whatisRCU.txt 38.0 KB
Newer Older
1 2 3 4 5 6
Please note that the "What is RCU?" LWN series is an excellent place
to start learning about RCU:

1.	What is RCU, Fundamentally?  http://lwn.net/Articles/262464/
2.	What is RCU? Part 2: Usage   http://lwn.net/Articles/263130/
3.	RCU part 3: the RCU API      http://lwn.net/Articles/264090/
K
Kees Cook 已提交
7
4.	The RCU API, 2010 Edition    http://lwn.net/Articles/418853/
8 9


10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
What is RCU?

RCU is a synchronization mechanism that was added to the Linux kernel
during the 2.5 development effort that is optimized for read-mostly
situations.  Although RCU is actually quite simple once you understand it,
getting there can sometimes be a challenge.  Part of the problem is that
most of the past descriptions of RCU have been written with the mistaken
assumption that there is "one true way" to describe RCU.  Instead,
the experience has been that different people must take different paths
to arrive at an understanding of RCU.  This document provides several
different paths, as follows:

1.	RCU OVERVIEW
2.	WHAT IS RCU'S CORE API?
3.	WHAT ARE SOME EXAMPLE USES OF CORE RCU API?
4.	WHAT IF MY UPDATING THREAD CANNOT BLOCK?
5.	WHAT ARE SOME SIMPLE IMPLEMENTATIONS OF RCU?
6.	ANALOGY WITH READER-WRITER LOCKING
7.	FULL LIST OF RCU APIs
8.	ANSWERS TO QUICK QUIZZES

People who prefer starting with a conceptual overview should focus on
Section 1, though most readers will profit by reading this section at
some point.  People who prefer to start with an API that they can then
experiment with should focus on Section 2.  People who prefer to start
with example uses should focus on Sections 3 and 4.  People who need to
understand the RCU implementation should focus on Section 5, then dive
into the kernel source code.  People who reason best by analogy should
focus on Section 6.  Section 7 serves as an index to the docbook API
documentation, and Section 8 is the traditional answer key.

So, start with the section that makes the most sense to you and your
preferred method of learning.  If you need to know everything about
everything, feel free to read the whole thing -- but if you are really
that type of person, you have perused the source code and will therefore
never need this document anyway.  ;-)


1.  RCU OVERVIEW

The basic idea behind RCU is to split updates into "removal" and
"reclamation" phases.  The removal phase removes references to data items
within a data structure (possibly by replacing them with references to
new versions of these data items), and can run concurrently with readers.
The reason that it is safe to run the removal phase concurrently with
readers is the semantics of modern CPUs guarantee that readers will see
either the old or the new version of the data structure rather than a
partially updated reference.  The reclamation phase does the work of reclaiming
(e.g., freeing) the data items removed from the data structure during the
removal phase.  Because reclaiming data items can disrupt any readers
concurrently referencing those data items, the reclamation phase must
not start until readers no longer hold references to those data items.

Splitting the update into removal and reclamation phases permits the
updater to perform the removal phase immediately, and to defer the
reclamation phase until all readers active during the removal phase have
completed, either by blocking until they finish or by registering a
callback that is invoked after they finish.  Only readers that are active
during the removal phase need be considered, because any reader starting
after the removal phase will be unable to gain a reference to the removed
data items, and therefore cannot be disrupted by the reclamation phase.

So the typical RCU update sequence goes something like the following:

a.	Remove pointers to a data structure, so that subsequent
	readers cannot gain a reference to it.

b.	Wait for all previous readers to complete their RCU read-side
	critical sections.

c.	At this point, there cannot be any readers who hold references
	to the data structure, so it now may safely be reclaimed
	(e.g., kfree()d).

Step (b) above is the key idea underlying RCU's deferred destruction.
The ability to wait until all readers are done allows RCU readers to
use much lighter-weight synchronization, in some cases, absolutely no
synchronization at all.  In contrast, in more conventional lock-based
schemes, readers must use heavy-weight synchronization in order to
prevent an updater from deleting the data structure out from under them.
This is because lock-based updaters typically update data items in place,
and must therefore exclude readers.  In contrast, RCU-based updaters
typically take advantage of the fact that writes to single aligned
pointers are atomic on modern CPUs, allowing atomic insertion, removal,
and replacement of data items in a linked structure without disrupting
readers.  Concurrent RCU readers can then continue accessing the old
versions, and can dispense with the atomic operations, memory barriers,
and communications cache misses that are so expensive on present-day
SMP computer systems, even in absence of lock contention.

In the three-step procedure shown above, the updater is performing both
the removal and the reclamation step, but it is often helpful for an
entirely different thread to do the reclamation, as is in fact the case
in the Linux kernel's directory-entry cache (dcache).  Even if the same
thread performs both the update step (step (a) above) and the reclamation
step (step (c) above), it is often helpful to think of them separately.
For example, RCU readers and updaters need not communicate at all,
but RCU provides implicit low-overhead communication between readers
and reclaimers, namely, in step (b) above.

