->vaddr) {
		err = -ENOMEM;
		goto err_out_free_res;
	}
4417
	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4418
	if (err)
4419
		goto err_out_free_res;
4420 4421
	err = hpsa_find_cfgtables(h);
	if (err)
4422
		goto err_out_free_res;
4423
	hpsa_find_board_params(h);
4424

4425
	if (!hpsa_CISS_signature_present(h)) {
4426 4427 4428
		err = -ENODEV;
		goto err_out_free_res;
	}
4429
	hpsa_enable_scsi_prefetch(h);
4430
	hpsa_p600_dma_prefetch_quirk(h);
4431 4432
	err = hpsa_enter_simple_mode(h);
	if (err)
4433 4434 4435 4436
		goto err_out_free_res;
	return 0;

err_out_free_res:
4437 4438 4439 4440 4441 4442
	if (h->transtable)
		iounmap(h->transtable);
	if (h->cfgtable)
		iounmap(h->cfgtable);
	if (h->vaddr)
		iounmap(h->vaddr);
4443
	pci_disable_device(h->pdev);
4444
	pci_release_regions(h->pdev);
4445 4446 4447
	return err;
}

4448
static void hpsa_hba_inquiry(struct ctlr_info *h)
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
{
	int rc;

#define HBA_INQUIRY_BYTE_COUNT 64
	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
	if (!h->hba_inquiry_data)
		return;
	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
	if (rc != 0) {
		kfree(h->hba_inquiry_data);
		h->hba_inquiry_data = NULL;
	}
}

4464
static int hpsa_init_reset_devices(struct pci_dev *pdev)
4465
{
4466
	int rc, i;
4467 4468 4469 4470

	if (!reset_devices)
		return 0;

4471 4472
	/* Reset the controller with a PCI power-cycle or via doorbell */
	rc = hpsa_kdump_hard_reset_controller(pdev);
4473

4474 4475
	/* -ENOTSUPP here means we cannot reset the controller
	 * but it's already (and still) up and running in
4476 4477
	 * "performant mode".  Or, it might be 640x, which can't reset
	 * due to concerns about shared bbwc between 6402/6404 pair.
4478 4479
	 */
	if (rc == -ENOTSUPP)
4480
		return rc; /* just try to do the kdump anyhow. */
4481 4482
	if (rc)
		return -ENODEV;
4483 4484

	/* Now try to get the controller to respond to a no-op */
4485
	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
		if (hpsa_noop(pdev) == 0)
			break;
		else
			dev_warn(&pdev->dev, "no-op failed%s\n",
					(i < 11 ? "; re-trying" : ""));
	}
	return 0;
}

4496
static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
{
	h->cmd_pool_bits = kzalloc(
		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
		sizeof(unsigned long), GFP_KERNEL);
	h->cmd_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->cmd_pool),
		    &(h->cmd_pool_dhandle));
	h->errinfo_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->errinfo_pool),
		    &(h->errinfo_pool_dhandle));
	if ((h->cmd_pool_bits == NULL)
	    || (h->cmd_pool == NULL)
	    || (h->errinfo_pool == NULL)) {
		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
		return -ENOMEM;
	}
	return 0;
}

static void hpsa_free_cmd_pool(struct ctlr_info *h)
{
	kfree(h->cmd_pool_bits);
	if (h->cmd_pool)
		pci_free_consistent(h->pdev,
			    h->nr_cmds * sizeof(struct CommandList),
			    h->cmd_pool, h->cmd_pool_dhandle);
	if (h->errinfo_pool)
		pci_free_consistent(h->pdev,
			    h->nr_cmds * sizeof(struct ErrorInfo),
			    h->errinfo_pool,
			    h->errinfo_pool_dhandle);
}

4530 4531 4532 4533
static int hpsa_request_irq(struct ctlr_info *h,
	irqreturn_t (*msixhandler)(int, void *),
	irqreturn_t (*intxhandler)(int, void *))
{
4534
	int rc, i;
4535

4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
	/*
	 * initialize h->q[x] = x so that interrupt handlers know which
	 * queue to process.
	 */
	for (i = 0; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = (u8) i;

	if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
		/* If performant mode and MSI-X, use multiple reply queues */
		for (i = 0; i < MAX_REPLY_QUEUES; i++)
			rc = request_irq(h->intr[i], msixhandler,
					0, h->devname,
					&h->q[i]);
	} else {
		/* Use single reply pool */
		if (h->msix_vector || h->msi_vector) {
			rc = request_irq(h->intr[h->intr_mode],
				msixhandler, 0, h->devname,
				&h->q[h->intr_mode]);
		} else {
			rc = request_irq(h->intr[h->intr_mode],
				intxhandler, IRQF_SHARED, h->devname,
				&h->q[h->intr_mode]);
		}
	}
4561 4562 4563 4564 4565 4566 4567 4568
	if (rc) {
		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
		       h->intr[h->intr_mode], h->devname);
		return -ENODEV;
	}
	return 0;
}

