amdgpu_amdkfd_gfx_v7.c 18.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
/*
 * Copyright 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/fdtable.h>
#include <linux/uaccess.h>
#include <linux/firmware.h>
#include <drm/drmP.h>
#include "amdgpu.h"
#include "amdgpu_amdkfd.h"
#include "cikd.h"
#include "cik_sdma.h"
#include "amdgpu_ucode.h"
#include "gca/gfx_7_2_d.h"
#include "gca/gfx_7_2_enum.h"
#include "gca/gfx_7_2_sh_mask.h"
#include "oss/oss_2_0_d.h"
#include "oss/oss_2_0_sh_mask.h"
#include "gmc/gmc_7_1_d.h"
#include "gmc/gmc_7_1_sh_mask.h"
#include "cik_structs.h"

#define CIK_PIPE_PER_MEC	(4)

enum {
	MAX_TRAPID = 8,		/* 3 bits in the bitfield. */
	MAX_WATCH_ADDRESSES = 4
};

enum {
	ADDRESS_WATCH_REG_ADDR_HI = 0,
	ADDRESS_WATCH_REG_ADDR_LO,
	ADDRESS_WATCH_REG_CNTL,
	ADDRESS_WATCH_REG_MAX
};

/*  not defined in the CI/KV reg file  */
enum {
	ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
	ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
	ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
	/* extend the mask to 26 bits to match the low address field */
	ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
	ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
};

static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
	mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
	mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
	mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
	mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
};

union TCP_WATCH_CNTL_BITS {
	struct {
		uint32_t mask:24;
		uint32_t vmid:4;
		uint32_t atc:1;
		uint32_t mode:2;
		uint32_t valid:1;
	} bitfields, bits;
	uint32_t u32All;
	signed int i32All;
	float f32All;
};

/*
 * Register access functions
 */

static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
		uint32_t sh_mem_config,	uint32_t sh_mem_ape1_base,
		uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);

static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
					unsigned int vmid);

static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
				uint32_t hpd_size, uint64_t hpd_gpu_addr);
static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
			uint32_t queue_id, uint32_t __user *wptr);
static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
				uint32_t pipe_id, uint32_t queue_id);

static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
				unsigned int timeout, uint32_t pipe_id,
				uint32_t queue_id);
static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
				unsigned int timeout);
static int kgd_address_watch_disable(struct kgd_dev *kgd);
static int kgd_address_watch_execute(struct kgd_dev *kgd,
					unsigned int watch_point_id,
					uint32_t cntl_val,
					uint32_t addr_hi,
					uint32_t addr_lo);
static int kgd_wave_control_execute(struct kgd_dev *kgd,
					uint32_t gfx_index_val,
					uint32_t sq_cmd);
static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
					unsigned int watch_point_id,
					unsigned int reg_offset);

static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
							uint8_t vmid);
static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);

static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);

static const struct kfd2kgd_calls kfd2kgd = {
	.init_gtt_mem_allocation = alloc_gtt_mem,
	.free_gtt_mem = free_gtt_mem,
	.get_vmem_size = get_vmem_size,
	.get_gpu_clock_counter = get_gpu_clock_counter,
	.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
	.program_sh_mem_settings = kgd_program_sh_mem_settings,
	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
	.init_pipeline = kgd_init_pipeline,
	.init_interrupts = kgd_init_interrupts,
	.hqd_load = kgd_hqd_load,
	.hqd_sdma_load = kgd_hqd_sdma_load,
	.hqd_is_occupied = kgd_hqd_is_occupied,
	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
	.hqd_destroy = kgd_hqd_destroy,
	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
	.address_watch_disable = kgd_address_watch_disable,
	.address_watch_execute = kgd_address_watch_execute,
	.wave_control_execute = kgd_wave_control_execute,
	.address_watch_get_offset = kgd_address_watch_get_offset,
	.get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
	.get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
	.write_vmid_invalidate_request = write_vmid_invalidate_request,
	.get_fw_version = get_fw_version
};

157
struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
{
	return (struct kfd2kgd_calls *)&kfd2kgd;
}

static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
{
	return (struct amdgpu_device *)kgd;
}

static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
			uint32_t queue, uint32_t vmid)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);

	mutex_lock(&adev->srbm_mutex);
	WREG32(mmSRBM_GFX_CNTL, value);
}

static void unlock_srbm(struct kgd_dev *kgd)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);

