migrate.c 49.8 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 * Memory Migration functionality - linux/mm/migration.c
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
C
Christoph Lameter 已提交
12
 * Christoph Lameter
C
Christoph Lameter 已提交
13 14 15
 */

#include <linux/migrate.h>
16
#include <linux/export.h>
C
Christoph Lameter 已提交
17
#include <linux/swap.h>
18
#include <linux/swapops.h>
C
Christoph Lameter 已提交
19
#include <linux/pagemap.h>
20
#include <linux/buffer_head.h>
C
Christoph Lameter 已提交
21
#include <linux/mm_inline.h>
22
#include <linux/nsproxy.h>
C
Christoph Lameter 已提交
23
#include <linux/pagevec.h>
24
#include <linux/ksm.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
29
#include <linux/writeback.h>
30 31
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
32
#include <linux/security.h>
33
#include <linux/memcontrol.h>
34
#include <linux/syscalls.h>
N
Naoya Horiguchi 已提交
35
#include <linux/hugetlb.h>
36
#include <linux/hugetlb_cgroup.h>
37
#include <linux/gfp.h>
38
#include <linux/balloon_compaction.h>
39
#include <linux/mmu_notifier.h>
C
Christoph Lameter 已提交
40

41 42
#include <asm/tlbflush.h>

43 44 45
#define CREATE_TRACE_POINTS
#include <trace/events/migrate.h>

C
Christoph Lameter 已提交
46 47 48
#include "internal.h"

/*
49
 * migrate_prep() needs to be called before we start compiling a list of pages
50 51
 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
 * undesirable, use migrate_prep_local()
C
Christoph Lameter 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65
 */
int migrate_prep(void)
{
	/*
	 * Clear the LRU lists so pages can be isolated.
	 * Note that pages may be moved off the LRU after we have
	 * drained them. Those pages will fail to migrate like other
	 * pages that may be busy.
	 */
	lru_add_drain_all();

	return 0;
}

66 67 68 69 70 71 72 73
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
int migrate_prep_local(void)
{
	lru_add_drain();

	return 0;
}

74 75 76 77
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
78 79 80
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
81 82 83 84 85 86
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

C
Christoph Lameter 已提交
87
	list_for_each_entry_safe(page, page2, l, lru) {
88 89 90 91
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
92
		list_del(&page->lru);
K
KOSAKI Motohiro 已提交
93
		dec_zone_page_state(page, NR_ISOLATED_ANON +
94
				page_is_file_cache(page));
95
		if (unlikely(isolated_balloon_page(page)))
96 97 98
			balloon_page_putback(page);
		else
			putback_lru_page(page);
C
Christoph Lameter 已提交
99 100 101
	}
}

102 103 104
/*
 * Restore a potential migration pte to a working pte entry
 */
105 106
static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
				 unsigned long addr, void *old)
107 108 109 110 111 112 113
{
	struct mm_struct *mm = vma->vm_mm;
	swp_entry_t entry;
 	pmd_t *pmd;
	pte_t *ptep, pte;
 	spinlock_t *ptl;

N
Naoya Horiguchi 已提交
114 115 116 117
	if (unlikely(PageHuge(new))) {
		ptep = huge_pte_offset(mm, addr);
		if (!ptep)
			goto out;
118
		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
N
Naoya Horiguchi 已提交
119
	} else {
B
Bob Liu 已提交
120 121
		pmd = mm_find_pmd(mm, addr);
		if (!pmd)
N
Naoya Horiguchi 已提交
122
			goto out;
123

N
Naoya Horiguchi 已提交
124
		ptep = pte_offset_map(pmd, addr);
125

126 127 128 129
		/*
		 * Peek to check is_swap_pte() before taking ptlock?  No, we
		 * can race mremap's move_ptes(), which skips anon_vma lock.
		 */
N
Naoya Horiguchi 已提交
130 131 132

		ptl = pte_lockptr(mm, pmd);
	}
133 134 135 136

 	spin_lock(ptl);
	pte = *ptep;
	if (!is_swap_pte(pte))
137
		goto unlock;
138 139 140

	entry = pte_to_swp_entry(pte);

141 142 143
	if (!is_migration_entry(entry) ||
	    migration_entry_to_page(entry) != old)
		goto unlock;
144 145 146

	get_page(new);
	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
147 148
	if (pte_swp_soft_dirty(*ptep))
		pte = pte_mksoft_dirty(pte);
149 150
	if (is_write_migration_entry(entry))
		pte = pte_mkwrite(pte);
A
Andi Kleen 已提交
151
#ifdef CONFIG_HUGETLB_PAGE
152
	if (PageHuge(new)) {
N
Naoya Horiguchi 已提交
153
		pte = pte_mkhuge(pte);
154 155
		pte = arch_make_huge_pte(pte, vma, new, 0);
	}
A
Andi Kleen 已提交
156
#endif
157
	flush_dcache_page(new);
158
	set_pte_at(mm, addr, ptep, pte);
159

N
Naoya Horiguchi 已提交
160 161 162 163 164 165
	if (PageHuge(new)) {
		if (PageAnon(new))
			hugepage_add_anon_rmap(new, vma, addr);
		else
			page_dup_rmap(new);
	} else if (PageAnon(new))
166 167 168 169 170
		page_add_anon_rmap(new, vma, addr);
	else
		page_add_file_rmap(new);

	/* No need to invalidate - it was non-present before */
171
	update_mmu_cache(vma, addr, ptep);
172
unlock:
173
	pte_unmap_unlock(ptep, ptl);
174 175
out:
	return SWAP_AGAIN;
176 177
}

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
/*
 * Congratulations to trinity for discovering this bug.
 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
 * replace the specified range by file ptes throughout (maybe populated after).
 * If page migration finds a page within that range, while it's still located
 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
 * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
 * But if the migrating page is in a part of the vma outside the range to be
 * remapped, then it will not be cleared, and remove_migration_ptes() needs to
 * deal with it.  Fortunately, this part of the vma is of course still linear,
 * so we just need to use linear location on the nonlinear list.
 */
static int remove_linear_migration_ptes_from_nonlinear(struct page *page,
		struct address_space *mapping, void *arg)
{
	struct vm_area_struct *vma;
	/* hugetlbfs does not support remap_pages, so no huge pgoff worries */
	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
	unsigned long addr;

	list_for_each_entry(vma,
		&mapping->i_mmap_nonlinear, shared.nonlinear) {

		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
		if (addr >= vma->vm_start && addr < vma->vm_end)
			remove_migration_pte(page, vma, addr, arg);
	}
	return SWAP_AGAIN;
}

209 210 211 212 213 214
/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 */
static void remove_migration_ptes(struct page *old, struct page *new)
{
215 216 217
	struct rmap_walk_control rwc = {
		.rmap_one = remove_migration_pte,
		.arg = old,
218
		.file_nonlinear = remove_linear_migration_ptes_from_nonlinear,
219 220 221
	};

	rmap_walk(new, &rwc);
222 223
}

224 225 226 227 228
/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 */
229 230
static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
				spinlock_t *ptl)
231
{
232
	pte_t pte;
233 234 235
	swp_entry_t entry;
	struct page *page;

236
	spin_lock(ptl);
237 238 239 240 241 242 243 244 245 246
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

	page = migration_entry_to_page(entry);