So how the heck can a reclaimer tell when a reader is done, given
that readers are not doing any sort of synchronization operations???
Read on to learn about how RCU's API makes this easy.


2.  WHAT IS RCU'S CORE API?

The core RCU API is quite small:

a.	rcu_read_lock()
b.	rcu_read_unlock()
c.	synchronize_rcu() / call_rcu()
d.	rcu_assign_pointer()
e.	rcu_dereference()

There are many other members of the RCU API, but the rest can be
expressed in terms of these five, though most implementations instead
express synchronize_rcu() in terms of the call_rcu() callback API.

The five core RCU APIs are described below, the other 18 will be enumerated
later.  See the kernel docbook documentation for more info, or look directly
at the function header comments.

rcu_read_lock()

	void rcu_read_lock(void);

	Used by a reader to inform the reclaimer that the reader is
	entering an RCU read-side critical section.  It is illegal
	to block while in an RCU read-side critical section, though
140
	kernels built with CONFIG_PREEMPT_RCU can preempt RCU
141 142 143
	read-side critical sections.  Any RCU-protected data structure
	accessed during an RCU read-side critical section is guaranteed to
	remain unreclaimed for the full duration of that critical section.
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
	Reference counts may be used in conjunction with RCU to maintain
	longer-term references to data structures.

rcu_read_unlock()

	void rcu_read_unlock(void);

	Used by a reader to inform the reclaimer that the reader is
	exiting an RCU read-side critical section.  Note that RCU
	read-side critical sections may be nested and/or overlapping.

synchronize_rcu()

	void synchronize_rcu(void);

	Marks the end of updater code and the beginning of reclaimer
	code.  It does this by blocking until all pre-existing RCU
	read-side critical sections on all CPUs have completed.
	Note that synchronize_rcu() will -not- necessarily wait for
	any subsequent RCU read-side critical sections to complete.
	For example, consider the following sequence of events:

	         CPU 0                  CPU 1                 CPU 2
	     ----------------- ------------------------- ---------------
	 1.  rcu_read_lock()
	 2.                    enters synchronize_rcu()
	 3.                                               rcu_read_lock()
	 4.  rcu_read_unlock()
	 5.                     exits synchronize_rcu()
	 6.                                              rcu_read_unlock()

	To reiterate, synchronize_rcu() waits only for ongoing RCU
	read-side critical sections to complete, not necessarily for
	any that begin after synchronize_rcu() is invoked.

	Of course, synchronize_rcu() does not necessarily return
	-immediately- after the last pre-existing RCU read-side critical
	section completes.  For one thing, there might well be scheduling
	delays.  For another thing, many RCU implementations process
	requests in batches in order to improve efficiencies, which can
	further delay synchronize_rcu().

	Since synchronize_rcu() is the API that must figure out when
	readers are done, its implementation is key to RCU.  For RCU
	to be useful in all but the most read-intensive situations,
	synchronize_rcu()'s overhead must also be quite small.

	The call_rcu() API is a callback form of synchronize_rcu(),
	and is described in more detail in a later section.  Instead of
	blocking, it registers a function and argument which are invoked
	after all ongoing RCU read-side critical sections have completed.
	This callback variant is particularly useful in situations where
196 197 198 199 200 201 202 203 204 205 206
	it is illegal to block or where update-side performance is
	critically important.

	However, the call_rcu() API should not be used lightly, as use
	of the synchronize_rcu() API generally results in simpler code.
	In addition, the synchronize_rcu() API has the nice property
	of automatically limiting update rate should grace periods
	be delayed.  This property results in system resilience in face
	of denial-of-service attacks.  Code using call_rcu() should limit
	update rate in order to gain this same sort of resilience.  See
	checklist.txt for some approaches to limiting the update rate.
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

rcu_assign_pointer()

	typeof(p) rcu_assign_pointer(p, typeof(p) v);

	Yes, rcu_assign_pointer() -is- implemented as a macro, though it
	would be cool to be able to declare a function in this manner.
	(Compiler experts will no doubt disagree.)

	The updater uses this function to assign a new value to an
	RCU-protected pointer, in order to safely communicate the change
	in value from the updater to the reader.  This function returns
	the new value, and also executes any memory-barrier instructions
	required for a given CPU architecture.

222 223 224 225 226
	Perhaps just as important, it serves to document (1) which
	pointers are protected by RCU and (2) the point at which a
	given structure becomes accessible to other CPUs.  That said,
	rcu_assign_pointer() is most frequently used indirectly, via
	the _rcu list-manipulation primitives such as list_add_rcu().
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258

rcu_dereference()

	typeof(p) rcu_dereference(p);

	Like rcu_assign_pointer(), rcu_dereference() must be implemented
	as a macro.