4569
static int hpsa_kdump_soft_reset(struct ctlr_info *h)
4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
{
	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
		HPSA_RESET_TYPE_CONTROLLER)) {
		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
		return -EIO;
	}

	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
		return -1;
	}

	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
		dev_warn(&h->pdev->dev, "Board failed to become ready "
			"after soft reset.\n");
		return -1;
	}

	return 0;
}

4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
static void free_irqs(struct ctlr_info *h)
{
	int i;

	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
		/* Single reply queue, only one irq to free */
		i = h->intr_mode;
		free_irq(h->intr[i], &h->q[i]);
		return;
	}

	for (i = 0; i < MAX_REPLY_QUEUES; i++)
		free_irq(h->intr[i], &h->q[i]);
}

4608
static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4609
{
4610
	free_irqs(h);
4611
#ifdef CONFIG_PCI_MSI
4612 4613 4614 4615 4616 4617 4618
	if (h->msix_vector) {
		if (h->pdev->msix_enabled)
			pci_disable_msix(h->pdev);
	} else if (h->msi_vector) {
		if (h->pdev->msi_enabled)
			pci_disable_msi(h->pdev);
	}
4619
#endif /* CONFIG_PCI_MSI */
4620 4621 4622 4623 4624
}

static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
{
	hpsa_free_irqs_and_disable_msix(h);
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
	hpsa_free_sg_chain_blocks(h);
	hpsa_free_cmd_pool(h);
	kfree(h->blockFetchTable);
	pci_free_consistent(h->pdev, h->reply_pool_size,
		h->reply_pool, h->reply_pool_dhandle);
	if (h->vaddr)
		iounmap(h->vaddr);
	if (h->transtable)
		iounmap(h->transtable);
	if (h->cfgtable)
		iounmap(h->cfgtable);
	pci_release_regions(h->pdev);
	kfree(h);
}

4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
{
	assert_spin_locked(&lockup_detector_lock);
	if (!hpsa_lockup_detector)
		return;
	if (h->lockup_detected)
		return; /* already stopped the lockup detector */
	list_del(&h->lockup_list);
}

/* Called when controller lockup detected. */
static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
{
	struct CommandList *c = NULL;

	assert_spin_locked(&h->lock);
	/* Mark all outstanding commands as failed and complete them. */
	while (!list_empty(list)) {
		c = list_entry(list->next, struct CommandList, list);
		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4660
		finish_cmd(c);
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
	}
}

static void controller_lockup_detected(struct ctlr_info *h)
{
	unsigned long flags;

	assert_spin_locked(&lockup_detector_lock);
	remove_ctlr_from_lockup_detector_list(h);
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
	spin_lock_irqsave(&h->lock, flags);
	h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
	spin_unlock_irqrestore(&h->lock, flags);
	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
			h->lockup_detected);
	pci_disable_device(h->pdev);
	spin_lock_irqsave(&h->lock, flags);
	fail_all_cmds_on_list(h, &h->cmpQ);
	fail_all_cmds_on_list(h, &h->reqQ);
	spin_unlock_irqrestore(&h->lock, flags);
}

static void detect_controller_lockup(struct ctlr_info *h)
{
	u64 now;
	u32 heartbeat;
	unsigned long flags;

	assert_spin_locked(&lockup_detector_lock);
	now = get_jiffies_64();
	/* If we've received an interrupt recently, we're ok. */
	if (time_after64(h->last_intr_timestamp +
4693
				(h->heartbeat_sample_interval), now))
4694 4695 4696 4697 4698 4699 4700 4701
		return;

	/*
	 * If we've already checked the heartbeat recently, we're ok.
	 * This could happen if someone sends us a signal. We
	 * otherwise don't care about signals in this thread.
	 */
	if (time_after64(h->last_heartbeat_timestamp +
4702
				(h->heartbeat_sample_interval), now))
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
		return;