N
Nick Piggin 已提交
247 248 249 250 251 252 253 254 255
	/*
	 * Once radix-tree replacement of page migration started, page_count
	 * *must* be zero. And, we don't want to call wait_on_page_locked()
	 * against a page without get_page().
	 * So, we use get_page_unless_zero(), here. Even failed, page fault
	 * will occur again.
	 */
	if (!get_page_unless_zero(page))
		goto out;
256 257 258 259 260 261 262 263
	pte_unmap_unlock(ptep, ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

264 265 266 267 268 269 270 271
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	spinlock_t *ptl = pte_lockptr(mm, pmd);
	pte_t *ptep = pte_offset_map(pmd, address);
	__migration_entry_wait(mm, ptep, ptl);
}

272 273
void migration_entry_wait_huge(struct vm_area_struct *vma,
		struct mm_struct *mm, pte_t *pte)
274
{
275
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
276 277 278
	__migration_entry_wait(mm, pte, ptl);
}

279 280
#ifdef CONFIG_BLOCK
/* Returns true if all buffers are successfully locked */
281 282
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
							enum migrate_mode mode)
283 284 285 286
{
	struct buffer_head *bh = head;

	/* Simple case, sync compaction */
287
	if (mode != MIGRATE_ASYNC) {
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
		do {
			get_bh(bh);
			lock_buffer(bh);
			bh = bh->b_this_page;

		} while (bh != head);

		return true;
	}

	/* async case, we cannot block on lock_buffer so use trylock_buffer */
	do {
		get_bh(bh);
		if (!trylock_buffer(bh)) {
			/*
			 * We failed to lock the buffer and cannot stall in
			 * async migration. Release the taken locks
			 */
			struct buffer_head *failed_bh = bh;
			put_bh(failed_bh);
			bh = head;
			while (bh != failed_bh) {
				unlock_buffer(bh);
				put_bh(bh);
				bh = bh->b_this_page;
			}
			return false;
		}

		bh = bh->b_this_page;
	} while (bh != head);
	return true;
}
#else
static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
323
							enum migrate_mode mode)
324 325 326 327 328
{
	return true;
}
#endif /* CONFIG_BLOCK */

C
Christoph Lameter 已提交
329
/*
330
 * Replace the page in the mapping.
331 332 333 334
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
335
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
C
Christoph Lameter 已提交
336
 */
337
int migrate_page_move_mapping(struct address_space *mapping,
338
		struct page *newpage, struct page *page,
339 340
		struct buffer_head *head, enum migrate_mode mode,
		int extra_count)
C
Christoph Lameter 已提交
341
{
342
	int expected_count = 1 + extra_count;
343
	void **pslot;
C
Christoph Lameter 已提交
344

345
	if (!mapping) {
346
		/* Anonymous page without mapping */
347
		if (page_count(page) != expected_count)
348
			return -EAGAIN;
349
		return MIGRATEPAGE_SUCCESS;
350 351
	}

N
Nick Piggin 已提交
352
	spin_lock_irq(&mapping->tree_lock);
C
Christoph Lameter 已提交
353

354 355
	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 					page_index(page));
C
Christoph Lameter 已提交
356

357
	expected_count += 1 + page_has_private(page);
N
Nick Piggin 已提交
358
	if (page_count(page) != expected_count ||
359
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Nick Piggin 已提交
360
		spin_unlock_irq(&mapping->tree_lock);
361
		return -EAGAIN;
C
Christoph Lameter 已提交
362 363
	}

N
Nick Piggin 已提交
364
	if (!page_freeze_refs(page, expected_count)) {
N
Nick Piggin 已提交
365
		spin_unlock_irq(&mapping->tree_lock);
N
Nick Piggin 已提交
366 367 368
		return -EAGAIN;
	}

369 370 371 372 373 374 375
	/*
	 * In the async migration case of moving a page with buffers, lock the
	 * buffers using trylock before the mapping is moved. If the mapping
	 * was moved, we later failed to lock the buffers and could not move
	 * the mapping back due to an elevated page count, we would have to
	 * block waiting on other references to be dropped.
	 */
376 377
	if (mode == MIGRATE_ASYNC && head &&
			!buffer_migrate_lock_buffers(head, mode)) {
378 379 380 381 382
		page_unfreeze_refs(page, expected_count);
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

C
Christoph Lameter 已提交
383 384 385
	/*
	 * Now we know that no one else is looking at the page.
	 */
386
	get_page(newpage);	/* add cache reference */
C
Christoph Lameter 已提交
387 388 389 390 391
	if (PageSwapCache(page)) {
		SetPageSwapCache(newpage);
		set_page_private(newpage, page_private(page));
	}

392 393 394
	radix_tree_replace_slot(pslot, newpage);

	/*
395 396
	 * Drop cache reference from old page by unfreezing
	 * to one less reference.
397 398
	 * We know this isn't the last reference.
	 */
399
	page_unfreeze_refs(page, expected_count - 1);
400

401 402 403 404 405 406 407 408 409 410 411 412
	/*
	 * If moved to a different zone then also account
	 * the page for that zone. Other VM counters will be
	 * taken care of when we establish references to the
	 * new page and drop references to the old page.
	 *
	 * Note that anonymous pages are accounted for
	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
	 * are mapped to swap space.
	 */
	__dec_zone_page_state(page, NR_FILE_PAGES);
	__inc_zone_page_state(newpage, NR_FILE_PAGES);
413
	if (!PageSwapCache(page) && PageSwapBacked(page)) {
414 415 416
		__dec_zone_page_state(page, NR_SHMEM);
		__inc_zone_page_state(newpage, NR_SHMEM);
	}
N
Nick Piggin 已提交
417
	spin_unlock_irq(&mapping->tree_lock);
C
Christoph Lameter 已提交
418

419
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
420 421
}

N
Naoya Horiguchi 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434
/*
 * The expected number of remaining references is the same as that
 * of migrate_page_move_mapping().
 */
int migrate_huge_page_move_mapping(struct address_space *mapping,
				   struct page *newpage, struct page *page)
{
	int expected_count;
	void **pslot;

	if (!mapping) {
		if (page_count(page) != 1)
			return -EAGAIN;
435
		return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
436 437 438 439 440 441 442 443 444
	}

	spin_lock_irq(&mapping->tree_lock);

	pslot = radix_tree_lookup_slot(&mapping->page_tree,
					page_index(page));

	expected_count = 2 + page_has_private(page);
	if (page_count(page) != expected_count ||
445
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Naoya Horiguchi 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

	if (!page_freeze_refs(page, expected_count)) {
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

	get_page(newpage);

	radix_tree_replace_slot(pslot, newpage);

459
	page_unfreeze_refs(page, expected_count - 1);
N
Naoya Horiguchi 已提交
460 461

	spin_unlock_irq(&mapping->tree_lock);
462
	return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
463 464
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
/*
 * Gigantic pages are so large that we do not guarantee that page++ pointer
 * arithmetic will work across the entire page.  We need something more
 * specialized.
 */
static void __copy_gigantic_page(struct page *dst, struct page *src,
				int nr_pages)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < nr_pages; ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

static void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	int nr_pages;

	if (PageHuge(src)) {
		/* hugetlbfs page */
		struct hstate *h = page_hstate(src);
		nr_pages = pages_per_huge_page(h);

