backref.c 42.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
22 23 24
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
25
#include "locking.h"
26

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
				struct btrfs_file_extent_item *fi,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
	u64 data_offset;
	u64 data_len;
	struct extent_inode_elem *e;

	data_offset = btrfs_file_extent_offset(eb, fi);
	data_len = btrfs_file_extent_num_bytes(eb, fi);

	if (extent_item_pos < data_offset ||
	    extent_item_pos >= data_offset + data_len)
		return 1;

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
	e->offset = key->offset + (extent_item_pos - data_offset);
	*eie = e;

	return 0;
}

static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
		if (ret < 0)
			return ret;
	}

	return 0;
}

100 101 102 103 104 105
/*
 * this structure records all encountered refs on the way up to the root
 */
struct __prelim_ref {
	struct list_head list;
	u64 root_id;
106
	struct btrfs_key key_for_search;
107 108
	int level;
	int count;
109
	struct extent_inode_elem *inode_list;
110 111 112 113
	u64 parent;
	u64 wanted_disk_byte;
};

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
 *                (see __add_missing_keys)
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */

153
static int __add_prelim_ref(struct list_head *head, u64 root_id,
154 155
			    struct btrfs_key *key, int level,
			    u64 parent, u64 wanted_disk_byte, int count)
156 157 158 159 160 161 162 163 164 165
{
	struct __prelim_ref *ref;

	/* in case we're adding delayed refs, we're holding the refs spinlock */
	ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
	if (key)
166
		ref->key_for_search = *key;
167
	else
168
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
169

170
	ref->inode_list = NULL;
171 172 173 174 175 176 177 178 179 180
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
	list_add_tail(&ref->list, head);

	return 0;
}

static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
181 182 183
				struct ulist *parents, int level,
				struct btrfs_key *key, u64 wanted_disk_byte,
				const u64 *extent_item_pos)
184 185
{
	int ret;
186
	int slot = path->slots[level];
187
	struct extent_buffer *eb = path->nodes[level];
188
	struct btrfs_file_extent_item *fi;
189
	struct extent_inode_elem *eie = NULL;
190
	u64 disk_byte;
191
	u64 wanted_objectid = key->objectid;
192 193

add_parent:
194 195 196 197 198 199 200
	if (level == 0 && extent_item_pos) {
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		ret = check_extent_in_eb(key, eb, fi, *extent_item_pos, &eie);
		if (ret < 0)
			return ret;
	}
	ret = ulist_add(parents, eb->start, (unsigned long)eie, GFP_NOFS);
201 202 203 204 205 206 207 208 209 210 211 212 213
	if (ret < 0)
		return ret;

	if (level != 0)
		return 0;

	/*
	 * if the current leaf is full with EXTENT_DATA items, we must
	 * check the next one if that holds a reference as well.
	 * ref->count cannot be used to skip this check.
	 * repeat this until we don't find any additional EXTENT_DATA items.
	 */
	while (1) {
214
		eie = NULL;
215 216 217 218 219 220 221 222
		ret = btrfs_next_leaf(root, path);
		if (ret < 0)
			return ret;
		if (ret)
			return 0;

		eb = path->nodes[0];
		for (slot = 0; slot < btrfs_header_nritems(eb); ++slot) {
223 224 225
			btrfs_item_key_to_cpu(eb, key, slot);
			if (key->objectid != wanted_objectid ||
			    key->type != BTRFS_EXTENT_DATA_KEY)
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
				return 0;
			fi = btrfs_item_ptr(eb, slot,
						struct btrfs_file_extent_item);
			disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
			if (disk_byte == wanted_disk_byte)
				goto add_parent;
		}
	}

	return 0;
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
243
					int search_commit_root,
244
					u64 time_seq,
245
					struct __prelim_ref *ref,
246 247
					struct ulist *parents,
					const u64 *extent_item_pos)
248 249 250 251 252 253 254 255 256 257 258 259 260
{
	struct btrfs_path *path;
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct btrfs_key key = {0};
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
261
	path->search_commit_root = !!search_commit_root;
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(root)) {
		ret = PTR_ERR(root);
		goto out;
	}