	/* If heartbeat has not changed since we last looked, we're not ok. */
	spin_lock_irqsave(&h->lock, flags);
	heartbeat = readl(&h->cfgtable->HeartBeat);
	spin_unlock_irqrestore(&h->lock, flags);
	if (h->last_heartbeat == heartbeat) {
		controller_lockup_detected(h);
		return;
	}

	/* We're ok. */
	h->last_heartbeat = heartbeat;
	h->last_heartbeat_timestamp = now;
}

static int detect_controller_lockup_thread(void *notused)
{
	struct ctlr_info *h;
	unsigned long flags;

	while (1) {
		struct list_head *this, *tmp;

		schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
		if (kthread_should_stop())
			break;
		spin_lock_irqsave(&lockup_detector_lock, flags);
		list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
			h = list_entry(this, struct ctlr_info, lockup_list);
			detect_controller_lockup(h);
		}
		spin_unlock_irqrestore(&lockup_detector_lock, flags);
	}
	return 0;
}

static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
{
	unsigned long flags;

4744
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
	spin_lock_irqsave(&lockup_detector_lock, flags);
	list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
	spin_unlock_irqrestore(&lockup_detector_lock, flags);
}

static void start_controller_lockup_detector(struct ctlr_info *h)
{
	/* Start the lockup detector thread if not already started */
	if (!hpsa_lockup_detector) {
		spin_lock_init(&lockup_detector_lock);
		hpsa_lockup_detector =
			kthread_run(detect_controller_lockup_thread,
4757
						NULL, HPSA);
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
	}
	if (!hpsa_lockup_detector) {
		dev_warn(&h->pdev->dev,
			"Could not start lockup detector thread\n");
		return;
	}
	add_ctlr_to_lockup_detector_list(h);
}

static void stop_controller_lockup_detector(struct ctlr_info *h)
{
	unsigned long flags;

	spin_lock_irqsave(&lockup_detector_lock, flags);
	remove_ctlr_from_lockup_detector_list(h);
	/* If the list of ctlr's to monitor is empty, stop the thread */
	if (list_empty(&hpsa_ctlr_list)) {
4775
		spin_unlock_irqrestore(&lockup_detector_lock, flags);
4776
		kthread_stop(hpsa_lockup_detector);
4777
		spin_lock_irqsave(&lockup_detector_lock, flags);
4778 4779 4780 4781 4782
		hpsa_lockup_detector = NULL;
	}
	spin_unlock_irqrestore(&lockup_detector_lock, flags);
}

4783
static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4784
{
4785
	int dac, rc;
4786
	struct ctlr_info *h;
4787 4788
	int try_soft_reset = 0;
	unsigned long flags;
4789 4790 4791 4792

	if (number_of_controllers == 0)
		printk(KERN_INFO DRIVER_NAME "\n");

4793
	rc = hpsa_init_reset_devices(pdev);
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806
	if (rc) {
		if (rc != -ENOTSUPP)
			return rc;
		/* If the reset fails in a particular way (it has no way to do
		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
		 * a soft reset once we get the controller configured up to the
		 * point that it can accept a command.
		 */
		try_soft_reset = 1;
		rc = 0;
	}

reinit_after_soft_reset:
4807

4808 4809 4810 4811 4812 4813
	/* Command structures must be aligned on a 32-byte boundary because
	 * the 5 lower bits of the address are used by the hardware. and by
	 * the driver.  See comments in hpsa.h for more info.
	 */
#define COMMANDLIST_ALIGNMENT 32
	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4814 4815
	h = kzalloc(sizeof(*h), GFP_KERNEL);
	if (!h)
4816
		return -ENOMEM;
4817

4818
	h->pdev = pdev;
4819
	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4820 4821
	INIT_LIST_HEAD(&h->cmpQ);
	INIT_LIST_HEAD(&h->reqQ);
4822 4823
	spin_lock_init(&h->lock);
	spin_lock_init(&h->scan_lock);
4824
	rc = hpsa_pci_init(h);
4825
	if (rc != 0)
4826 4827
		goto clean1;

4828
	sprintf(h->devname, HPSA "%d", number_of_controllers);
4829 4830 4831 4832
	h->ctlr = number_of_controllers;
	number_of_controllers++;

	/* configure PCI DMA stuff */
4833 4834
	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
	if (rc == 0) {
4835
		dac = 1;
4836 4837 4838 4839 4840 4841 4842 4843
	} else {
		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (rc == 0) {
			dac = 0;
		} else {
			dev_err(&pdev->dev, "no suitable DMA available\n");
			goto clean1;
		}
4844 4845 4846 4847
	}