		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
			__copy_gigantic_page(dst, src, nr_pages);
			return;
		}
	} else {
		/* thp page */
		BUG_ON(!PageTransHuge(src));
		nr_pages = hpage_nr_pages(src);
	}

	for (i = 0; i < nr_pages; i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

C
Christoph Lameter 已提交
513 514 515
/*
 * Copy the page to its new location
 */
N
Naoya Horiguchi 已提交
516
void migrate_page_copy(struct page *newpage, struct page *page)
C
Christoph Lameter 已提交
517
{
518 519
	int cpupid;

520
	if (PageHuge(page) || PageTransHuge(page))
N
Naoya Horiguchi 已提交
521 522 523
		copy_huge_page(newpage, page);
	else
		copy_highpage(newpage, page);
C
Christoph Lameter 已提交
524 525 526 527 528 529 530

	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
L
Lee Schermerhorn 已提交
531
	if (TestClearPageActive(page)) {
532
		VM_BUG_ON_PAGE(PageUnevictable(page), page);
C
Christoph Lameter 已提交
533
		SetPageActive(newpage);
534 535
	} else if (TestClearPageUnevictable(page))
		SetPageUnevictable(newpage);
C
Christoph Lameter 已提交
536 537 538 539 540 541 542
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

	if (PageDirty(page)) {
		clear_page_dirty_for_io(page);
N
Nick Piggin 已提交
543 544 545 546 547
		/*
		 * Want to mark the page and the radix tree as dirty, and
		 * redo the accounting that clear_page_dirty_for_io undid,
		 * but we can't use set_page_dirty because that function
		 * is actually a signal that all of the page has become dirty.
L
Lucas De Marchi 已提交
548
		 * Whereas only part of our page may be dirty.
N
Nick Piggin 已提交
549
		 */
550 551 552 553
		if (PageSwapBacked(page))
			SetPageDirty(newpage);
		else
			__set_page_dirty_nobuffers(newpage);
C
Christoph Lameter 已提交
554 555
 	}

556 557 558 559 560 561 562
	/*
	 * Copy NUMA information to the new page, to prevent over-eager
	 * future migrations of this same page.
	 */
	cpupid = page_cpupid_xchg_last(page, -1);
	page_cpupid_xchg_last(newpage, cpupid);

N
Nick Piggin 已提交
563
	mlock_migrate_page(newpage, page);
564
	ksm_migrate_page(newpage, page);
565 566 567 568
	/*
	 * Please do not reorder this without considering how mm/ksm.c's
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
	 */
C
Christoph Lameter 已提交
569 570 571 572 573 574 575 576 577 578 579 580
	ClearPageSwapCache(page);
	ClearPagePrivate(page);
	set_page_private(page, 0);

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
}

581 582 583 584
/************************************************************
 *                    Migration functions
 ***********************************************************/

C
Christoph Lameter 已提交
585 586
/*
 * Common logic to directly migrate a single page suitable for
587
 * pages that do not use PagePrivate/PagePrivate2.
C
Christoph Lameter 已提交
588 589 590
 *
 * Pages are locked upon entry and exit.
 */
591
int migrate_page(struct address_space *mapping,
592 593
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
C
Christoph Lameter 已提交
594 595 596 597 598
{
	int rc;

	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

599
	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
C
Christoph Lameter 已提交
600

601
	if (rc != MIGRATEPAGE_SUCCESS)
C
Christoph Lameter 已提交
602 603 604
		return rc;

	migrate_page_copy(newpage, page);
605
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
606 607 608
}
EXPORT_SYMBOL(migrate_page);

609
#ifdef CONFIG_BLOCK
610 611 612 613 614
/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist.
 */
615
int buffer_migrate_page(struct address_space *mapping,
616
		struct page *newpage, struct page *page, enum migrate_mode mode)
617 618 619 620 621
{
	struct buffer_head *bh, *head;
	int rc;

	if (!page_has_buffers(page))
622
		return migrate_page(mapping, newpage, page, mode);
623 624 625

	head = page_buffers(page);

626
	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
627

628
	if (rc != MIGRATEPAGE_SUCCESS)
629 630
		return rc;

631 632 633 634 635
	/*
	 * In the async case, migrate_page_move_mapping locked the buffers
	 * with an IRQ-safe spinlock held. In the sync case, the buffers
	 * need to be locked now
	 */
636 637
	if (mode != MIGRATE_ASYNC)
		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663

	ClearPagePrivate(page);
	set_page_private(newpage, page_private(page));
	set_page_private(page, 0);
	put_page(page);
	get_page(newpage);

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

	SetPagePrivate(newpage);

	migrate_page_copy(newpage, page);

	bh = head;
	do {
		unlock_buffer(bh);
 		put_bh(bh);
		bh = bh->b_this_page;

	} while (bh != head);

664
	return MIGRATEPAGE_SUCCESS;
665 666
}
EXPORT_SYMBOL(buffer_migrate_page);
667
#endif
668

669 670 671 672
/*
 * Writeback a page to clean the dirty state
 */
static int writeout(struct address_space *mapping, struct page *page)
673
{
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = 1,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1
	};
	int rc;

	if (!mapping->a_ops->writepage)
		/* No write method for the address space */
		return -EINVAL;

	if (!clear_page_dirty_for_io(page))
		/* Someone else already triggered a write */
		return -EAGAIN;

691
	/*
692 693 694 695 696 697
	 * A dirty page may imply that the underlying filesystem has
	 * the page on some queue. So the page must be clean for
	 * migration. Writeout may mean we loose the lock and the
	 * page state is no longer what we checked for earlier.
	 * At this point we know that the migration attempt cannot
	 * be successful.
698
	 */
699
	remove_migration_ptes(page, page);
700

701
	rc = mapping->a_ops->writepage(page, &wbc);
702

703 704 705 706
	if (rc != AOP_WRITEPAGE_ACTIVATE)
		/* unlocked. Relock */
		lock_page(page);

H
Hugh Dickins 已提交
707
	return (rc < 0) ? -EIO : -EAGAIN;
708 709 710 711 712 713
}

/*
 * Default handling if a filesystem does not provide a migration function.
 */
static int fallback_migrate_page(struct address_space *mapping,
714
	struct page *newpage, struct page *page, enum migrate_mode mode)
715
{
716
	if (PageDirty(page)) {
717 718
		/* Only writeback pages in full synchronous migration */
		if (mode != MIGRATE_SYNC)
719
			return -EBUSY;
720
		return writeout(mapping, page);
721
	}
722 723 724 725 726

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
727
	if (page_has_private(page) &&
728 729 730
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;

731
	return migrate_page(mapping, newpage, page, mode);
732 733
}

734 735 736 737 738 739
/*
 * Move a page to a newly allocated page
 * The page is locked and all ptes have been successfully removed.
 *
 * The new page will have replaced the old page if this function
 * is successful.
L
Lee Schermerhorn 已提交
740 741 742
 *
 * Return value:
 *   < 0 - error code
743
 *  MIGRATEPAGE_SUCCESS - success
744
 */
745
static int move_to_new_page(struct page *newpage, struct page *page,
746
				int remap_swapcache, enum migrate_mode mode)
747 748 749 750 751 752 753 754 755
{
	struct address_space *mapping;
	int rc;

	/*
	 * Block others from accessing the page when we get around to
	 * establishing additional references. We are the only one
	 * holding a reference to the new page at this point.
	 */
N
Nick Piggin 已提交
756
	if (!trylock_page(newpage))
757 758 759 760 761
		BUG();

