xfs_log_cil.c 27.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_log.h"
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
#include "xfs_log_priv.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_mount.h"
#include "xfs_error.h"
#include "xfs_alloc.h"
30
#include "xfs_extent_busy.h"
31
#include "xfs_discard.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

/*
 * Allocate a new ticket. Failing to get a new ticket makes it really hard to
 * recover, so we don't allow failure here. Also, we allocate in a context that
 * we don't want to be issuing transactions from, so we need to tell the
 * allocation code this as well.
 *
 * We don't reserve any space for the ticket - we are going to steal whatever
 * space we require from transactions as they commit. To ensure we reserve all
 * the space required, we need to set the current reservation of the ticket to
 * zero so that we know to steal the initial transaction overhead from the
 * first transaction commit.
 */
static struct xlog_ticket *
xlog_cil_ticket_alloc(
47
	struct xlog	*log)
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
{
	struct xlog_ticket *tic;

	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
				KM_SLEEP|KM_NOFS);
	tic->t_trans_type = XFS_TRANS_CHECKPOINT;

	/*
	 * set the current reservation to zero so we know to steal the basic
	 * transaction overhead reservation from the first transaction commit.
	 */
	tic->t_curr_res = 0;
	return tic;
}

/*
 * After the first stage of log recovery is done, we know where the head and
 * tail of the log are. We need this log initialisation done before we can
 * initialise the first CIL checkpoint context.
 *
 * Here we allocate a log ticket to track space usage during a CIL push.  This
 * ticket is passed to xlog_write() directly so that we don't slowly leak log
 * space by failing to account for space used by log headers and additional
 * region headers for split regions.
 */
void
xlog_cil_init_post_recovery(
75
	struct xlog	*log)
76 77 78 79 80 81 82
{
	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
	log->l_cilp->xc_ctx->sequence = 1;
	log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle,
								log->l_curr_block);
}

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
STATIC int
xlog_cil_lv_item_format(
	struct xfs_log_item	*lip,
	struct xfs_log_vec	*lv)
{
	int	index;
	char	*ptr;

	/* format new vectors into array */
	lip->li_ops->iop_format(lip, lv->lv_iovecp);

	/* copy data into existing array */
	ptr = lv->lv_buf;
	for (index = 0; index < lv->lv_niovecs; index++) {
		struct xfs_log_iovec *vec = &lv->lv_iovecp[index];

		memcpy(ptr, vec->i_addr, vec->i_len);
		vec->i_addr = ptr;
		ptr += vec->i_len;
	}

	/*
	 * some size calculations for log vectors over-estimate, so the caller
	 * doesn't know the amount of space actually used by the item. Return
	 * the byte count to the caller so they can check and store it
	 * appropriately.
	 */
	return ptr - lv->lv_buf;
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
/*
 * Format log item into a flat buffers
 *
 * For delayed logging, we need to hold a formatted buffer containing all the
 * changes on the log item. This enables us to relog the item in memory and
 * write it out asynchronously without needing to relock the object that was
 * modified at the time it gets written into the iclog.
 *
 * This function builds a vector for the changes in each log item in the
 * transaction. It then works out the length of the buffer needed for each log
 * item, allocates them and formats the vector for the item into the buffer.
 * The buffer is then attached to the log item are then inserted into the
 * Committed Item List for tracking until the next checkpoint is written out.
 *
 * We don't set up region headers during this process; we simply copy the
 * regions into the flat buffer. We can do this because we still have to do a
 * formatting step to write the regions into the iclog buffer.  Writing the
 * ophdrs during the iclog write means that we can support splitting large
 * regions across iclog boundares without needing a change in the format of the
 * item/region encapsulation.
 *
 * Hence what we need to do now is change the rewrite the vector array to point
 * to the copied region inside the buffer we just allocated. This allows us to
 * format the regions into the iclog as though they are being formatted
 * directly out of the objects themselves.
 */
139 140 141
static struct xfs_log_vec *
xlog_cil_prepare_log_vecs(
	struct xfs_trans	*tp)
142
{
143
	struct xfs_log_item_desc *lidp;
144
	struct xfs_log_vec	*prev_lv = NULL;
145
	struct xfs_log_vec	*ret_lv = NULL;
146