	The reader uses rcu_dereference() to fetch an RCU-protected
	pointer, which returns a value that may then be safely
	dereferenced.  Note that rcu_deference() does not actually
	dereference the pointer, instead, it protects the pointer for
	later dereferencing.  It also executes any needed memory-barrier
	instructions for a given CPU architecture.  Currently, only Alpha
	needs memory barriers within rcu_dereference() -- on other CPUs,
	it compiles to nothing, not even a compiler directive.

	Common coding practice uses rcu_dereference() to copy an
	RCU-protected pointer to a local variable, then dereferences
	this local variable, for example as follows:

		p = rcu_dereference(head.next);
		return p->data;

	However, in this case, one could just as easily combine these
	into one statement:

		return rcu_dereference(head.next)->data;

	If you are going to be fetching multiple fields from the
	RCU-protected structure, using the local variable is of
	course preferred.  Repeated rcu_dereference() calls look
259 260 261
	ugly, do not guarantee that the same pointer will be returned
	if an update happened while in the critical section, and incur
	unnecessary overhead on Alpha CPUs.
262 263 264 265 266 267 268 269

	Note that the value returned by rcu_dereference() is valid
	only within the enclosing RCU read-side critical section.
	For example, the following is -not- legal:

		rcu_read_lock();
		p = rcu_dereference(head.next);
		rcu_read_unlock();
270
		x = p->address;	/* BUG!!! */
271
		rcu_read_lock();
272
		y = p->data;	/* BUG!!! */
273 274 275 276 277 278 279 280 281 282
		rcu_read_unlock();

	Holding a reference from one RCU read-side critical section
	to another is just as illegal as holding a reference from
	one lock-based critical section to another!  Similarly,
	using a reference outside of the critical section in which
	it was acquired is just as illegal as doing so with normal
	locking.

	As with rcu_assign_pointer(), an important function of
283 284 285 286 287
	rcu_dereference() is to document which pointers are protected by
	RCU, in particular, flagging a pointer that is subject to changing
	at any time, including immediately after the rcu_dereference().
	And, again like rcu_assign_pointer(), rcu_dereference() is
	typically used indirectly, via the _rcu list-manipulation
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
	primitives, such as list_for_each_entry_rcu().

The following diagram shows how each API communicates among the
reader, updater, and reclaimer.


	    rcu_assign_pointer()
	    			    +--------+
	    +---------------------->| reader |---------+
	    |                       +--------+         |
	    |                           |              |
	    |                           |              | Protect:
	    |                           |              | rcu_read_lock()
	    |                           |              | rcu_read_unlock()
	    |        rcu_dereference()  |              |
       +---------+                      |              |
       | updater |<---------------------+              |
       +---------+                                     V
	    |                                    +-----------+
	    +----------------------------------->| reclaimer |
	    				         +-----------+
	      Defer:
	      synchronize_rcu() & call_rcu()


The RCU infrastructure observes the time sequence of rcu_read_lock(),
rcu_read_unlock(), synchronize_rcu(), and call_rcu() invocations in
order to determine when (1) synchronize_rcu() invocations may return
to their callers and (2) call_rcu() callbacks may be invoked.  Efficient
implementations of the RCU infrastructure make heavy use of batching in
order to amortize their overhead over many uses of the corresponding APIs.

There are no fewer than three RCU mechanisms in the Linux kernel; the
diagram above shows the first one, which is by far the most commonly used.
The rcu_dereference() and rcu_assign_pointer() primitives are used for
all three mechanisms, but different defer and protect primitives are
used as follows:

	Defer			Protect

a.	synchronize_rcu()	rcu_read_lock() / rcu_read_unlock()
329
	call_rcu()		rcu_dereference()
330

331 332
b.	synchronize_rcu_bh()	rcu_read_lock_bh() / rcu_read_unlock_bh()
	call_rcu_bh()		rcu_dereference_bh()
333

334
c.	synchronize_sched()	rcu_read_lock_sched() / rcu_read_unlock_sched()
335
	call_rcu_sched()	preempt_disable() / preempt_enable()
336 337 338
				local_irq_save() / local_irq_restore()
				hardirq enter / hardirq exit
				NMI enter / NMI exit
339
				rcu_dereference_sched()
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356

These three mechanisms are used as follows:

a.	RCU applied to normal data structures.

b.	RCU applied to networking data structures that may be subjected
	to remote denial-of-service attacks.

c.	RCU applied to scheduler and interrupt/NMI-handler tasks.

Again, most uses will be of (a).  The (b) and (c) cases are important
for specialized uses, but are relatively uncommon.