	/* Prepare mapping for the new page.*/
	newpage->index = page->index;
	newpage->mapping = page->mapping;
R
Rik van Riel 已提交
762 763
	if (PageSwapBacked(page))
		SetPageSwapBacked(newpage);
764 765 766

	mapping = page_mapping(page);
	if (!mapping)
767
		rc = migrate_page(mapping, newpage, page, mode);
768
	else if (mapping->a_ops->migratepage)
769
		/*
770 771 772 773
		 * Most pages have a mapping and most filesystems provide a
		 * migratepage callback. Anonymous pages are part of swap
		 * space which also has its own migratepage callback. This
		 * is the most common path for page migration.
774
		 */
775
		rc = mapping->a_ops->migratepage(mapping,
776
						newpage, page, mode);
777
	else
778
		rc = fallback_migrate_page(mapping, newpage, page, mode);
779

780
	if (rc != MIGRATEPAGE_SUCCESS) {
781
		newpage->mapping = NULL;
782 783 784
	} else {
		if (remap_swapcache)
			remove_migration_ptes(page, newpage);
785
		page->mapping = NULL;
786
	}
787 788 789 790 791 792

	unlock_page(newpage);

	return rc;
}

793
static int __unmap_and_move(struct page *page, struct page *newpage,
794
				int force, enum migrate_mode mode)
795
{
796
	int rc = -EAGAIN;
797
	int remap_swapcache = 1;
798
	struct mem_cgroup *mem;
799
	struct anon_vma *anon_vma = NULL;
800

N
Nick Piggin 已提交
801
	if (!trylock_page(page)) {
802
		if (!force || mode == MIGRATE_ASYNC)
803
			goto out;
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818

		/*
		 * It's not safe for direct compaction to call lock_page.
		 * For example, during page readahead pages are added locked
		 * to the LRU. Later, when the IO completes the pages are
		 * marked uptodate and unlocked. However, the queueing
		 * could be merging multiple pages for one bio (e.g.
		 * mpage_readpages). If an allocation happens for the
		 * second or third page, the process can end up locking
		 * the same page twice and deadlocking. Rather than
		 * trying to be clever about what pages can be locked,
		 * avoid the use of lock_page for direct compaction
		 * altogether.
		 */
		if (current->flags & PF_MEMALLOC)
819
			goto out;
820

821 822 823
		lock_page(page);
	}

824
	/* charge against new page */
825
	mem_cgroup_prepare_migration(page, newpage, &mem);
826

827
	if (PageWriteback(page)) {
828
		/*
829
		 * Only in the case of a full synchronous migration is it
830 831 832
		 * necessary to wait for PageWriteback. In the async case,
		 * the retry loop is too short and in the sync-light case,
		 * the overhead of stalling is too much
833
		 */
834
		if (mode != MIGRATE_SYNC) {
835 836 837 838
			rc = -EBUSY;
			goto uncharge;
		}
		if (!force)
839
			goto uncharge;
840 841 842
		wait_on_page_writeback(page);
	}
	/*
843 844
	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
	 * we cannot notice that anon_vma is freed while we migrates a page.
845
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
846
	 * of migration. File cache pages are no problem because of page_lock()
847 848
	 * File Caches may use write_page() or lock_page() in migration, then,
	 * just care Anon page here.
849
	 */
H
Hugh Dickins 已提交
850
	if (PageAnon(page) && !PageKsm(page)) {
851
		/*
852
		 * Only page_lock_anon_vma_read() understands the subtleties of
853 854
		 * getting a hold on an anon_vma from outside one of its mms.
		 */
855
		anon_vma = page_get_anon_vma(page);
856 857
		if (anon_vma) {
			/*
858
			 * Anon page
859 860
			 */
		} else if (PageSwapCache(page)) {
861 862 863 864 865 866 867 868 869 870 871 872 873 874
			/*
			 * We cannot be sure that the anon_vma of an unmapped
			 * swapcache page is safe to use because we don't
			 * know in advance if the VMA that this page belonged
			 * to still exists. If the VMA and others sharing the
			 * data have been freed, then the anon_vma could
			 * already be invalid.
			 *
			 * To avoid this possibility, swapcache pages get
			 * migrated but are not remapped when migration
			 * completes
			 */
			remap_swapcache = 0;
		} else {
875
			goto uncharge;
876
		}
877
	}
878

879 880 881 882 883 884 885 886 887 888 889 890
	if (unlikely(balloon_page_movable(page))) {
		/*
		 * A ballooned page does not need any special attention from
		 * physical to virtual reverse mapping procedures.
		 * Skip any attempt to unmap PTEs or to remap swap cache,
		 * in order to avoid burning cycles at rmap level, and perform
		 * the page migration right away (proteced by page lock).
		 */
		rc = balloon_page_migrate(newpage, page, mode);
		goto uncharge;
	}

891
	/*
892 893 894 895 896 897 898 899 900 901
	 * Corner case handling:
	 * 1. When a new swap-cache page is read into, it is added to the LRU
	 * and treated as swapcache but it has no rmap yet.
	 * Calling try_to_unmap() against a page->mapping==NULL page will
	 * trigger a BUG.  So handle it here.
	 * 2. An orphaned page (see truncate_complete_page) might have
	 * fs-private metadata. The page can be picked up due to memory
	 * offlining.  Everywhere else except page reclaim, the page is
	 * invisible to the vm, so the page can not be migrated.  So try to
	 * free the metadata, so the page can be freed.
902
	 */
903
	if (!page->mapping) {
904
		VM_BUG_ON_PAGE(PageAnon(page), page);
905
		if (page_has_private(page)) {
906
			try_to_free_buffers(page);
907
			goto uncharge;
908
		}
909
		goto skip_unmap;
910 911
	}

912
	/* Establish migration ptes or remove ptes */
913
	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
914

915
skip_unmap:
916
	if (!page_mapped(page))
917
		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
918

919
	if (rc && remap_swapcache)
920
		remove_migration_ptes(page, page);
921 922

	/* Drop an anon_vma reference if we took one */
923
	if (anon_vma)
924
		put_anon_vma(anon_vma);
925

926
uncharge:
927 928 929
	mem_cgroup_end_migration(mem, page, newpage,
				 (rc == MIGRATEPAGE_SUCCESS ||
				  rc == MIGRATEPAGE_BALLOON_SUCCESS));
930
	unlock_page(page);
931 932 933
out:
	return rc;
}
934

935 936 937 938
/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
939 940 941
static int unmap_and_move(new_page_t get_new_page, free_page_t put_new_page,
			unsigned long private, struct page *page, int force,
			enum migrate_mode mode)
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
{
	int rc = 0;
	int *result = NULL;
	struct page *newpage = get_new_page(page, private, &result);

	if (!newpage)
		return -ENOMEM;

	if (page_count(page) == 1) {
		/* page was freed from under us. So we are done. */
		goto out;
	}

	if (unlikely(PageTransHuge(page)))
		if (unlikely(split_huge_page(page)))
			goto out;