147 148 149 150 151 152 153 154

	/* Bail out if we didn't find a log item.  */
	if (list_empty(&tp->t_items)) {
		ASSERT(0);
		return NULL;
	}

	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
155
		struct xfs_log_item *lip = lidp->lid_item;
156 157 158 159
		struct xfs_log_vec *lv;
		int	niovecs = 0;
		int	nbytes = 0;
		int	buf_size;
160
		bool	ordered = false;
161

162 163 164 165
		/* Skip items which aren't dirty in this transaction. */
		if (!(lidp->lid_flags & XFS_LID_DIRTY))
			continue;

166 167 168
		/* get number of vecs and size of data to be stored */
		lip->li_ops->iop_size(lip, &niovecs, &nbytes);

169
		/* Skip items that do not have any vectors for writing */
170
		if (!niovecs)
171 172
			continue;

173 174 175 176 177 178 179 180
		/*
		 * Ordered items need to be tracked but we do not wish to write
		 * them. We need a logvec to track the object, but we do not
		 * need an iovec or buffer to be allocated for copying data.
		 */
		if (niovecs == XFS_LOG_VEC_ORDERED) {
			ordered = true;
			niovecs = 0;
181
			nbytes = 0;
182 183
		}

184 185 186
		/* calc buffer size */
		buf_size = sizeof(struct xfs_log_vec) + nbytes +
				niovecs * sizeof(struct xfs_log_iovec);
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
		/* compare to existing item size */
		if (lip->li_lv && buf_size <= lip->li_lv->lv_size) {
			/* same or smaller, optimise common overwrite case */
			lv = lip->li_lv;
			lv->lv_next = NULL;

			if (ordered)
				goto insert;

			/* Ensure the lv is set up according to ->iop_size */
			lv->lv_niovecs = niovecs;
			lv->lv_buf = (char *)lv + buf_size - nbytes;
			lv->lv_buf_len = xlog_cil_lv_item_format(lip, lv);
			goto insert;
		}

204 205 206 207 208
		/* allocate new data chunk */
		lv = kmem_zalloc(buf_size, KM_SLEEP|KM_NOFS);
		lv->lv_item = lip;
		lv->lv_size = buf_size;
		lv->lv_niovecs = niovecs;
209 210
		if (ordered) {
			/* track as an ordered logvec */
211 212 213
			ASSERT(lip->li_lv == NULL);
			lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
			goto insert;
214 215
		}

216
		/* The allocated iovec region lies beyond the log vector. */
217
		lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
218

219 220
		/* The allocated data region lies beyond the iovec region */
		lv->lv_buf = (char *)lv + buf_size - nbytes;
221

222 223
		lv->lv_buf_len = xlog_cil_lv_item_format(lip, lv);
insert:
224
		ASSERT(lv->lv_buf_len <= nbytes);
225
		if (!ret_lv)
226
			ret_lv = lv;
227
		else
228 229
			prev_lv->lv_next = lv;
		prev_lv = lv;
230
	}
231 232

	return ret_lv;
233
}
234

235 236 237 238 239 240 241
/*
 * Prepare the log item for insertion into the CIL. Calculate the difference in
 * log space and vectors it will consume, and if it is a new item pin it as
 * well.
 */
STATIC void
xfs_cil_prepare_item(
242
	struct xlog		*log,
243 244 245 246 247 248
	struct xfs_log_vec	*lv,
	int			*len,
	int			*diff_iovecs)
{
	struct xfs_log_vec	*old = lv->lv_item->li_lv;

249 250 251 252 253 254 255 256 257 258 259
	if (!old) {
		/* new lv, must pin the log item */
		ASSERT(!lv->lv_item->li_lv);

		if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
			*len += lv->lv_buf_len;
			*diff_iovecs += lv->lv_niovecs;
		}
		lv->lv_item->li_ops->iop_pin(lv->lv_item);

	} else if (old != lv) {
260
		/* existing lv on log item, space used is a delta */
261 262 263 264 265 266 267 268 269 270 271 272
		ASSERT((old->lv_buf && old->lv_buf_len && old->lv_niovecs) ||
			old->lv_buf_len == XFS_LOG_VEC_ORDERED);