3.  WHAT ARE SOME EXAMPLE USES OF CORE RCU API?

This section shows a simple use of the core RCU API to protect a
357
global pointer to a dynamically allocated structure.  More-typical
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
uses of RCU may be found in listRCU.txt, arrayRCU.txt, and NMI-RCU.txt.

	struct foo {
		int a;
		char b;
		long c;
	};
	DEFINE_SPINLOCK(foo_mutex);

	struct foo *gbl_foo;

	/*
	 * Create a new struct foo that is the same as the one currently
	 * pointed to by gbl_foo, except that field "a" is replaced
	 * with "new_a".  Points gbl_foo to the new structure, and
	 * frees up the old structure after a grace period.
	 *
	 * Uses rcu_assign_pointer() to ensure that concurrent readers
	 * see the initialized version of the new structure.
	 *
	 * Uses synchronize_rcu() to ensure that any readers that might
	 * have references to the old structure complete before freeing
	 * the old structure.
	 */
	void foo_update_a(int new_a)
	{
		struct foo *new_fp;
		struct foo *old_fp;

387
		new_fp = kmalloc(sizeof(*new_fp), GFP_KERNEL);
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
		spin_lock(&foo_mutex);
		old_fp = gbl_foo;
		*new_fp = *old_fp;
		new_fp->a = new_a;
		rcu_assign_pointer(gbl_foo, new_fp);
		spin_unlock(&foo_mutex);
		synchronize_rcu();
		kfree(old_fp);
	}

	/*
	 * Return the value of field "a" of the current gbl_foo
	 * structure.  Use rcu_read_lock() and rcu_read_unlock()
	 * to ensure that the structure does not get deleted out
	 * from under us, and use rcu_dereference() to ensure that
	 * we see the initialized version of the structure (important
	 * for DEC Alpha and for people reading the code).
	 */
	int foo_get_a(void)
	{
		int retval;

		rcu_read_lock();
		retval = rcu_dereference(gbl_foo)->a;
		rcu_read_unlock();
		return retval;
	}

So, to sum up:

o	Use rcu_read_lock() and rcu_read_unlock() to guard RCU
	read-side critical sections.

o	Within an RCU read-side critical section, use rcu_dereference()
	to dereference RCU-protected pointers.

o	Use some solid scheme (such as locks or semaphores) to
	keep concurrent updates from interfering with each other.

o	Use rcu_assign_pointer() to update an RCU-protected pointer.
	This primitive protects concurrent readers from the updater,
	-not- concurrent updates from each other!  You therefore still
	need to use locking (or something similar) to keep concurrent
	rcu_assign_pointer() primitives from interfering with each other.

o	Use synchronize_rcu() -after- removing a data element from an
	RCU-protected data structure, but -before- reclaiming/freeing
	the data element, in order to wait for the completion of all
	RCU read-side critical sections that might be referencing that
	data item.

See checklist.txt for additional rules to follow when using RCU.
440 441
And again, more-typical uses of RCU may be found in listRCU.txt,
arrayRCU.txt, and NMI-RCU.txt.
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487


4.  WHAT IF MY UPDATING THREAD CANNOT BLOCK?

In the example above, foo_update_a() blocks until a grace period elapses.
This is quite simple, but in some cases one cannot afford to wait so
long -- there might be other high-priority work to be done.

In such cases, one uses call_rcu() rather than synchronize_rcu().
The call_rcu() API is as follows:

	void call_rcu(struct rcu_head * head,
		      void (*func)(struct rcu_head *head));

This function invokes func(head) after a grace period has elapsed.
This invocation might happen from either softirq or process context,
so the function is not permitted to block.  The foo struct needs to
have an rcu_head structure added, perhaps as follows:

	struct foo {
		int a;
		char b;
		long c;
		struct rcu_head rcu;
	};

The foo_update_a() function might then be written as follows:

	/*
	 * Create a new struct foo that is the same as the one currently
	 * pointed to by gbl_foo, except that field "a" is replaced
	 * with "new_a".  Points gbl_foo to the new structure, and
	 * frees up the old structure after a grace period.
	 *
	 * Uses rcu_assign_pointer() to ensure that concurrent readers
	 * see the initialized version of the new structure.
	 *
	 * Uses call_rcu() to ensure that any readers that might have
	 * references to the old structure complete before freeing the
	 * old structure.
	 */
	void foo_update_a(int new_a)
	{
		struct foo *new_fp;
		struct foo *old_fp;

488
		new_fp = kmalloc(sizeof(*new_fp), GFP_KERNEL);
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
		spin_lock(&foo_mutex);
		old_fp = gbl_foo;
		*new_fp = *old_fp;
		new_fp->a = new_a;
		rcu_assign_pointer(gbl_foo, new_fp);
		spin_unlock(&foo_mutex);
		call_rcu(&old_fp->rcu, foo_reclaim);
	}

The foo_reclaim() function might appear as follows:

	void foo_reclaim(struct rcu_head *rp)
	{
		struct foo *fp = container_of(rp, struct foo, rcu);

504 505
		foo_cleanup(fp->a);

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
		kfree(fp);
	}

The container_of() primitive is a macro that, given a pointer into a
struct, the type of the struct, and the pointed-to field within the
struct, returns a pointer to the beginning of the struct.

The use of call_rcu() permits the caller of foo_update_a() to
immediately regain control, without needing to worry further about the
old version of the newly updated element.  It also clearly shows the
RCU distinction between updater, namely foo_update_a(), and reclaimer,
namely foo_reclaim().