959
	rc = __unmap_and_move(page, newpage, force, mode);
960 961 962 963 964 965 966 967 968 969 970 971

	if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
		/*
		 * A ballooned page has been migrated already.
		 * Now, it's the time to wrap-up counters,
		 * handle the page back to Buddy and return.
		 */
		dec_zone_page_state(page, NR_ISOLATED_ANON +
				    page_is_file_cache(page));
		balloon_page_free(page);
		return MIGRATEPAGE_SUCCESS;
	}
972
out:
973
	if (rc != -EAGAIN) {
974 975 976 977 978 979 980
		/*
		 * A page that has been migrated has all references
		 * removed and will be freed. A page that has not been
		 * migrated will have kepts its references and be
		 * restored.
		 */
		list_del(&page->lru);
K
KOSAKI Motohiro 已提交
981
		dec_zone_page_state(page, NR_ISOLATED_ANON +
982
				page_is_file_cache(page));
L
Lee Schermerhorn 已提交
983
		putback_lru_page(page);
984
	}
985

986
	/*
987 988 989
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, putback_lru_page() will drop the reference grabbed
	 * during isolation.
990
	 */
991 992 993 994 995
	if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
		put_new_page(newpage, private);
	else
		putback_lru_page(newpage);

996 997 998 999 1000 1001
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(newpage);
	}
1002 1003 1004
	return rc;
}

N
Naoya Horiguchi 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
/*
 * Counterpart of unmap_and_move_page() for hugepage migration.
 *
 * This function doesn't wait the completion of hugepage I/O
 * because there is no race between I/O and migration for hugepage.
 * Note that currently hugepage I/O occurs only in direct I/O
 * where no lock is held and PG_writeback is irrelevant,
 * and writeback status of all subpages are counted in the reference
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 * This means that when we try to migrate hugepage whose subpages are
 * doing direct I/O, some references remain after try_to_unmap() and
 * hugepage migration fails without data corruption.
 *
 * There is also no race when direct I/O is issued on the page under migration,
 * because then pte is replaced with migration swap entry and direct I/O code
 * will wait in the page fault for migration to complete.
 */
static int unmap_and_move_huge_page(new_page_t get_new_page,
1024 1025 1026
				free_page_t put_new_page, unsigned long private,
				struct page *hpage, int force,
				enum migrate_mode mode)
N
Naoya Horiguchi 已提交
1027 1028 1029
{
	int rc = 0;
	int *result = NULL;
1030
	struct page *new_hpage;
N
Naoya Horiguchi 已提交
1031 1032
	struct anon_vma *anon_vma = NULL;

1033 1034 1035 1036 1037 1038 1039
	/*
	 * Movability of hugepages depends on architectures and hugepage size.
	 * This check is necessary because some callers of hugepage migration
	 * like soft offline and memory hotremove don't walk through page
	 * tables or check whether the hugepage is pmd-based or not before
	 * kicking migration.
	 */
1040
	if (!hugepage_migration_supported(page_hstate(hpage))) {
1041
		putback_active_hugepage(hpage);
1042
		return -ENOSYS;
1043
	}
1044

1045
	new_hpage = get_new_page(hpage, private, &result);
N
Naoya Horiguchi 已提交
1046 1047 1048 1049 1050 1051
	if (!new_hpage)
		return -ENOMEM;

	rc = -EAGAIN;

	if (!trylock_page(hpage)) {
1052
		if (!force || mode != MIGRATE_SYNC)
N
Naoya Horiguchi 已提交
1053 1054 1055 1056
			goto out;
		lock_page(hpage);
	}

1057 1058
	if (PageAnon(hpage))
		anon_vma = page_get_anon_vma(hpage);
N
Naoya Horiguchi 已提交
1059 1060 1061 1062

	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);

	if (!page_mapped(hpage))
1063
		rc = move_to_new_page(new_hpage, hpage, 1, mode);
N
Naoya Horiguchi 已提交
1064

1065
	if (rc != MIGRATEPAGE_SUCCESS)
N
Naoya Horiguchi 已提交
1066 1067
		remove_migration_ptes(hpage, hpage);

H
Hugh Dickins 已提交
1068
	if (anon_vma)
1069
		put_anon_vma(anon_vma);
1070

1071
	if (rc == MIGRATEPAGE_SUCCESS)
1072 1073
		hugetlb_cgroup_migrate(hpage, new_hpage);

N
Naoya Horiguchi 已提交
1074
	unlock_page(hpage);
1075
out:
1076 1077
	if (rc != -EAGAIN)
		putback_active_hugepage(hpage);
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088

	/*
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, put_page() will drop the reference grabbed during
	 * isolation.
	 */
	if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
		put_new_page(new_hpage, private);
	else
		put_page(new_hpage);

N
Naoya Horiguchi 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(new_hpage);
	}
	return rc;
}

C
Christoph Lameter 已提交
1098
/*
1099 1100
 * migrate_pages - migrate the pages specified in a list, to the free pages
 *		   supplied as the target for the page migration
C
Christoph Lameter 已提交
1101
 *
1102 1103 1104
 * @from:		The list of pages to be migrated.
 * @get_new_page:	The function used to allocate free pages to be used
 *			as the target of the page migration.
1105 1106
 * @put_new_page:	The function used to free target pages if migration
 *			fails, or NULL if no special handling is necessary.
1107 1108 1109 1110
 * @private:		Private data to be passed on to get_new_page()
 * @mode:		The migration mode that specifies the constraints for
 *			page migration, if any.
 * @reason:		The reason for page migration.
C
Christoph Lameter 已提交
1111
 *
1112 1113 1114
 * The function returns after 10 attempts or if no pages are movable any more
 * because the list has become empty or no retryable pages exist any more.
 * The caller should call putback_lru_pages() to return pages to the LRU
1115
 * or free list only if ret != 0.
C
Christoph Lameter 已提交
1116
 *
1117
 * Returns the number of pages that were not migrated, or an error code.
C
Christoph Lameter 已提交
1118
 */
1119
int migrate_pages(struct list_head *from, new_page_t get_new_page,
1120 1121
		free_page_t put_new_page, unsigned long private,
		enum migrate_mode mode, int reason)
C
Christoph Lameter 已提交
1122
{
1123
	int retry = 1;
C
Christoph Lameter 已提交
1124
	int nr_failed = 0;
1125
	int nr_succeeded = 0;
C
Christoph Lameter 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
	int rc;

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

1135 1136
	for(pass = 0; pass < 10 && retry; pass++) {
		retry = 0;
C
Christoph Lameter 已提交
1137

1138 1139
		list_for_each_entry_safe(page, page2, from, lru) {
			cond_resched();
1140

1141 1142
			if (PageHuge(page))
				rc = unmap_and_move_huge_page(get_new_page,
1143 1144
						put_new_page, private, page,
						pass > 2, mode);
1145
			else
1146 1147
				rc = unmap_and_move(get_new_page, put_new_page,
						private, page, pass > 2, mode);
1148

1149
			switch(rc) {
1150 1151
			case -ENOMEM:
				goto out;
1152
			case -EAGAIN:
1153
				retry++;
1154
				break;
1155
			case MIGRATEPAGE_SUCCESS:
1156
				nr_succeeded++;
1157 1158
				break;
			default:
1159 1160 1161 1162 1163 1164
				/*
				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
				 * unlike -EAGAIN case, the failed page is
				 * removed from migration page list and not
				 * retried in the next outer loop.
				 */
1165
				nr_failed++;
1166
				break;
1167
			}
C
Christoph Lameter 已提交
1168 1169
		}
	}
1170
	rc = nr_failed + retry;
1171
out:
1172 1173 1174 1175
	if (nr_succeeded)
		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
	if (nr_failed)
		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1176 1177
	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);