	rcu_read_lock();
	root_level = btrfs_header_level(root->node);
	rcu_read_unlock();

	if (root_level + 1 == level)
		goto out;

	path->lowest_level = level;
280
	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
281 282 283
	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
		 "%d for key (%llu %u %llu)\n",
		 (unsigned long long)ref->root_id, level, ref->count, ret,
284 285 286
		 (unsigned long long)ref->key_for_search.objectid,
		 ref->key_for_search.type,
		 (unsigned long long)ref->key_for_search.offset);
287 288 289 290 291 292 293 294 295 296
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
	if (!eb) {
		WARN_ON(1);
		ret = 1;
		goto out;
	}

297
	if (level == 0)
298 299
		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);

300 301
	ret = add_all_parents(root, path, parents, level, &key,
				ref->wanted_disk_byte, extent_item_pos);
302 303 304 305 306 307 308 309 310
out:
	btrfs_free_path(path);
	return ret;
}

/*
 * resolve all indirect backrefs from the list
 */
static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
311
				   int search_commit_root, u64 time_seq,
312 313
				   struct list_head *head,
				   const u64 *extent_item_pos)
314 315 316 317 318 319 320 321
{
	int err;
	int ret = 0;
	struct __prelim_ref *ref;
	struct __prelim_ref *ref_safe;
	struct __prelim_ref *new_ref;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
322
	struct ulist_iterator uiter;
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
	 * _safe allows us to insert directly after the current item without
	 * iterating over the newly inserted items.
	 * we're also allowed to re-assign ref during iteration.
	 */
	list_for_each_entry_safe(ref, ref_safe, head, list) {
		if (ref->parent)	/* already direct */
			continue;
		if (ref->count == 0)
			continue;
338
		err = __resolve_indirect_ref(fs_info, search_commit_root,
339 340
					     time_seq, ref, parents,
					     extent_item_pos);
341 342 343 344 345 346 347
		if (err) {
			if (ret == 0)
				ret = err;
			continue;
		}

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
348 349
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
350
		ref->parent = node ? node->val : 0;
351 352
		ref->inode_list =
			node ? (struct extent_inode_elem *)node->aux : 0;
353 354

		/* additional parents require new refs being added here */
J
Jan Schmidt 已提交
355
		while ((node = ulist_next(parents, &uiter))) {
356 357 358 359 360 361 362
			new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
			if (!new_ref) {
				ret = -ENOMEM;
				break;
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
363 364
			new_ref->inode_list =
					(struct extent_inode_elem *)node->aux;
365 366 367 368 369 370 371 372 373
			list_add(&new_ref->list, &ref->list);
		}
		ulist_reinit(parents);
	}

	ulist_free(parents);
	return ret;
}

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
static inline int ref_for_same_block(struct __prelim_ref *ref1,
				     struct __prelim_ref *ref2)
{
	if (ref1->level != ref2->level)
		return 0;
	if (ref1->root_id != ref2->root_id)
		return 0;
	if (ref1->key_for_search.type != ref2->key_for_search.type)
		return 0;
	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
		return 0;
	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
		return 0;
	if (ref1->parent != ref2->parent)
		return 0;

	return 1;
}

/*
 * read tree blocks and add keys where required.
 */
static int __add_missing_keys(struct btrfs_fs_info *fs_info,
			      struct list_head *head)
{
	struct list_head *pos;
	struct extent_buffer *eb;

	list_for_each(pos, head) {
		struct __prelim_ref *ref;
		ref = list_entry(pos, struct __prelim_ref, list);

		if (ref->parent)
			continue;
		if (ref->key_for_search.type)
			continue;
		BUG_ON(!ref->wanted_disk_byte);
		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
				     fs_info->tree_root->leafsize, 0);
		BUG_ON(!eb);
		btrfs_tree_read_lock(eb);
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return 0;
}