The summary of advice is the same as for the previous section, except
that we are now using call_rcu() rather than synchronize_rcu():

o	Use call_rcu() -after- removing a data element from an
	RCU-protected data structure in order to register a callback
	function that will be invoked after the completion of all RCU
	read-side critical sections that might be referencing that
	data item.

528 529 530 531 532 533
If the callback for call_rcu() is not doing anything more than calling
kfree() on the structure, you can use kfree_rcu() instead of call_rcu()
to avoid having to write your own callback:

	kfree_rcu(old_fp, rcu);

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
Again, see checklist.txt for additional rules governing the use of RCU.


5.  WHAT ARE SOME SIMPLE IMPLEMENTATIONS OF RCU?

One of the nice things about RCU is that it has extremely simple "toy"
implementations that are a good first step towards understanding the
production-quality implementations in the Linux kernel.  This section
presents two such "toy" implementations of RCU, one that is implemented
in terms of familiar locking primitives, and another that more closely
resembles "classic" RCU.  Both are way too simple for real-world use,
lacking both functionality and performance.  However, they are useful
in getting a feel for how RCU works.  See kernel/rcupdate.c for a
production-quality implementation, and see:

	http://www.rdrop.com/users/paulmck/RCU

for papers describing the Linux kernel RCU implementation.  The OLS'01
and OLS'02 papers are a good introduction, and the dissertation provides
553
more details on the current implementation as of early 2004.
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606


5A.  "TOY" IMPLEMENTATION #1: LOCKING

This section presents a "toy" RCU implementation that is based on
familiar locking primitives.  Its overhead makes it a non-starter for
real-life use, as does its lack of scalability.  It is also unsuitable
for realtime use, since it allows scheduling latency to "bleed" from
one read-side critical section to another.

However, it is probably the easiest implementation to relate to, so is
a good starting point.

It is extremely simple:

	static DEFINE_RWLOCK(rcu_gp_mutex);

	void rcu_read_lock(void)
	{
		read_lock(&rcu_gp_mutex);
	}

	void rcu_read_unlock(void)
	{
		read_unlock(&rcu_gp_mutex);
	}

	void synchronize_rcu(void)
	{
		write_lock(&rcu_gp_mutex);
		write_unlock(&rcu_gp_mutex);
	}

[You can ignore rcu_assign_pointer() and rcu_dereference() without
missing much.  But here they are anyway.  And whatever you do, don't
forget about them when submitting patches making use of RCU!]

	#define rcu_assign_pointer(p, v)	({ \
							smp_wmb(); \
							(p) = (v); \
						})

	#define rcu_dereference(p)     ({ \
					typeof(p) _________p1 = p; \
					smp_read_barrier_depends(); \
					(_________p1); \
					})


The rcu_read_lock() and rcu_read_unlock() primitive read-acquire
and release a global reader-writer lock.  The synchronize_rcu()
primitive write-acquires this same lock, then immediately releases
it.  This means that once synchronize_rcu() exits, all RCU read-side
M
Matt LaPlante 已提交
607
critical sections that were in progress before synchronize_rcu() was
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
called are guaranteed to have completed -- there is no way that
synchronize_rcu() would have been able to write-acquire the lock
otherwise.

It is possible to nest rcu_read_lock(), since reader-writer locks may
be recursively acquired.  Note also that rcu_read_lock() is immune
from deadlock (an important property of RCU).  The reason for this is
that the only thing that can block rcu_read_lock() is a synchronize_rcu().
But synchronize_rcu() does not acquire any locks while holding rcu_gp_mutex,
so there can be no deadlock cycle.

Quick Quiz #1:	Why is this argument naive?  How could a deadlock
		occur when using this algorithm in a real-world Linux
		kernel?  How could this deadlock be avoided?


5B.  "TOY" EXAMPLE #2: CLASSIC RCU

This section presents a "toy" RCU implementation that is based on
"classic RCU".  It is also short on performance (but only for updates) and
on features such as hotplug CPU and the ability to run in CONFIG_PREEMPT
kernels.  The definitions of rcu_dereference() and rcu_assign_pointer()
are the same as those shown in the preceding section, so they are omitted.

	void rcu_read_lock(void) { }

	void rcu_read_unlock(void) { }

	void synchronize_rcu(void)
	{
		int cpu;

640
		for_each_possible_cpu(cpu)
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
			run_on(cpu);
	}

Note that rcu_read_lock() and rcu_read_unlock() do absolutely nothing.
This is the great strength of classic RCU in a non-preemptive kernel:
read-side overhead is precisely zero, at least on non-Alpha CPUs.
And there is absolutely no way that rcu_read_lock() can possibly
participate in a deadlock cycle!

The implementation of synchronize_rcu() simply schedules itself on each
CPU in turn.  The run_on() primitive can be implemented straightforwardly
in terms of the sched_setaffinity() primitive.  Of course, a somewhat less
"toy" implementation would restore the affinity upon completion rather
than just leaving all tasks running on the last CPU, but when I said
"toy", I meant -toy-!