C
Christoph Lameter 已提交
1178 1179 1180
	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

1181
	return rc;
C
Christoph Lameter 已提交
1182
}
1183

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
#ifdef CONFIG_NUMA
/*
 * Move a list of individual pages
 */
struct page_to_node {
	unsigned long addr;
	struct page *page;
	int node;
	int status;
};

static struct page *new_page_node(struct page *p, unsigned long private,
		int **result)
{
	struct page_to_node *pm = (struct page_to_node *)private;

	while (pm->node != MAX_NUMNODES && pm->page != p)
		pm++;

	if (pm->node == MAX_NUMNODES)
		return NULL;

	*result = &pm->status;

1208 1209 1210 1211 1212
	if (PageHuge(p))
		return alloc_huge_page_node(page_hstate(compound_head(p)),
					pm->node);
	else
		return alloc_pages_exact_node(pm->node,
1213
				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1214 1215 1216 1217 1218 1219
}

/*
 * Move a set of pages as indicated in the pm array. The addr
 * field must be set to the virtual address of the page to be moved
 * and the node number must contain a valid target node.
1220
 * The pm array ends with node = MAX_NUMNODES.
1221
 */
1222 1223 1224
static int do_move_page_to_node_array(struct mm_struct *mm,
				      struct page_to_node *pm,
				      int migrate_all)
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
{
	int err;
	struct page_to_node *pp;
	LIST_HEAD(pagelist);

	down_read(&mm->mmap_sem);

	/*
	 * Build a list of pages to migrate
	 */
	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
		struct vm_area_struct *vma;
		struct page *page;

		err = -EFAULT;
		vma = find_vma(mm, pp->addr);
1241
		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1242 1243
			goto set_status;

1244
		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1245 1246 1247 1248 1249

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1250 1251 1252 1253
		err = -ENOENT;
		if (!page)
			goto set_status;

1254
		/* Use PageReserved to check for zero page */
H
Hugh Dickins 已提交
1255
		if (PageReserved(page))
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
			goto put_and_set;

		pp->page = page;
		err = page_to_nid(page);

		if (err == pp->node)
			/*
			 * Node already in the right place
			 */
			goto put_and_set;

		err = -EACCES;
		if (page_mapcount(page) > 1 &&
				!migrate_all)
			goto put_and_set;

1272 1273 1274 1275 1276
		if (PageHuge(page)) {
			isolate_huge_page(page, &pagelist);
			goto put_and_set;
		}

1277
		err = isolate_lru_page(page);
1278
		if (!err) {
1279
			list_add_tail(&page->lru, &pagelist);
1280 1281 1282
			inc_zone_page_state(page, NR_ISOLATED_ANON +
					    page_is_file_cache(page));
		}
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
put_and_set:
		/*
		 * Either remove the duplicate refcount from
		 * isolate_lru_page() or drop the page ref if it was
		 * not isolated.
		 */
		put_page(page);
set_status:
		pp->status = err;
	}

1294
	err = 0;
1295
	if (!list_empty(&pagelist)) {
1296
		err = migrate_pages(&pagelist, new_page_node, NULL,
1297
				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1298
		if (err)
1299
			putback_movable_pages(&pagelist);
1300
	}
1301 1302 1303 1304 1305

	up_read(&mm->mmap_sem);
	return err;
}

1306 1307 1308 1309
/*
 * Migrate an array of page address onto an array of nodes and fill
 * the corresponding array of status.
 */
1310
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1311 1312 1313 1314 1315
			 unsigned long nr_pages,
			 const void __user * __user *pages,
			 const int __user *nodes,
			 int __user *status, int flags)
{
1316 1317 1318 1319
	struct page_to_node *pm;
	unsigned long chunk_nr_pages;
	unsigned long chunk_start;
	int err;
1320

1321 1322 1323
	err = -ENOMEM;
	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
	if (!pm)
1324
		goto out;
1325 1326 1327

	migrate_prep();

1328
	/*
1329 1330
	 * Store a chunk of page_to_node array in a page,
	 * but keep the last one as a marker
1331
	 */
1332
	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1333

1334 1335 1336 1337
	for (chunk_start = 0;
	     chunk_start < nr_pages;
	     chunk_start += chunk_nr_pages) {
		int j;
1338

1339 1340 1341 1342 1343 1344
		if (chunk_start + chunk_nr_pages > nr_pages)
			chunk_nr_pages = nr_pages - chunk_start;

		/* fill the chunk pm with addrs and nodes from user-space */
		for (j = 0; j < chunk_nr_pages; j++) {
			const void __user *p;
1345 1346
			int node;

1347 1348 1349 1350 1351 1352
			err = -EFAULT;
			if (get_user(p, pages + j + chunk_start))
				goto out_pm;
			pm[j].addr = (unsigned long) p;

			if (get_user(node, nodes + j + chunk_start))
1353 1354 1355
				goto out_pm;

			err = -ENODEV;
1356 1357 1358
			if (node < 0 || node >= MAX_NUMNODES)
				goto out_pm;

1359
			if (!node_state(node, N_MEMORY))
1360 1361 1362 1363 1364 1365
				goto out_pm;

			err = -EACCES;
			if (!node_isset(node, task_nodes))
				goto out_pm;

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
			pm[j].node = node;
		}

		/* End marker for this chunk */
		pm[chunk_nr_pages].node = MAX_NUMNODES;

		/* Migrate this chunk */
		err = do_move_page_to_node_array(mm, pm,
						 flags & MPOL_MF_MOVE_ALL);
		if (err < 0)
			goto out_pm;
1377 1378

		/* Return status information */
1379 1380
		for (j = 0; j < chunk_nr_pages; j++)
			if (put_user(pm[j].status, status + j + chunk_start)) {
1381
				err = -EFAULT;
1382 1383 1384 1385
				goto out_pm;
			}
	}
	err = 0;
1386 1387

out_pm:
1388
	free_page((unsigned long)pm);
1389 1390 1391 1392
out:
	return err;
}

1393
/*
1394
 * Determine the nodes of an array of pages and store it in an array of status.
1395
 */
1396 1397
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
				const void __user **pages, int *status)
1398
{
1399 1400
	unsigned long i;

1401 1402
	down_read(&mm->mmap_sem);

1403
	for (i = 0; i < nr_pages; i++) {
1404
		unsigned long addr = (unsigned long)(*pages);
1405 1406
		struct vm_area_struct *vma;
		struct page *page;
1407
		int err = -EFAULT;
1408 1409

		vma = find_vma(mm, addr);
1410
		if (!vma || addr < vma->vm_start)
1411 1412
			goto set_status;

1413
		page = follow_page(vma, addr, 0);
1414 1415 1416 1417 1418

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1419 1420
		err = -ENOENT;
		/* Use PageReserved to check for zero page */
H
Hugh Dickins 已提交
1421
		if (!page || PageReserved(page))
1422 1423 1424 1425
			goto set_status;

		err = page_to_nid(page);
set_status:
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
		*status = err;

		pages++;
		status++;
	}

	up_read(&mm->mmap_sem);
}

/*
 * Determine the nodes of a user array of pages and store it in
 * a user array of status.
 */
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
			 const void __user * __user *pages,
			 int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];

1447 1448
	while (nr_pages) {
		unsigned long chunk_nr;
1449

1450 1451 1452 1453 1454 1455
		chunk_nr = nr_pages;
		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
			chunk_nr = DO_PAGES_STAT_CHUNK_NR;