		/*
		 * If the new item is ordered, keep the old one that is already
		 * tracking dirty or ordered regions
		 */
		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
			ASSERT(!lv->lv_buf);
			kmem_free(lv);
			return;
		}
273 274 275 276 277

		*len += lv->lv_buf_len - old->lv_buf_len;
		*diff_iovecs += lv->lv_niovecs - old->lv_niovecs;
		kmem_free(old);
	} else {
278 279
		/* re-used lv */
		/* XXX: can't account for len/diff_iovecs yet */
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	}

	/* attach new log vector to log item */
	lv->lv_item->li_lv = lv;

	/*
	 * If this is the first time the item is being committed to the
	 * CIL, store the sequence number on the log item so we can
	 * tell in future commits whether this is the first checkpoint
	 * the item is being committed into.
	 */
	if (!lv->lv_item->li_seq)
		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
}

/*
 * Insert the log items into the CIL and calculate the difference in space
 * consumed by the item. Add the space to the checkpoint ticket and calculate
 * if the change requires additional log metadata. If it does, take that space
299
 * as well. Remove the amount of space we added to the checkpoint ticket from
300 301
 * the current transaction ticket so that the accounting works out correctly.
 */
302 303
static void
xlog_cil_insert_items(
304
	struct xlog		*log,
305
	struct xfs_log_vec	*log_vector,
306
	struct xlog_ticket	*ticket)
307
{
308 309 310 311 312 313
	struct xfs_cil		*cil = log->l_cilp;
	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
	struct xfs_log_vec	*lv;
	int			len = 0;
	int			diff_iovecs = 0;
	int			iclog_space;
314 315

	ASSERT(log_vector);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332

	/*
	 * Do all the accounting aggregation and switching of log vectors
	 * around in a separate loop to the insertion of items into the CIL.
	 * Then we can do a separate loop to update the CIL within a single
	 * lock/unlock pair. This reduces the number of round trips on the CIL
	 * lock from O(nr_logvectors) to O(1) and greatly reduces the overall
	 * hold time for the transaction commit.
	 *
	 * If this is the first time the item is being placed into the CIL in
	 * this context, pin it so it can't be written to disk until the CIL is
	 * flushed to the iclog and the iclog written to disk.
	 *
	 * We can do this safely because the context can't checkpoint until we
	 * are done so it doesn't matter exactly how we update the CIL.
	 */
	spin_lock(&cil->xc_cil_lock);
333 334
	for (lv = log_vector; lv; ) {
		struct xfs_log_vec *next = lv->lv_next;
335

336 337 338 339 340 341 342
		ASSERT(lv->lv_item->li_lv || list_empty(&lv->lv_item->li_cil));
		lv->lv_next = NULL;

		/*
		 * xfs_cil_prepare_item() may free the lv, so move the item on
		 * the CIL first.
		 */
343
		list_move_tail(&lv->lv_item->li_cil, &cil->xc_cil);
344 345 346
		xfs_cil_prepare_item(log, lv, &len, &diff_iovecs);
		lv = next;
	}
347

348 349
	/* account for space used by new iovec headers  */
	len += diff_iovecs * sizeof(xlog_op_header_t);
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
	ctx->nvecs += diff_iovecs;

	/*
	 * Now transfer enough transaction reservation to the context ticket
	 * for the checkpoint. The context ticket is special - the unit
	 * reservation has to grow as well as the current reservation as we
	 * steal from tickets so we can correctly determine the space used
	 * during the transaction commit.
	 */
	if (ctx->ticket->t_curr_res == 0) {
		/* first commit in checkpoint, steal the header reservation */
		ASSERT(ticket->t_curr_res >= ctx->ticket->t_unit_res + len);
		ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
		ticket->t_curr_res -= ctx->ticket->t_unit_res;
	}

	/* do we need space for more log record headers? */
	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
	if (len > 0 && (ctx->space_used / iclog_space !=
				(ctx->space_used + len) / iclog_space)) {
		int hdrs;

		hdrs = (len + iclog_space - 1) / iclog_space;
		/* need to take into account split region headers, too */
		hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
		ctx->ticket->t_unit_res += hdrs;
		ctx->ticket->t_curr_res += hdrs;
		ticket->t_curr_res -= hdrs;
		ASSERT(ticket->t_curr_res >= len);
	}
	ticket->t_curr_res -= len;
	ctx->space_used += len;

	spin_unlock(&cil->xc_cil_lock);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
}

static void
xlog_cil_free_logvec(
	struct xfs_log_vec	*log_vector)
{
	struct xfs_log_vec	*lv;

	for (lv = log_vector; lv; ) {
		struct xfs_log_vec *next = lv->lv_next;
		kmem_free(lv);
		lv = next;
	}
}