	WREG32(mmSRBM_GFX_CNTL, 0);
	mutex_unlock(&adev->srbm_mutex);
}

static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
				uint32_t queue_id)
{
	uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1;
	uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);

	lock_srbm(kgd, mec, pipe, queue_id, 0);
}

static void release_queue(struct kgd_dev *kgd)
{
	unlock_srbm(kgd);
}

static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
					uint32_t sh_mem_config,
					uint32_t sh_mem_ape1_base,
					uint32_t sh_mem_ape1_limit,
					uint32_t sh_mem_bases)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);

	lock_srbm(kgd, 0, 0, 0, vmid);

	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
	WREG32(mmSH_MEM_BASES, sh_mem_bases);

	unlock_srbm(kgd);
}

static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
					unsigned int vmid)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);

	/*
	 * We have to assume that there is no outstanding mapping.
	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
	 * a mapping is in progress or because a mapping finished and the
	 * SW cleared it. So the protocol is to always wait & clear.
	 */
	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
			ATC_VMID0_PASID_MAPPING__VALID_MASK;

	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);

	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
		cpu_relax();
	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);

	/* Mapping vmid to pasid also for IH block */
	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);

	return 0;
}

static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
				uint32_t hpd_size, uint64_t hpd_gpu_addr)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);

	uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1;
	uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);

	lock_srbm(kgd, mec, pipe, 0, 0);
	WREG32(mmCP_HPD_EOP_BASE_ADDR, lower_32_bits(hpd_gpu_addr >> 8));
	WREG32(mmCP_HPD_EOP_BASE_ADDR_HI, upper_32_bits(hpd_gpu_addr >> 8));
	WREG32(mmCP_HPD_EOP_VMID, 0);
	WREG32(mmCP_HPD_EOP_CONTROL, hpd_size);
	unlock_srbm(kgd);

	return 0;
}

static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	uint32_t mec;
	uint32_t pipe;

	mec = (pipe_id / CIK_PIPE_PER_MEC) + 1;
	pipe = (pipe_id % CIK_PIPE_PER_MEC);

	lock_srbm(kgd, mec, pipe, 0, 0);

	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
			CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);

	unlock_srbm(kgd);

	return 0;
}

static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
{
	uint32_t retval;

	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
			m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;

	pr_debug("kfd: sdma base address: 0x%x\n", retval);

	return retval;
}

static inline struct cik_mqd *get_mqd(void *mqd)
{
	return (struct cik_mqd *)mqd;
}

static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
{
	return (struct cik_sdma_rlc_registers *)mqd;
}

static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
			uint32_t queue_id, uint32_t __user *wptr)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	uint32_t wptr_shadow, is_wptr_shadow_valid;
	struct cik_mqd *m;

	m = get_mqd(mqd);

	is_wptr_shadow_valid = !get_user(wptr_shadow, wptr);

	acquire_queue(kgd, pipe_id, queue_id);
	WREG32(mmCP_MQD_BASE_ADDR, m->cp_mqd_base_addr_lo);
	WREG32(mmCP_MQD_BASE_ADDR_HI, m->cp_mqd_base_addr_hi);
	WREG32(mmCP_MQD_CONTROL, m->cp_mqd_control);

	WREG32(mmCP_HQD_PQ_BASE, m->cp_hqd_pq_base_lo);
	WREG32(mmCP_HQD_PQ_BASE_HI, m->cp_hqd_pq_base_hi);
	WREG32(mmCP_HQD_PQ_CONTROL, m->cp_hqd_pq_control);

	WREG32(mmCP_HQD_IB_CONTROL, m->cp_hqd_ib_control);
	WREG32(mmCP_HQD_IB_BASE_ADDR, m->cp_hqd_ib_base_addr_lo);
	WREG32(mmCP_HQD_IB_BASE_ADDR_HI, m->cp_hqd_ib_base_addr_hi);

	WREG32(mmCP_HQD_IB_RPTR, m->cp_hqd_ib_rptr);

	WREG32(mmCP_HQD_PERSISTENT_STATE, m->cp_hqd_persistent_state);
	WREG32(mmCP_HQD_SEMA_CMD, m->cp_hqd_sema_cmd);
	WREG32(mmCP_HQD_MSG_TYPE, m->cp_hqd_msg_type);