425 426 427 428
/*
 * merge two lists of backrefs and adjust counts accordingly
 *
 * mode = 1: merge identical keys, if key is set
429 430 431 432
 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 *           additionally, we could even add a key range for the blocks we
 *           looked into to merge even more (-> replace unresolved refs by those
 *           having a parent).
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
 * mode = 2: merge identical parents
 */
static int __merge_refs(struct list_head *head, int mode)
{
	struct list_head *pos1;

	list_for_each(pos1, head) {
		struct list_head *n2;
		struct list_head *pos2;
		struct __prelim_ref *ref1;

		ref1 = list_entry(pos1, struct __prelim_ref, list);

		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
		     pos2 = n2, n2 = pos2->next) {
			struct __prelim_ref *ref2;
449
			struct __prelim_ref *xchg;
450 451 452 453

			ref2 = list_entry(pos2, struct __prelim_ref, list);

			if (mode == 1) {
454
				if (!ref_for_same_block(ref1, ref2))
455
					continue;
456 457 458 459 460
				if (!ref1->parent && ref2->parent) {
					xchg = ref1;
					ref1 = ref2;
					ref2 = xchg;
				}
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
				ref1->count += ref2->count;
			} else {
				if (ref1->parent != ref2->parent)
					continue;
				ref1->count += ref2->count;
			}
			list_del(&ref2->list);
			kfree(ref2);
		}

	}
	return 0;
}

/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
			      struct list_head *prefs)
{
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
	struct rb_node *n = &head->node.rb_node;
484 485
	struct btrfs_key key;
	struct btrfs_key op_key = {0};
486
	int sgn;
487
	int ret = 0;
488 489

	if (extent_op && extent_op->update_key)
490
		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

	while ((n = rb_prev(n))) {
		struct btrfs_delayed_ref_node *node;
		node = rb_entry(n, struct btrfs_delayed_ref_node,
				rb_node);
		if (node->bytenr != head->node.bytenr)
			break;
		WARN_ON(node->is_head);

		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
			sgn = 1;
			break;
		case BTRFS_DROP_DELAYED_REF:
			sgn = -1;
			break;
		default:
			BUG_ON(1);
		}
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
522
			ret = __add_prelim_ref(prefs, ref->root, &op_key,
523 524 525 526 527 528 529 530
					       ref->level + 1, 0, node->bytenr,
					       node->ref_mod * sgn);
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
531
			ret = __add_prelim_ref(prefs, ref->root, NULL,
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
					       ref->level + 1, ref->parent,
					       node->bytenr,
					       node->ref_mod * sgn);
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
					       node->bytenr,
					       node->ref_mod * sgn);
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
					       ref->parent, node->bytenr,
					       node->ref_mod * sgn);
			break;
		}
		default:
			WARN_ON(1);
		}
		BUG_ON(ret);
	}