		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
			break;
1456 1457 1458

		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);

1459 1460
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
			break;
1461

1462 1463 1464 1465 1466
		pages += chunk_nr;
		status += chunk_nr;
		nr_pages -= chunk_nr;
	}
	return nr_pages ? -EFAULT : 0;
1467 1468 1469 1470 1471 1472
}

/*
 * Move a list of pages in the address space of the currently executing
 * process.
 */
1473 1474 1475 1476
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
		const void __user * __user *, pages,
		const int __user *, nodes,
		int __user *, status, int, flags)
1477
{
1478
	const struct cred *cred = current_cred(), *tcred;
1479 1480
	struct task_struct *task;
	struct mm_struct *mm;
1481
	int err;
1482
	nodemask_t task_nodes;
1483 1484 1485 1486 1487 1488 1489 1490 1491

	/* Check flags */
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
		return -EINVAL;

	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
		return -EPERM;

	/* Find the mm_struct */
1492
	rcu_read_lock();
1493
	task = pid ? find_task_by_vpid(pid) : current;
1494
	if (!task) {
1495
		rcu_read_unlock();
1496 1497
		return -ESRCH;
	}
1498
	get_task_struct(task);
1499 1500 1501 1502 1503 1504 1505

	/*
	 * Check if this process has the right to modify the specified
	 * process. The right exists if the process has administrative
	 * capabilities, superuser privileges or the same
	 * userid as the target process.
	 */
1506
	tcred = __task_cred(task);
1507 1508
	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1509
	    !capable(CAP_SYS_NICE)) {
1510
		rcu_read_unlock();
1511
		err = -EPERM;
1512
		goto out;
1513
	}
1514
	rcu_read_unlock();
1515

1516 1517
 	err = security_task_movememory(task);
 	if (err)
1518
		goto out;
1519

1520 1521 1522 1523
	task_nodes = cpuset_mems_allowed(task);
	mm = get_task_mm(task);
	put_task_struct(task);

1524 1525 1526 1527 1528 1529 1530 1531
	if (!mm)
		return -EINVAL;

	if (nodes)
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
				    nodes, status, flags);
	else
		err = do_pages_stat(mm, nr_pages, pages, status);
1532 1533 1534

	mmput(mm);
	return err;
1535 1536 1537 1538

out:
	put_task_struct(task);
	return err;
1539 1540
}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
/*
 * Call migration functions in the vma_ops that may prepare
 * memory in a vm for migration. migration functions may perform
 * the migration for vmas that do not have an underlying page struct.
 */
int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
	const nodemask_t *from, unsigned long flags)
{
 	struct vm_area_struct *vma;
 	int err = 0;

1552
	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1553 1554 1555 1556 1557 1558 1559 1560
 		if (vma->vm_ops && vma->vm_ops->migrate) {
 			err = vma->vm_ops->migrate(vma, to, from, flags);
 			if (err)
 				break;
 		}
 	}
 	return err;
}
1561 1562 1563 1564 1565 1566 1567

#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns true if this is a safe migration target node for misplaced NUMA
 * pages. Currently it only checks the watermarks which crude
 */
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1568
				   unsigned long nr_migrate_pages)
1569 1570 1571 1572 1573 1574 1575 1576
{
	int z;
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

1577
		if (!zone_reclaimable(zone))
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
			continue;

		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
		if (!zone_watermark_ok(zone, 0,
				       high_wmark_pages(zone) +
				       nr_migrate_pages,
				       0, 0))
			continue;
		return true;
	}
	return false;
}

static struct page *alloc_misplaced_dst_page(struct page *page,
					   unsigned long data,
					   int **result)
{
	int nid = (int) data;
	struct page *newpage;

	newpage = alloc_pages_exact_node(nid,
1599 1600 1601
					 (GFP_HIGHUSER_MOVABLE |
					  __GFP_THISNODE | __GFP_NOMEMALLOC |
					  __GFP_NORETRY | __GFP_NOWARN) &
1602
					 ~GFP_IOFS, 0);
1603

1604 1605 1606
	return newpage;
}

1607 1608 1609 1610
/*
 * page migration rate limiting control.
 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
 * window of time. Default here says do not migrate more than 1280M per second.
1611 1612 1613 1614
 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
 * as it is faults that reset the window, pte updates will happen unconditionally
 * if there has not been a fault since @pteupdate_interval_millisecs after the
 * throttle window closed.
1615 1616
 */
static unsigned int migrate_interval_millisecs __read_mostly = 100;
1617
static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1618 1619
static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
/* Returns true if NUMA migration is currently rate limited */
bool migrate_ratelimited(int node)
{
	pg_data_t *pgdat = NODE_DATA(node);

	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
				msecs_to_jiffies(pteupdate_interval_millisecs)))
		return false;

	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
		return false;

	return true;
}

1635
/* Returns true if the node is migrate rate-limited after the update */
1636 1637
static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
					unsigned long nr_pages)
1638
{
1639 1640 1641 1642 1643 1644
	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1645
		spin_lock(&pgdat->numabalancing_migrate_lock);
1646 1647 1648
		pgdat->numabalancing_migrate_nr_pages = 0;
		pgdat->numabalancing_migrate_next_window = jiffies +
			msecs_to_jiffies(migrate_interval_millisecs);
1649
		spin_unlock(&pgdat->numabalancing_migrate_lock);
1650
	}
1651 1652 1653
	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
								nr_pages);
1654
		return true;
1655
	}
1656 1657 1658 1659 1660 1661 1662 1663 1664

	/*
	 * This is an unlocked non-atomic update so errors are possible.
	 * The consequences are failing to migrate when we potentiall should
	 * have which is not severe enough to warrant locking. If it is ever
	 * a problem, it can be converted to a per-cpu counter.
	 */
	pgdat->numabalancing_migrate_nr_pages += nr_pages;
	return false;
1665 1666
}

1667
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1668
{
1669
	int page_lru;
1670

1671
	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1672

1673
	/* Avoid migrating to a node that is nearly full */
1674 1675
	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
		return 0;
1676

1677 1678
	if (isolate_lru_page(page))
		return 0;
1679

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	/*
	 * migrate_misplaced_transhuge_page() skips page migration's usual
	 * check on page_count(), so we must do it here, now that the page
	 * has been isolated: a GUP pin, or any other pin, prevents migration.
	 * The expected page count is 3: 1 for page's mapcount and 1 for the
	 * caller's pin and 1 for the reference taken by isolate_lru_page().
	 */
	if (PageTransHuge(page) && page_count(page) != 3) {
		putback_lru_page(page);
		return 0;
1690 1691
	}

1692 1693 1694 1695
	page_lru = page_is_file_cache(page);
	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
				hpage_nr_pages(page));

1696
	/*
1697 1698 1699
	 * Isolating the page has taken another reference, so the
	 * caller's reference can be safely dropped without the page
	 * disappearing underneath us during migration.
1700 1701
	 */
	put_page(page);
1702
	return 1;
1703 1704
}

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
bool pmd_trans_migrating(pmd_t pmd)
{
	struct page *page = pmd_page(pmd);
	return PageLocked(page);
}

void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
{
	struct page *page = pmd_page(*pmd);
	wait_on_page_locked(page);
}