So how the heck is this supposed to work???

Remember that it is illegal to block while in an RCU read-side critical
section.  Therefore, if a given CPU executes a context switch, we know
that it must have completed all preceding RCU read-side critical sections.
Once -all- CPUs have executed a context switch, then -all- preceding
RCU read-side critical sections will have completed.

So, suppose that we remove a data item from its structure and then invoke
synchronize_rcu().  Once synchronize_rcu() returns, we are guaranteed
that there are no RCU read-side critical sections holding a reference
to that data item, so we can safely reclaim it.

Quick Quiz #2:	Give an example where Classic RCU's read-side
		overhead is -negative-.

Quick Quiz #3:  If it is illegal to block in an RCU read-side
		critical section, what the heck do you do in
		PREEMPT_RT, where normal spinlocks can block???


6.  ANALOGY WITH READER-WRITER LOCKING

Although RCU can be used in many different ways, a very common use of
RCU is analogous to reader-writer locking.  The following unified
diff shows how closely related RCU and reader-writer locking can be.

	@@ -13,15 +14,15 @@
		struct list_head *lp;
		struct el *p;

	-	read_lock();
	-	list_for_each_entry(p, head, lp) {
	+	rcu_read_lock();
	+	list_for_each_entry_rcu(p, head, lp) {
			if (p->key == key) {
				*result = p->data;
	-			read_unlock();
	+			rcu_read_unlock();
				return 1;
			}
		}
	-	read_unlock();
	+	rcu_read_unlock();
		return 0;
	 }

	@@ -29,15 +30,16 @@
	 {
		struct el *p;

	-	write_lock(&listmutex);
	+	spin_lock(&listmutex);
		list_for_each_entry(p, head, lp) {
			if (p->key == key) {
U
Urs Thuermann 已提交
712
	-			list_del(&p->list);
713
	-			write_unlock(&listmutex);
U
Urs Thuermann 已提交
714
	+			list_del_rcu(&p->list);
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
	+			spin_unlock(&listmutex);
	+			synchronize_rcu();
				kfree(p);
				return 1;
			}
		}
	-	write_unlock(&listmutex);
	+	spin_unlock(&listmutex);
		return 0;
	 }

Or, for those who prefer a side-by-side listing:

 1 struct el {                          1 struct el {
 2   struct list_head list;             2   struct list_head list;
 3   long key;                          3   long key;
 4   spinlock_t mutex;                  4   spinlock_t mutex;
 5   int data;                          5   int data;
 6   /* Other data fields */            6   /* Other data fields */
 7 };                                   7 };
 8 spinlock_t listmutex;                8 spinlock_t listmutex;
 9 struct el head;                      9 struct el head;

 1 int search(long key, int *result)    1 int search(long key, int *result)
 2 {                                    2 {
 3   struct list_head *lp;              3   struct list_head *lp;
 4   struct el *p;                      4   struct el *p;
 5                                      5
 6   read_lock();                       6   rcu_read_lock();
 7   list_for_each_entry(p, head, lp) { 7   list_for_each_entry_rcu(p, head, lp) {
 8     if (p->key == key) {             8     if (p->key == key) {
 9       *result = p->data;             9       *result = p->data;
10       read_unlock();                10       rcu_read_unlock();
11       return 1;                     11       return 1;
12     }                               12     }
13   }                                 13   }
14   read_unlock();                    14   rcu_read_unlock();
15   return 0;                         15   return 0;
16 }                                   16 }

 1 int delete(long key)                 1 int delete(long key)
 2 {                                    2 {
 3   struct el *p;                      3   struct el *p;
 4                                      4
 5   write_lock(&listmutex);            5   spin_lock(&listmutex);
 6   list_for_each_entry(p, head, lp) { 6   list_for_each_entry(p, head, lp) {
 7     if (p->key == key) {             7     if (p->key == key) {
U
Urs Thuermann 已提交
762
 8       list_del(&p->list);            8       list_del_rcu(&p->list);
763 764 765 766 767 768 769 770 771 772 773 774
 9       write_unlock(&listmutex);      9       spin_unlock(&listmutex);
                                       10       synchronize_rcu();
10       kfree(p);                     11       kfree(p);
11       return 1;                     12       return 1;
12     }                               13     }
13   }                                 14   }
14   write_unlock(&listmutex);         15   spin_unlock(&listmutex);
15   return 0;                         16   return 0;
16 }                                   17 }

Either way, the differences are quite small.  Read-side locking moves
to rcu_read_lock() and rcu_read_unlock, update-side locking moves from
775
a reader-writer lock to a simple spinlock, and a synchronize_rcu()
776 777 778 779 780 781 782 783 784 785
precedes the kfree().

However, there is one potential catch: the read-side and update-side
critical sections can now run concurrently.  In many cases, this will
not be a problem, but it is necessary to check carefully regardless.
For example, if multiple independent list updates must be seen as
a single atomic update, converting to RCU will require special care.