	return 0;
}

/*
 * add all inline backrefs for bytenr to the list
 */
static int __add_inline_refs(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path, u64 bytenr,
576
			     int *info_level, struct list_head *prefs)
577
{
578
	int ret = 0;
579 580 581 582 583 584 585 586 587 588 589 590 591
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
592
	slot = path->slots[0];
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
		type = btrfs_extent_inline_ref_type(leaf, iref);
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
625
			ret = __add_prelim_ref(prefs, 0, NULL,
626 627 628 629 630 631 632 633 634 635 636 637 638 639
						*info_level + 1, offset,
						bytenr, 1);
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
					       bytenr, count);
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
640 641 642
			ret = __add_prelim_ref(prefs, offset, NULL,
					       *info_level + 1, 0,
					       bytenr, 1);
643 644 645 646 647 648 649 650 651 652 653 654 655
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
			root = btrfs_extent_data_ref_root(leaf, dref);
656 657
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
					       bytenr, count);
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
			break;
		}
		default:
			WARN_ON(1);
		}
		BUG_ON(ret);
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
 */
static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
			    struct btrfs_path *path, u64 bytenr,
675
			    int info_level, struct list_head *prefs)
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
705
			ret = __add_prelim_ref(prefs, 0, NULL,
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
						info_level + 1, key.offset,
						bytenr, 1);
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
						bytenr, count);
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
721 722 723
			ret = __add_prelim_ref(prefs, key.offset, NULL,
					       info_level + 1, 0,
					       bytenr, 1);
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
			root = btrfs_extent_data_ref_root(leaf, dref);
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
739
					       bytenr, count);
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
			break;
		}
		default:
			WARN_ON(1);
		}
		BUG_ON(ret);
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
761 762
			     u64 delayed_ref_seq, u64 time_seq,
			     struct ulist *refs, struct ulist *roots,
763
			     const u64 *extent_item_pos)
764 765 766 767
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
768
	struct btrfs_delayed_ref_head *head;
769 770
	int info_level = 0;
	int ret;
771
	int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
772 773 774 775 776 777 778 779 780 781 782 783 784 785
	struct list_head prefs_delayed;
	struct list_head prefs;
	struct __prelim_ref *ref;

	INIT_LIST_HEAD(&prefs);
	INIT_LIST_HEAD(&prefs_delayed);

	key.objectid = bytenr;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)-1;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
786
	path->search_commit_root = !!search_commit_root;
787 788 789 790 791 792 793

	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
794 795
	head = NULL;

796 797 798 799 800
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
	if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
		head = btrfs_find_delayed_ref_head(trans, bytenr);
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
				atomic_inc(&head->node.refs);
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
				btrfs_put_delayed_ref(&head->node);
				goto again;
			}
825 826
			ret = __add_delayed_refs(head, delayed_ref_seq,
						 &prefs_delayed);
827 828 829 830
			if (ret) {
				spin_unlock(&delayed_refs->lock);
				goto out;
			}
831
		}
832
		spin_unlock(&delayed_refs->lock);
833 834 835 836 837 838
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

839
		path->slots[0]--;
840
		leaf = path->nodes[0];
841
		slot = path->slots[0];
842 843 844 845
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
		    key.type == BTRFS_EXTENT_ITEM_KEY) {
			ret = __add_inline_refs(fs_info, path, bytenr,
846
						&info_level, &prefs);
847 848
			if (ret)
				goto out;
849
			ret = __add_keyed_refs(fs_info, path, bytenr,
850 851 852 853 854 855 856 857 858
					       info_level, &prefs);
			if (ret)
				goto out;
		}
	}
	btrfs_release_path(path);

	list_splice_init(&prefs_delayed, &prefs);

859 860 861 862
	ret = __add_missing_keys(fs_info, &prefs);
	if (ret)
		goto out;

863 864 865 866
	ret = __merge_refs(&prefs, 1);
	if (ret)
		goto out;

867 868
	ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq,
				      &prefs, extent_item_pos);
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
	if (ret)
		goto out;

	ret = __merge_refs(&prefs, 2);
	if (ret)
		goto out;

	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
		list_del(&ref->list);
		if (ref->count < 0)
			WARN_ON(1);
		if (ref->count && ref->root_id && ref->parent == 0) {
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
			BUG_ON(ret < 0);
		}
		if (ref->count && ref->parent) {
887
			struct extent_inode_elem *eie = NULL;
888
			if (extent_item_pos && !ref->inode_list) {
889 890 891 892 893 894 895 896 897
				u32 bsz;
				struct extent_buffer *eb;
				bsz = btrfs_level_size(fs_info->extent_root,
							info_level);
				eb = read_tree_block(fs_info->extent_root,
							   ref->parent, bsz, 0);
				BUG_ON(!eb);
				ret = find_extent_in_eb(eb, bytenr,
							*extent_item_pos, &eie);
898
				ref->inode_list = eie;
899 900
				free_extent_buffer(eb);
			}
901 902 903 904 905 906 907 908 909 910 911 912 913
			ret = ulist_add_merge(refs, ref->parent,
					      (unsigned long)ref->inode_list,
					      (unsigned long *)&eie, GFP_NOFS);
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
			BUG_ON(ret < 0);
		}
		kfree(ref);
	}