	/* make sure the board interrupts are off */
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4848

4849
	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4850
		goto clean2;
4851 4852
	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
	       h->devname, pdev->device,
4853
	       h->intr[h->intr_mode], dac ? "" : " not");
4854
	if (hpsa_allocate_cmd_pool(h))
4855
		goto clean4;
4856 4857
	if (hpsa_allocate_sg_chain_blocks(h))
		goto clean4;
4858 4859
	init_waitqueue_head(&h->scan_wait_queue);
	h->scan_finished = 1; /* no scan currently in progress */
4860 4861

	pci_set_drvdata(pdev, h);
4862 4863 4864
	h->ndevices = 0;
	h->scsi_host = NULL;
	spin_lock_init(&h->devlock);
4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882
	hpsa_put_ctlr_into_performant_mode(h);

	/* At this point, the controller is ready to take commands.
	 * Now, if reset_devices and the hard reset didn't work, try
	 * the soft reset and see if that works.
	 */
	if (try_soft_reset) {

		/* This is kind of gross.  We may or may not get a completion
		 * from the soft reset command, and if we do, then the value
		 * from the fifo may or may not be valid.  So, we wait 10 secs
		 * after the reset throwing away any completions we get during
		 * that time.  Unregister the interrupt handler and register
		 * fake ones to scoop up any residual completions.
		 */
		spin_lock_irqsave(&h->lock, flags);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);
		spin_unlock_irqrestore(&h->lock, flags);
4883
		free_irqs(h);
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
					hpsa_intx_discard_completions);
		if (rc) {
			dev_warn(&h->pdev->dev, "Failed to request_irq after "
				"soft reset.\n");
			goto clean4;
		}

		rc = hpsa_kdump_soft_reset(h);
		if (rc)
			/* Neither hard nor soft reset worked, we're hosed. */
			goto clean4;

		dev_info(&h->pdev->dev, "Board READY.\n");
		dev_info(&h->pdev->dev,
			"Waiting for stale completions to drain.\n");
		h->access.set_intr_mask(h, HPSA_INTR_ON);
		msleep(10000);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);

		rc = controller_reset_failed(h->cfgtable);
		if (rc)
			dev_info(&h->pdev->dev,
				"Soft reset appears to have failed.\n");

		/* since the controller's reset, we have to go back and re-init
		 * everything.  Easiest to just forget what we've done and do it
		 * all over again.
		 */
		hpsa_undo_allocations_after_kdump_soft_reset(h);
		try_soft_reset = 0;
		if (rc)
			/* don't go to clean4, we already unallocated */
			return -ENODEV;

		goto reinit_after_soft_reset;
	}
4921 4922 4923 4924

	/* Turn the interrupts on so we can service requests */
	h->access.set_intr_mask(h, HPSA_INTR_ON);

4925
	hpsa_hba_inquiry(h);
4926
	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
4927
	start_controller_lockup_detector(h);
4928 4929 4930
	return 1;

clean4:
4931
	hpsa_free_sg_chain_blocks(h);
4932
	hpsa_free_cmd_pool(h);
4933
	free_irqs(h);
4934 4935 4936
clean2:
clean1:
	kfree(h);
4937
	return rc;
4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953
}

static void hpsa_flush_cache(struct ctlr_info *h)
{
	char *flush_buf;
	struct CommandList *c;

	flush_buf = kzalloc(4, GFP_KERNEL);
	if (!flush_buf)
		return;

	c = cmd_special_alloc(h);
	if (!c) {
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
		goto out_of_memory;
	}
4954 4955 4956 4957
	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
		RAID_CTLR_LUNID, TYPE_CMD)) {
		goto out;
	}
4958 4959
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
	if (c->err_info->CommandStatus != 0)
4960
out:
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
		dev_warn(&h->pdev->dev,
			"error flushing cache on controller\n");
	cmd_special_free(h, c);
out_of_memory:
	kfree(flush_buf);
}

static void hpsa_shutdown(struct pci_dev *pdev)
{
	struct ctlr_info *h;

	h = pci_get_drvdata(pdev);
	/* Turn board interrupts off  and send the flush cache command
	 * sendcmd will turn off interrupt, and send the flush...
	 * To write all data in the battery backed cache to disks
	 */
	hpsa_flush_cache(h);
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4979
	hpsa_free_irqs_and_disable_msix(h);
4980 4981
}