	WREG32(mmCP_HQD_ATOMIC0_PREOP_LO, m->cp_hqd_atomic0_preop_lo);
	WREG32(mmCP_HQD_ATOMIC0_PREOP_HI, m->cp_hqd_atomic0_preop_hi);
	WREG32(mmCP_HQD_ATOMIC1_PREOP_LO, m->cp_hqd_atomic1_preop_lo);
	WREG32(mmCP_HQD_ATOMIC1_PREOP_HI, m->cp_hqd_atomic1_preop_hi);

	WREG32(mmCP_HQD_PQ_RPTR_REPORT_ADDR, m->cp_hqd_pq_rptr_report_addr_lo);
	WREG32(mmCP_HQD_PQ_RPTR_REPORT_ADDR_HI,
			m->cp_hqd_pq_rptr_report_addr_hi);

	WREG32(mmCP_HQD_PQ_RPTR, m->cp_hqd_pq_rptr);

	WREG32(mmCP_HQD_PQ_WPTR_POLL_ADDR, m->cp_hqd_pq_wptr_poll_addr_lo);
	WREG32(mmCP_HQD_PQ_WPTR_POLL_ADDR_HI, m->cp_hqd_pq_wptr_poll_addr_hi);

	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, m->cp_hqd_pq_doorbell_control);

	WREG32(mmCP_HQD_VMID, m->cp_hqd_vmid);

	WREG32(mmCP_HQD_QUANTUM, m->cp_hqd_quantum);

	WREG32(mmCP_HQD_PIPE_PRIORITY, m->cp_hqd_pipe_priority);
	WREG32(mmCP_HQD_QUEUE_PRIORITY, m->cp_hqd_queue_priority);

	WREG32(mmCP_HQD_IQ_RPTR, m->cp_hqd_iq_rptr);

	if (is_wptr_shadow_valid)
		WREG32(mmCP_HQD_PQ_WPTR, wptr_shadow);

	WREG32(mmCP_HQD_ACTIVE, m->cp_hqd_active);
	release_queue(kgd);

	return 0;
}

static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	struct cik_sdma_rlc_registers *m;
	uint32_t sdma_base_addr;

	m = get_sdma_mqd(mqd);
	sdma_base_addr = get_sdma_base_addr(m);

	WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
			m->sdma_rlc_virtual_addr);

	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE,
			m->sdma_rlc_rb_base);

	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
			m->sdma_rlc_rb_base_hi);

	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
			m->sdma_rlc_rb_rptr_addr_lo);

	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
			m->sdma_rlc_rb_rptr_addr_hi);

	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL,
			m->sdma_rlc_doorbell);

	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
			m->sdma_rlc_rb_cntl);

	return 0;
}

static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
				uint32_t pipe_id, uint32_t queue_id)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	uint32_t act;
	bool retval = false;
	uint32_t low, high;

	acquire_queue(kgd, pipe_id, queue_id);
	act = RREG32(mmCP_HQD_ACTIVE);
	if (act) {
		low = lower_32_bits(queue_address >> 8);
		high = upper_32_bits(queue_address >> 8);

		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
				high == RREG32(mmCP_HQD_PQ_BASE_HI))
			retval = true;
	}
	release_queue(kgd);
	return retval;
}

static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	struct cik_sdma_rlc_registers *m;
	uint32_t sdma_base_addr;
	uint32_t sdma_rlc_rb_cntl;

	m = get_sdma_mqd(mqd);
	sdma_base_addr = get_sdma_base_addr(m);

	sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);

	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
		return true;

	return false;
}

static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
				unsigned int timeout, uint32_t pipe_id,
				uint32_t queue_id)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	uint32_t temp;

	acquire_queue(kgd, pipe_id, queue_id);
	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);

	WREG32(mmCP_HQD_DEQUEUE_REQUEST, reset_type);

	while (true) {
		temp = RREG32(mmCP_HQD_ACTIVE);
453
		if (temp & CP_HQD_ACTIVE__ACTIVE_MASK)
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
			break;
		if (timeout == 0) {
			pr_err("kfd: cp queue preemption time out (%dms)\n",
				temp);
			release_queue(kgd);
			return -ETIME;
		}
		msleep(20);
		timeout -= 20;
	}

	release_queue(kgd);
	return 0;
}

static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
				unsigned int timeout)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	struct cik_sdma_rlc_registers *m;
	uint32_t sdma_base_addr;
	uint32_t temp;

	m = get_sdma_mqd(mqd);
	sdma_base_addr = get_sdma_base_addr(m);

	temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);

	while (true) {
		temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
		if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
			break;
		if (timeout == 0)
			return -ETIME;
		msleep(20);
		timeout -= 20;
	}