out:
	if (head)
		mutex_unlock(&head->mutex);
	btrfs_free_path(path);
	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
		list_del(&ref->list);
		kfree(ref);
	}
	while (!list_empty(&prefs_delayed)) {
		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
				       list);
		list_del(&ref->list);
		kfree(ref);
	}

	return ret;
}

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct extent_inode_elem *eie_next;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
		eie = (struct extent_inode_elem *)node->aux;
		for (; eie; eie = eie_next) {
			eie_next = eie->next;
			kfree(eie);
		}
		node->aux = 0;
	}

	ulist_free(blocks);
}

960 961 962 963 964 965 966 967 968 969
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
970 971
				u64 delayed_ref_seq, u64 time_seq,
				struct ulist **leafs,
972
				const u64 *extent_item_pos)
973 974 975 976 977 978 979 980 981 982 983 984 985
{
	struct ulist *tmp;
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*leafs = ulist_alloc(GFP_NOFS);
	if (!*leafs) {
		ulist_free(tmp);
		return -ENOMEM;
	}

986 987
	ret = find_parent_nodes(trans, fs_info, bytenr, delayed_ref_seq,
				time_seq, *leafs, tmp, extent_item_pos);
988 989 990
	ulist_free(tmp);

	if (ret < 0 && ret != -ENOENT) {
991
		free_leaf_list(*leafs);
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1013 1014
				u64 delayed_ref_seq, u64 time_seq,
				struct ulist **roots)
1015 1016 1017
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1018
	struct ulist_iterator uiter;
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1030
	ULIST_ITER_INIT(&uiter);
1031
	while (1) {
1032 1033
		ret = find_parent_nodes(trans, fs_info, bytenr, delayed_ref_seq,
					time_seq, tmp, *roots, NULL);
1034 1035 1036 1037 1038
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1039
		node = ulist_next(tmp, &uiter);
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
		if (!node)
			break;
		bytenr = node->val;
	}

	ulist_free(tmp);
	return 0;
}


1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
static int __inode_info(u64 inum, u64 ioff, u8 key_type,
			struct btrfs_root *fs_root, struct btrfs_path *path,
			struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;

	key.type = key_type;
	key.objectid = inum;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type || found_key->objectid != key.objectid)
		return 1;

	return 0;
}

/*
 * this makes the path point to (inum INODE_ITEM ioff)
 */
int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
			struct btrfs_path *path)
{
	struct btrfs_key key;
	return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
				&key);
}

static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
				struct btrfs_path *path,
				struct btrfs_key *found_key)
{
	return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
				found_key);
}

/*
 * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
 * of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
				struct btrfs_inode_ref *iref,
				struct extent_buffer *eb_in, u64 parent,
				char *dest, u32 size)
{
	u32 len;
	int slot;
	u64 next_inum;
	int ret;
	s64 bytes_left = size - 1;
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1126
	int leave_spinning = path->leave_spinning;
1127 1128 1129 1130

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1131
	path->leave_spinning = 1;
1132 1133 1134 1135 1136 1137
	while (1) {
		len = btrfs_inode_ref_name_len(eb, iref);
		bytes_left -= len;
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
						(unsigned long)(iref + 1), len);
1138 1139
		if (eb != eb_in) {
			btrfs_tree_read_unlock_blocking(eb);
1140
			free_extent_buffer(eb);
1141
		}
1142
		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1143 1144
		if (ret > 0)
			ret = -ENOENT;
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
		if (ret)
			break;
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1156
		if (eb != eb_in) {
1157
			atomic_inc(&eb->refs);
1158 1159 1160
			btrfs_tree_read_lock(eb);
			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		}
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
		btrfs_release_path(path);