1717 1718 1719 1720 1721
/*
 * Attempt to migrate a misplaced page to the specified destination
 * node. Caller is expected to have an elevated reference count on
 * the page that will be dropped by this function before returning.
 */
1722 1723
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
			   int node)
1724 1725
{
	pg_data_t *pgdat = NODE_DATA(node);
1726
	int isolated;
1727 1728 1729 1730
	int nr_remaining;
	LIST_HEAD(migratepages);

	/*
1731 1732
	 * Don't migrate file pages that are mapped in multiple processes
	 * with execute permissions as they are probably shared libraries.
1733
	 */
1734 1735
	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
	    (vma->vm_flags & VM_EXEC))
1736 1737 1738 1739 1740 1741 1742
		goto out;

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1743
	if (numamigrate_update_ratelimit(pgdat, 1))
1744 1745 1746 1747 1748 1749 1750
		goto out;

	isolated = numamigrate_isolate_page(pgdat, page);
	if (!isolated)
		goto out;

	list_add(&page->lru, &migratepages);
1751
	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1752 1753
				     NULL, node, MIGRATE_ASYNC,
				     MR_NUMA_MISPLACED);
1754
	if (nr_remaining) {
1755 1756 1757 1758 1759 1760
		if (!list_empty(&migratepages)) {
			list_del(&page->lru);
			dec_zone_page_state(page, NR_ISOLATED_ANON +
					page_is_file_cache(page));
			putback_lru_page(page);
		}
1761 1762 1763
		isolated = 0;
	} else
		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1764 1765
	BUG_ON(!list_empty(&migratepages));
	return isolated;
1766 1767 1768 1769

out:
	put_page(page);
	return 0;
1770
}
1771
#endif /* CONFIG_NUMA_BALANCING */
1772

1773
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1774 1775 1776 1777
/*
 * Migrates a THP to a given target node. page must be locked and is unlocked
 * before returning.
 */
1778 1779 1780 1781 1782 1783
int migrate_misplaced_transhuge_page(struct mm_struct *mm,
				struct vm_area_struct *vma,
				pmd_t *pmd, pmd_t entry,
				unsigned long address,
				struct page *page, int node)
{
1784
	spinlock_t *ptl;
1785 1786 1787 1788 1789
	pg_data_t *pgdat = NODE_DATA(node);
	int isolated = 0;
	struct page *new_page = NULL;
	struct mem_cgroup *memcg = NULL;
	int page_lru = page_is_file_cache(page);
1790 1791
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1792
	pmd_t orig_entry;
1793 1794 1795 1796 1797 1798

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1799
	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1800 1801 1802
		goto out_dropref;

	new_page = alloc_pages_node(node,
1803 1804
		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
		HPAGE_PMD_ORDER);
1805 1806 1807
	if (!new_page)
		goto out_fail;

1808
	isolated = numamigrate_isolate_page(pgdat, page);
1809
	if (!isolated) {
1810
		put_page(new_page);
1811
		goto out_fail;
1812 1813
	}

1814 1815 1816
	if (mm_tlb_flush_pending(mm))
		flush_tlb_range(vma, mmun_start, mmun_end);

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
	/* Prepare a page as a migration target */
	__set_page_locked(new_page);
	SetPageSwapBacked(new_page);

	/* anon mapping, we can simply copy page->mapping to the new page: */
	new_page->mapping = page->mapping;
	new_page->index = page->index;
	migrate_page_copy(new_page, page);
	WARN_ON(PageLRU(new_page));

	/* Recheck the target PMD */
1828
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1829
	ptl = pmd_lock(mm, pmd);
1830 1831
	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
fail_putback:
1832
		spin_unlock(ptl);
1833
		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844

		/* Reverse changes made by migrate_page_copy() */
		if (TestClearPageActive(new_page))
			SetPageActive(page);
		if (TestClearPageUnevictable(new_page))
			SetPageUnevictable(page);
		mlock_migrate_page(page, new_page);

		unlock_page(new_page);
		put_page(new_page);		/* Free it */

1845 1846
		/* Retake the callers reference and putback on LRU */
		get_page(page);
1847
		putback_lru_page(page);
1848 1849
		mod_zone_page_state(page_zone(page),
			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1850 1851

		goto out_unlock;
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
	}

	/*
	 * Traditional migration needs to prepare the memcg charge
	 * transaction early to prevent the old page from being
	 * uncharged when installing migration entries.  Here we can
	 * save the potential rollback and start the charge transfer
	 * only when migration is already known to end successfully.
	 */
	mem_cgroup_prepare_migration(page, new_page, &memcg);

1863
	orig_entry = *pmd;
1864 1865
	entry = mk_pmd(new_page, vma->vm_page_prot);
	entry = pmd_mkhuge(entry);
1866
	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1867

1868 1869 1870 1871 1872 1873 1874
	/*
	 * Clear the old entry under pagetable lock and establish the new PTE.
	 * Any parallel GUP will either observe the old page blocking on the
	 * page lock, block on the page table lock or observe the new page.
	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
	 * guarantee the copy is visible before the pagetable update.
	 */
1875
	flush_cache_range(vma, mmun_start, mmun_end);
1876
	page_add_anon_rmap(new_page, vma, mmun_start);
1877 1878 1879
	pmdp_clear_flush(vma, mmun_start, pmd);
	set_pmd_at(mm, mmun_start, pmd, entry);
	flush_tlb_range(vma, mmun_start, mmun_end);
1880
	update_mmu_cache_pmd(vma, address, &entry);
1881 1882

	if (page_count(page) != 2) {
1883 1884
		set_pmd_at(mm, mmun_start, pmd, orig_entry);
		flush_tlb_range(vma, mmun_start, mmun_end);
1885 1886 1887 1888 1889
		update_mmu_cache_pmd(vma, address, &entry);
		page_remove_rmap(new_page);
		goto fail_putback;
	}

1890
	page_remove_rmap(page);
1891

1892 1893 1894 1895 1896 1897
	/*
	 * Finish the charge transaction under the page table lock to
	 * prevent split_huge_page() from dividing up the charge
	 * before it's fully transferred to the new page.
	 */
	mem_cgroup_end_migration(memcg, page, new_page, true);
1898
	spin_unlock(ptl);
1899
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1900

1901 1902 1903 1904
	/* Take an "isolate" reference and put new page on the LRU. */
	get_page(new_page);
	putback_lru_page(new_page);

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
	unlock_page(new_page);
	unlock_page(page);
	put_page(page);			/* Drop the rmap reference */
	put_page(page);			/* Drop the LRU isolation reference */

	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);

	mod_zone_page_state(page_zone(page),
			NR_ISOLATED_ANON + page_lru,
			-HPAGE_PMD_NR);
	return isolated;

1918 1919
out_fail:
	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1920
out_dropref:
1921 1922 1923
	ptl = pmd_lock(mm, pmd);
	if (pmd_same(*pmd, entry)) {
		entry = pmd_mknonnuma(entry);
1924
		set_pmd_at(mm, mmun_start, pmd, entry);
1925 1926 1927
		update_mmu_cache_pmd(vma, address, &entry);
	}
	spin_unlock(ptl);
1928

1929
out_unlock:
1930
	unlock_page(page);
1931 1932 1933
	put_page(page);
	return 0;
}
1934 1935 1936
#endif /* CONFIG_NUMA_BALANCING */

#endif /* CONFIG_NUMA */