	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, 0);
	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, 0);
	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, 0);

	return 0;
}

static int kgd_address_watch_disable(struct kgd_dev *kgd)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	union TCP_WATCH_CNTL_BITS cntl;
	unsigned int i;

	cntl.u32All = 0;

	cntl.bitfields.valid = 0;
	cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
	cntl.bitfields.atc = 1;

	/* Turning off this address until we set all the registers */
	for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
		WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
			ADDRESS_WATCH_REG_CNTL], cntl.u32All);

	return 0;
}

static int kgd_address_watch_execute(struct kgd_dev *kgd,
					unsigned int watch_point_id,
					uint32_t cntl_val,
					uint32_t addr_hi,
					uint32_t addr_lo)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	union TCP_WATCH_CNTL_BITS cntl;

	cntl.u32All = cntl_val;

	/* Turning off this watch point until we set all the registers */
	cntl.bitfields.valid = 0;
	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
		ADDRESS_WATCH_REG_CNTL], cntl.u32All);

	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
		ADDRESS_WATCH_REG_ADDR_HI], addr_hi);

	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
		ADDRESS_WATCH_REG_ADDR_LO], addr_lo);

	/* Enable the watch point */
	cntl.bitfields.valid = 1;

	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
		ADDRESS_WATCH_REG_CNTL], cntl.u32All);

	return 0;
}

static int kgd_wave_control_execute(struct kgd_dev *kgd,
					uint32_t gfx_index_val,
					uint32_t sq_cmd)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	uint32_t data;

	mutex_lock(&adev->grbm_idx_mutex);

	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
	WREG32(mmSQ_CMD, sq_cmd);

	/*  Restore the GRBM_GFX_INDEX register  */

	data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
		GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
		GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;

	WREG32(mmGRBM_GFX_INDEX, data);

	mutex_unlock(&adev->grbm_idx_mutex);

	return 0;
}

static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
					unsigned int watch_point_id,
					unsigned int reg_offset)
{
	return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
}

static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
							uint8_t vmid)
{
	uint32_t reg;
	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;

	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
}

static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
								uint8_t vmid)
{
	uint32_t reg;
	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;

	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
}

static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
{
	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;

	WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
}

static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
{
	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
	const union amdgpu_firmware_header *hdr;

	BUG_ON(kgd == NULL);

	switch (type) {
	case KGD_ENGINE_PFP:
		hdr = (const union amdgpu_firmware_header *)
							adev->gfx.pfp_fw->data;
		break;

	case KGD_ENGINE_ME:
		hdr = (const union amdgpu_firmware_header *)
							adev->gfx.me_fw->data;
		break;

	case KGD_ENGINE_CE:
		hdr = (const union amdgpu_firmware_header *)
							adev->gfx.ce_fw->data;
		break;

	case KGD_ENGINE_MEC1:
		hdr = (const union amdgpu_firmware_header *)
							adev->gfx.mec_fw->data;
		break;

	case KGD_ENGINE_MEC2:
		hdr = (const union amdgpu_firmware_header *)
							adev->gfx.mec2_fw->data;
		break;

	case KGD_ENGINE_RLC:
		hdr = (const union amdgpu_firmware_header *)
							adev->gfx.rlc_fw->data;
		break;

	case KGD_ENGINE_SDMA1:
		hdr = (const union amdgpu_firmware_header *)
A
Alex Deucher 已提交
652
							adev->sdma.instance[0].fw->data;
653 654 655 656
		break;

	case KGD_ENGINE_SDMA2:
		hdr = (const union amdgpu_firmware_header *)
A
Alex Deucher 已提交
657
							adev->sdma.instance[1].fw->data;
658 659 660 661 662 663 664 665 666 667 668 669 670
		break;

	default:
		return 0;
	}

	if (hdr == NULL)
		return 0;

	/* Only 12 bit in use*/
	return hdr->common.ucode_version;
}