4982
static void hpsa_free_device_info(struct ctlr_info *h)
4983 4984 4985 4986 4987 4988 4989
{
	int i;

	for (i = 0; i < h->ndevices; i++)
		kfree(h->dev[i]);
}

4990
static void hpsa_remove_one(struct pci_dev *pdev)
4991 4992 4993 4994
{
	struct ctlr_info *h;

	if (pci_get_drvdata(pdev) == NULL) {
4995
		dev_err(&pdev->dev, "unable to remove device\n");
4996 4997 4998
		return;
	}
	h = pci_get_drvdata(pdev);
4999
	stop_controller_lockup_detector(h);
5000 5001 5002
	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
	hpsa_shutdown(pdev);
	iounmap(h->vaddr);
5003 5004
	iounmap(h->transtable);
	iounmap(h->cfgtable);
5005
	hpsa_free_device_info(h);
5006
	hpsa_free_sg_chain_blocks(h);
5007 5008 5009 5010 5011 5012
	pci_free_consistent(h->pdev,
		h->nr_cmds * sizeof(struct CommandList),
		h->cmd_pool, h->cmd_pool_dhandle);
	pci_free_consistent(h->pdev,
		h->nr_cmds * sizeof(struct ErrorInfo),
		h->errinfo_pool, h->errinfo_pool_dhandle);
5013 5014
	pci_free_consistent(h->pdev, h->reply_pool_size,
		h->reply_pool, h->reply_pool_dhandle);
5015
	kfree(h->cmd_pool_bits);
5016
	kfree(h->blockFetchTable);
5017
	kfree(h->hba_inquiry_data);
5018
	pci_disable_device(pdev);
5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
	pci_release_regions(pdev);
	pci_set_drvdata(pdev, NULL);
	kfree(h);
}

static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
	__attribute__((unused)) pm_message_t state)
{
	return -ENOSYS;
}

static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
{
	return -ENOSYS;
}

static struct pci_driver hpsa_pci_driver = {
5036
	.name = HPSA,
5037
	.probe = hpsa_init_one,
5038
	.remove = hpsa_remove_one,
5039 5040 5041 5042 5043 5044
	.id_table = hpsa_pci_device_id,	/* id_table */
	.shutdown = hpsa_shutdown,
	.suspend = hpsa_suspend,
	.resume = hpsa_resume,
};

5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
/* Fill in bucket_map[], given nsgs (the max number of
 * scatter gather elements supported) and bucket[],
 * which is an array of 8 integers.  The bucket[] array
 * contains 8 different DMA transfer sizes (in 16
 * byte increments) which the controller uses to fetch
 * commands.  This function fills in bucket_map[], which
 * maps a given number of scatter gather elements to one of
 * the 8 DMA transfer sizes.  The point of it is to allow the
 * controller to only do as much DMA as needed to fetch the
 * command, with the DMA transfer size encoded in the lower
 * bits of the command address.
 */
static void  calc_bucket_map(int bucket[], int num_buckets,
	int nsgs, int *bucket_map)
{
	int i, j, b, size;

	/* even a command with 0 SGs requires 4 blocks */
#define MINIMUM_TRANSFER_BLOCKS 4
#define NUM_BUCKETS 8
	/* Note, bucket_map must have nsgs+1 entries. */
	for (i = 0; i <= nsgs; i++) {
		/* Compute size of a command with i SG entries */
		size = i + MINIMUM_TRANSFER_BLOCKS;
		b = num_buckets; /* Assume the biggest bucket */
		/* Find the bucket that is just big enough */
		for (j = 0; j < 8; j++) {
			if (bucket[j] >= size) {
				b = j;
				break;
			}
		}
		/* for a command with i SG entries, use bucket b. */
		bucket_map[i] = b;
	}
}

5082
static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 use_short_tags)
5083
{
5084 5085
	int i;
	unsigned long register_value;
5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096

	/* This is a bit complicated.  There are 8 registers on
	 * the controller which we write to to tell it 8 different
	 * sizes of commands which there may be.  It's a way of
	 * reducing the DMA done to fetch each command.  Encoded into
	 * each command's tag are 3 bits which communicate to the controller
	 * which of the eight sizes that command fits within.  The size of
	 * each command depends on how many scatter gather entries there are.
	 * Each SG entry requires 16 bytes.  The eight registers are programmed
	 * with the number of 16-byte blocks a command of that size requires.
	 * The smallest command possible requires 5 such 16 byte blocks.
5097
	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5098 5099 5100 5101 5102 5103
	 * blocks.  Note, this only extends to the SG entries contained
	 * within the command block, and does not extend to chained blocks
	 * of SG elements.   bft[] contains the eight values we write to
	 * the registers.  They are not evenly distributed, but have more
	 * sizes for small commands, and fewer sizes for larger commands.
	 */
5104 5105
	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5106 5107 5108 5109 5110 5111 5112 5113 5114
	/*  5 = 1 s/g entry or 4k
	 *  6 = 2 s/g entry or 8k
	 *  8 = 4 s/g entry or 16k
	 * 10 = 6 s/g entry or 24k
	 */