Also, the presence of synchronize_rcu() means that the RCU version of
delete() can now block.  If this is a problem, there is a callback-based
786 787
mechanism that never blocks, namely call_rcu() or kfree_rcu(), that can
be used in place of synchronize_rcu().
788 789 790 791 792 793 794 795 796


7.  FULL LIST OF RCU APIs

The RCU APIs are documented in docbook-format header comments in the
Linux-kernel source code, but it helps to have a full list of the
APIs, since there does not appear to be a way to categorize them
in docbook.  Here is the list, by category.

797
RCU list traversal:
798

799 800 801
	list_entry_rcu
	list_first_entry_rcu
	list_next_rcu
802
	list_for_each_entry_rcu
803 804 805 806
	list_for_each_entry_continue_rcu
	hlist_first_rcu
	hlist_next_rcu
	hlist_pprev_rcu
807
	hlist_for_each_entry_rcu
808 809 810 811
	hlist_for_each_entry_rcu_bh
	hlist_for_each_entry_continue_rcu
	hlist_for_each_entry_continue_rcu_bh
	hlist_nulls_first_rcu
812
	hlist_nulls_for_each_entry_rcu
813 814
	hlist_bl_first_rcu
	hlist_bl_for_each_entry_rcu
815

816
RCU pointer/list update:
817 818 819 820 821 822

	rcu_assign_pointer
	list_add_rcu
	list_add_tail_rcu
	list_del_rcu
	list_replace_rcu
823
	hlist_add_behind_rcu
824
	hlist_add_before_rcu
825
	hlist_add_head_rcu
826 827
	hlist_del_rcu
	hlist_del_init_rcu
828 829
	hlist_replace_rcu
	list_splice_init_rcu()
830 831 832 833 834 835 836
	hlist_nulls_del_init_rcu
	hlist_nulls_del_rcu
	hlist_nulls_add_head_rcu
	hlist_bl_add_head_rcu
	hlist_bl_del_init_rcu
	hlist_bl_del_rcu
	hlist_bl_set_first_rcu
837

838 839 840 841
RCU:	Critical sections	Grace period		Barrier

	rcu_read_lock		synchronize_net		rcu_barrier
	rcu_read_unlock		synchronize_rcu
842
	rcu_dereference		synchronize_rcu_expedited
843 844 845
	rcu_read_lock_held	call_rcu
	rcu_dereference_check	kfree_rcu
	rcu_dereference_protected
846 847 848 849

bh:	Critical sections	Grace period		Barrier

	rcu_read_lock_bh	call_rcu_bh		rcu_barrier_bh
850
	rcu_read_unlock_bh	synchronize_rcu_bh
851
	rcu_dereference_bh	synchronize_rcu_bh_expedited
852 853 854
	rcu_dereference_bh_check
	rcu_dereference_bh_protected
	rcu_read_lock_bh_held
855 856 857

sched:	Critical sections	Grace period		Barrier

858 859 860 861
	rcu_read_lock_sched	synchronize_sched	rcu_barrier_sched
	rcu_read_unlock_sched	call_rcu_sched
	[preempt_disable]	synchronize_sched_expedited
	[and friends]
862 863
	rcu_read_lock_sched_notrace
	rcu_read_unlock_sched_notrace
864
	rcu_dereference_sched
865 866 867
	rcu_dereference_sched_check
	rcu_dereference_sched_protected
	rcu_read_lock_sched_held
868 869 870 871


SRCU:	Critical sections	Grace period		Barrier

872 873
	srcu_read_lock		synchronize_srcu	srcu_barrier
	srcu_read_unlock	call_srcu
874
	srcu_dereference	synchronize_srcu_expedited
875 876
	srcu_dereference_check
	srcu_read_lock_held
877

878 879 880
SRCU:	Initialization/cleanup
	init_srcu_struct
	cleanup_srcu_struct
881

882 883 884
All:  lockdep-checked RCU-protected pointer access

	rcu_access_pointer
885
	rcu_dereference_raw
886
	RCU_LOCKDEP_WARN
887 888
	rcu_sleep_check
	RCU_NONIDLE
889

890 891 892
See the comment headers in the source code (or the docbook generated
from them) for more information.

893 894 895 896 897 898
However, given that there are no fewer than four families of RCU APIs
in the Linux kernel, how do you choose which one to use?  The following
list can be helpful:

a.	Will readers need to block?  If so, you need SRCU.

899
b.	What about the -rt patchset?  If readers would need to block
900 901 902 903
	in an non-rt kernel, you need SRCU.  If readers would block
	in a -rt kernel, but not in a non-rt kernel, SRCU is not
	necessary.