		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1171
	path->leave_spinning = leave_spinning;
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
			struct btrfs_path *path, struct btrfs_key *found_key)
{
	int ret;
	u64 flags;
	u32 item_size;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	ret = btrfs_previous_item(fs_info->extent_root, path,
					0, BTRFS_EXTENT_ITEM_KEY);
	if (ret < 0)
		return ret;

	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
	if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
	    found_key->objectid > logical ||
J
Jan Schmidt 已提交
1209 1210 1211
	    found_key->objectid + found_key->offset <= logical) {
		pr_debug("logical %llu is not within any extent\n",
			 (unsigned long long)logical);
1212
		return -ENOENT;
J
Jan Schmidt 已提交
1213
	}
1214 1215 1216 1217 1218 1219 1220 1221

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

J
Jan Schmidt 已提交
1222 1223 1224 1225 1226 1227 1228
	pr_debug("logical %llu is at position %llu within the extent (%llu "
		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
		 (unsigned long long)logical,
		 (unsigned long long)(logical - found_key->objectid),
		 (unsigned long long)found_key->objectid,
		 (unsigned long long)found_key->offset,
		 (unsigned long long)flags, item_size);
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		return BTRFS_EXTENT_FLAG_TREE_BLOCK;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		return BTRFS_EXTENT_FLAG_DATA;

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
 * __get_extent_inline_ref must pass the modified ptr parameter to get the
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
				struct btrfs_extent_item *ei, u32 item_size,
				struct btrfs_extent_inline_ref **out_eiref,
				int *out_type)
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
			info = (struct btrfs_tree_block_info *)(ei + 1);
			*out_eiref =
				(struct btrfs_extent_inline_ref *)(info + 1);
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
		if ((void *)*ptr >= (void *)ei + item_size)
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
 * call and may be modified (see __get_extent_inline_ref comment).
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
				struct btrfs_extent_item *ei, u32 item_size,
				u64 *out_root, u8 *out_level)
{
	int ret;
	int type;
	struct btrfs_tree_block_info *info;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
						&eiref, &type);
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	info = (struct btrfs_tree_block_info *)(ei + 1);
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
	*out_level = btrfs_tree_block_level(eb, info);

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1325 1326
static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
				u64 root, u64 extent_item_objectid,
J
Jan Schmidt 已提交
1327
				iterate_extent_inodes_t *iterate, void *ctx)
1328
{
1329
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1330 1331
	int ret = 0;

1332
	for (eie = inode_list; eie; eie = eie->next) {
J
Jan Schmidt 已提交
1333
		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1334 1335 1336
			 "root %llu\n", extent_item_objectid,
			 eie->inum, eie->offset, root);
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1337
		if (ret) {
1338 1339
			pr_debug("stopping iteration for %llu due to ret=%d\n",
				 extent_item_objectid, ret);
J
Jan Schmidt 已提交
1340 1341
			break;
		}
1342 1343 1344 1345 1346 1347 1348
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1349
 * the given parameters.
1350 1351 1352
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1353
				u64 extent_item_objectid, u64 extent_item_pos,
1354
				int search_commit_root,
1355 1356 1357 1358 1359
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
	struct list_head data_refs = LIST_HEAD_INIT(data_refs);
	struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
J
Jan Schmidt 已提交
1360
	struct btrfs_trans_handle *trans;
1361 1362
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1363 1364
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1365 1366
	struct seq_list seq_elem = {};
	struct seq_list tree_mod_seq_elem = {};
J
Jan Schmidt 已提交
1367 1368
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1369
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1370

J
Jan Schmidt 已提交
1371 1372
	pr_debug("resolving all inodes for extent %llu\n",
			extent_item_objectid);
1373

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	if (search_commit_root) {
		trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
	} else {
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);

		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
		btrfs_get_delayed_seq(delayed_refs, &seq_elem);
		spin_unlock(&delayed_refs->lock);
1385
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1386
	}
1387