	/* Controller spec: zero out this buffer. */
	memset(h->reply_pool, 0, h->reply_pool_size);

5115 5116 5117
	bft[7] = SG_ENTRIES_IN_CMD + 4;
	calc_bucket_map(bft, ARRAY_SIZE(bft),
				SG_ENTRIES_IN_CMD, h->blockFetchTable);
5118 5119 5120 5121 5122
	for (i = 0; i < 8; i++)
		writel(bft[i], &h->transtable->BlockFetch[i]);

	/* size of controller ring buffer */
	writel(h->max_commands, &h->transtable->RepQSize);
5123
	writel(h->nreply_queues, &h->transtable->RepQCount);
5124 5125
	writel(0, &h->transtable->RepQCtrAddrLow32);
	writel(0, &h->transtable->RepQCtrAddrHigh32);
5126 5127 5128 5129 5130 5131 5132 5133 5134 5135

	for (i = 0; i < h->nreply_queues; i++) {
		writel(0, &h->transtable->RepQAddr[i].upper);
		writel(h->reply_pool_dhandle +
			(h->max_commands * sizeof(u64) * i),
			&h->transtable->RepQAddr[i].lower);
	}

	writel(CFGTBL_Trans_Performant | use_short_tags |
		CFGTBL_Trans_enable_directed_msix,
5136 5137
		&(h->cfgtable->HostWrite.TransportRequest));
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5138
	hpsa_wait_for_mode_change_ack(h);
5139 5140 5141 5142 5143 5144
	register_value = readl(&(h->cfgtable->TransportActive));
	if (!(register_value & CFGTBL_Trans_Performant)) {
		dev_warn(&h->pdev->dev, "unable to get board into"
					" performant mode\n");
		return;
	}
5145 5146 5147
	/* Change the access methods to the performant access methods */
	h->access = SA5_performant_access;
	h->transMethod = CFGTBL_Trans_Performant;
5148 5149
}

5150
static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5151 5152
{
	u32 trans_support;
5153
	int i;
5154

5155 5156 5157
	if (hpsa_simple_mode)
		return;

5158 5159 5160 5161
	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & PERFORMANT_MODE))
		return;

5162
	h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5163
	hpsa_get_max_perf_mode_cmds(h);
5164
	/* Performant mode ring buffer and supporting data structures */
5165
	h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5166 5167 5168
	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
				&(h->reply_pool_dhandle));

5169 5170 5171 5172 5173 5174 5175
	for (i = 0; i < h->nreply_queues; i++) {
		h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
		h->reply_queue[i].size = h->max_commands;
		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
		h->reply_queue[i].current_entry = 0;
	}

5176
	/* Need a block fetch table for performant mode */
5177
	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5178 5179 5180 5181 5182 5183
				sizeof(u32)), GFP_KERNEL);

	if ((h->reply_pool == NULL)
		|| (h->blockFetchTable == NULL))
		goto clean_up;

5184 5185
	hpsa_enter_performant_mode(h,
		trans_support & CFGTBL_Trans_use_short_tags);
5186 5187 5188 5189 5190 5191 5192 5193 5194 5195

	return;

clean_up:
	if (h->reply_pool)
		pci_free_consistent(h->pdev, h->reply_pool_size,
			h->reply_pool, h->reply_pool_dhandle);
	kfree(h->blockFetchTable);
}

5196 5197 5198 5199 5200 5201
/*
 *  This is it.  Register the PCI driver information for the cards we control
 *  the OS will call our registered routines when it finds one of our cards.
 */
static int __init hpsa_init(void)
{
M
Mike Miller 已提交
5202
	return pci_register_driver(&hpsa_pci_driver);
5203 5204 5205 5206 5207 5208 5209 5210 5211
}

static void __exit hpsa_cleanup(void)
{
	pci_unregister_driver(&hpsa_pci_driver);
}

module_init(hpsa_init);
module_exit(hpsa_cleanup);