904
c.	Do you need to treat NMI handlers, hardirq handlers,
905 906 907
	and code segments with preemption disabled (whether
	via preempt_disable(), local_irq_save(), local_bh_disable(),
	or some other mechanism) as if they were explicit RCU readers?
908
	If so, RCU-sched is the only choice that will work for you.
909

910
d.	Do you need RCU grace periods to complete even in the face
911 912 913 914
	of softirq monopolization of one or more of the CPUs?  For
	example, is your code subject to network-based denial-of-service
	attacks?  If so, you need RCU-bh.

915
e.	Is your workload too update-intensive for normal use of
916 917 918
	RCU, but inappropriate for other synchronization mechanisms?
	If so, consider SLAB_DESTROY_BY_RCU.  But please be careful!

919
f.	Do you need read-side critical sections that are respected
920 921 922 923
	even though they are in the middle of the idle loop, during
	user-mode execution, or on an offlined CPU?  If so, SRCU is the
	only choice that will work for you.

924
g.	Otherwise, use RCU.
925 926 927 928

Of course, this all assumes that you have determined that RCU is in fact
the right tool for your job.

929 930 931 932 933 934 935 936 937 938 939

8.  ANSWERS TO QUICK QUIZZES

Quick Quiz #1:	Why is this argument naive?  How could a deadlock
		occur when using this algorithm in a real-world Linux
		kernel?  [Referring to the lock-based "toy" RCU
		algorithm.]

Answer:		Consider the following sequence of events:

		1.	CPU 0 acquires some unrelated lock, call it
940 941
			"problematic_lock", disabling irq via
			spin_lock_irqsave().
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027

		2.	CPU 1 enters synchronize_rcu(), write-acquiring
			rcu_gp_mutex.

		3.	CPU 0 enters rcu_read_lock(), but must wait
			because CPU 1 holds rcu_gp_mutex.

		4.	CPU 1 is interrupted, and the irq handler
			attempts to acquire problematic_lock.

		The system is now deadlocked.

		One way to avoid this deadlock is to use an approach like
		that of CONFIG_PREEMPT_RT, where all normal spinlocks
		become blocking locks, and all irq handlers execute in
		the context of special tasks.  In this case, in step 4
		above, the irq handler would block, allowing CPU 1 to
		release rcu_gp_mutex, avoiding the deadlock.

		Even in the absence of deadlock, this RCU implementation
		allows latency to "bleed" from readers to other
		readers through synchronize_rcu().  To see this,
		consider task A in an RCU read-side critical section
		(thus read-holding rcu_gp_mutex), task B blocked
		attempting to write-acquire rcu_gp_mutex, and
		task C blocked in rcu_read_lock() attempting to
		read_acquire rcu_gp_mutex.  Task A's RCU read-side
		latency is holding up task C, albeit indirectly via
		task B.

		Realtime RCU implementations therefore use a counter-based
		approach where tasks in RCU read-side critical sections
		cannot be blocked by tasks executing synchronize_rcu().

Quick Quiz #2:	Give an example where Classic RCU's read-side
		overhead is -negative-.

Answer:		Imagine a single-CPU system with a non-CONFIG_PREEMPT
		kernel where a routing table is used by process-context
		code, but can be updated by irq-context code (for example,
		by an "ICMP REDIRECT" packet).	The usual way of handling
		this would be to have the process-context code disable
		interrupts while searching the routing table.  Use of
		RCU allows such interrupt-disabling to be dispensed with.
		Thus, without RCU, you pay the cost of disabling interrupts,
		and with RCU you don't.

		One can argue that the overhead of RCU in this
		case is negative with respect to the single-CPU
		interrupt-disabling approach.  Others might argue that
		the overhead of RCU is merely zero, and that replacing
		the positive overhead of the interrupt-disabling scheme
		with the zero-overhead RCU scheme does not constitute
		negative overhead.

		In real life, of course, things are more complex.  But
		even the theoretical possibility of negative overhead for
		a synchronization primitive is a bit unexpected.  ;-)

Quick Quiz #3:  If it is illegal to block in an RCU read-side
		critical section, what the heck do you do in
		PREEMPT_RT, where normal spinlocks can block???

Answer:		Just as PREEMPT_RT permits preemption of spinlock
		critical sections, it permits preemption of RCU
		read-side critical sections.  It also permits
		spinlocks blocking while in RCU read-side critical
		sections.

		Why the apparent inconsistency?  Because it is it
		possible to use priority boosting to keep the RCU
		grace periods short if need be (for example, if running
		short of memory).  In contrast, if blocking waiting
		for (say) network reception, there is no way to know
		what should be boosted.  Especially given that the
		process we need to boost might well be a human being
		who just went out for a pizza or something.  And although
		a computer-operated cattle prod might arouse serious
		interest, it might also provoke serious objections.
		Besides, how does the computer know what pizza parlor
		the human being went to???


ACKNOWLEDGEMENTS

My thanks to the people who helped make this human-readable, including
1028
Jon Walpole, Josh Triplett, Serge Hallyn, Suzanne Wood, and Alan Stern.
1029 1030 1031


For more information, see http://www.rdrop.com/users/paulmck/RCU.