J
Jan Schmidt 已提交
1388
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1389 1390
				   seq_elem.seq, tree_mod_seq_elem.seq, &refs,
				   &extent_item_pos);
J
Jan Schmidt 已提交
1391 1392
	if (ret)
		goto out;
1393

J
Jan Schmidt 已提交
1394 1395
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1396
		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1397 1398
						seq_elem.seq,
						tree_mod_seq_elem.seq, &roots);
J
Jan Schmidt 已提交
1399 1400
		if (ret)
			break;
J
Jan Schmidt 已提交
1401 1402
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1403 1404 1405 1406 1407 1408 1409
			pr_debug("root %llu references leaf %llu, data list "
				 "%#lx\n", root_node->val, ref_node->val,
				 ref_node->aux);
			ret = iterate_leaf_refs(
				(struct extent_inode_elem *)ref_node->aux,
				root_node->val, extent_item_objectid,
				iterate, ctx);
J
Jan Schmidt 已提交
1410
		}
1411 1412
		ulist_free(roots);
		roots = NULL;
1413 1414
	}

1415
	free_leaf_list(refs);
J
Jan Schmidt 已提交
1416 1417
	ulist_free(roots);
out:
1418
	if (!search_commit_root) {
1419
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1420 1421 1422 1423
		btrfs_put_delayed_seq(delayed_refs, &seq_elem);
		btrfs_end_transaction(trans, fs_info->extent_root);
	}

1424 1425 1426 1427 1428 1429 1430 1431
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
J
Jan Schmidt 已提交
1432
	u64 extent_item_pos;
1433
	struct btrfs_key found_key;
1434
	int search_commit_root = path->search_commit_root;
1435 1436 1437

	ret = extent_from_logical(fs_info, logical, path,
					&found_key);
J
Jan Schmidt 已提交
1438
	btrfs_release_path(path);
1439 1440 1441 1442 1443
	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = -EINVAL;
	if (ret < 0)
		return ret;

J
Jan Schmidt 已提交
1444
	extent_item_pos = logical - found_key.objectid;
1445 1446 1447
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
					iterate, ctx);
1448 1449 1450 1451 1452 1453 1454 1455

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
				struct btrfs_path *path,
				iterate_irefs_t *iterate, void *ctx)
{
1456
	int ret = 0;
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

1468
	while (!ret) {
1469
		path->leave_spinning = 1;
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
					&found_key);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
		atomic_inc(&eb->refs);
1485 1486
		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1487 1488 1489 1490 1491 1492 1493 1494
		btrfs_release_path(path);

		item = btrfs_item_nr(eb, slot);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
J
Jan Schmidt 已提交
1495 1496 1497 1498
			pr_debug("following ref at offset %u for inode %llu in "
				 "tree %llu\n", cur,
				 (unsigned long long)found_key.objectid,
				 (unsigned long long)fs_root->objectid);
1499
			ret = iterate(parent, iref, eb, ctx);
1500
			if (ret)
1501 1502 1503 1504
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
1505
		btrfs_tree_read_unlock_blocking(eb);
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref,
				struct extent_buffer *eb, void *ctx)
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

1531
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1532 1533 1534 1535 1536 1537
	fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb,
				inum, fspath_min, bytes_left);
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
J
Jan Schmidt 已提交
1538
		pr_debug("path resolved: %s\n", fspath);
1539
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1540 1541 1542
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
J
Jan Schmidt 已提交
1543 1544 1545
		pr_debug("missed path, not enough space. missing bytes: %lu, "
			 "constructed so far: %s\n",
			 (unsigned long)(fspath_min - fspath), fspath_min);
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
1557
 * from ipath->fspath->val[i].
1558
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1559
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
				inode_to_path, ipath);
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
	data = kmalloc(alloc_bytes, GFP_NOFS);
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
		return (void *)fspath;

	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
	if (!ifp) {
		kfree(fspath);
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
1625 1626
	if (!ipath)
		return;
1627
	kfree(ipath->fspath);
1628 1629
	kfree(ipath);
}