/*
 * Mark all items committed and clear busy extents. We free the log vector
 * chains in a separate pass so that we unpin the log items as quickly as
 * possible.
 */
static void
xlog_cil_committed(
	void	*args,
	int	abort)
{
	struct xfs_cil_ctx	*ctx = args;
410
	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
411

412 413
	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
					ctx->start_lsn, abort);
414

D
Dave Chinner 已提交
415 416
	xfs_extent_busy_sort(&ctx->busy_extents);
	xfs_extent_busy_clear(mp, &ctx->busy_extents,
417
			     (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
418 419 420 421 422 423

	spin_lock(&ctx->cil->xc_cil_lock);
	list_del(&ctx->committing);
	spin_unlock(&ctx->cil->xc_cil_lock);

	xlog_cil_free_logvec(ctx->lv_chain);
424 425 426 427 428

	if (!list_empty(&ctx->busy_extents)) {
		ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);

		xfs_discard_extents(mp, &ctx->busy_extents);
D
Dave Chinner 已提交
429
		xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
430 431
	}

432 433 434 435
	kmem_free(ctx);
}

/*
436 437 438 439 440 441 442 443 444 445 446 447
 * Push the Committed Item List to the log. If @push_seq flag is zero, then it
 * is a background flush and so we can chose to ignore it. Otherwise, if the
 * current sequence is the same as @push_seq we need to do a flush. If
 * @push_seq is less than the current sequence, then it has already been
 * flushed and we don't need to do anything - the caller will wait for it to
 * complete if necessary.
 *
 * @push_seq is a value rather than a flag because that allows us to do an
 * unlocked check of the sequence number for a match. Hence we can allows log
 * forces to run racily and not issue pushes for the same sequence twice. If we
 * get a race between multiple pushes for the same sequence they will block on
 * the first one and then abort, hence avoiding needless pushes.
448
 */
449
STATIC int
450
xlog_cil_push(
451
	struct xlog		*log)
452 453 454 455 456 457 458 459 460 461 462 463 464
{
	struct xfs_cil		*cil = log->l_cilp;
	struct xfs_log_vec	*lv;
	struct xfs_cil_ctx	*ctx;
	struct xfs_cil_ctx	*new_ctx;
	struct xlog_in_core	*commit_iclog;
	struct xlog_ticket	*tic;
	int			num_iovecs;
	int			error = 0;
	struct xfs_trans_header thdr;
	struct xfs_log_iovec	lhdr;
	struct xfs_log_vec	lvhdr = { NULL };
	xfs_lsn_t		commit_lsn;
465
	xfs_lsn_t		push_seq;
466 467 468 469 470 471 472

	if (!cil)
		return 0;

	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
	new_ctx->ticket = xlog_cil_ticket_alloc(log);

473
	down_write(&cil->xc_ctx_lock);
474 475
	ctx = cil->xc_ctx;

476 477 478
	spin_lock(&cil->xc_cil_lock);
	push_seq = cil->xc_push_seq;
	ASSERT(push_seq <= ctx->sequence);
479

480 481 482 483 484 485 486 487
	/*
	 * Check if we've anything to push. If there is nothing, then we don't
	 * move on to a new sequence number and so we have to be able to push
	 * this sequence again later.
	 */
	if (list_empty(&cil->xc_cil)) {
		cil->xc_push_seq = 0;
		spin_unlock(&cil->xc_cil_lock);
488
		goto out_skip;
489 490 491
	}
	spin_unlock(&cil->xc_cil_lock);

492 493

	/* check for a previously pushed seqeunce */
494
	if (push_seq < cil->xc_ctx->sequence)
495 496
		goto out_skip;

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	/*
	 * pull all the log vectors off the items in the CIL, and
	 * remove the items from the CIL. We don't need the CIL lock
	 * here because it's only needed on the transaction commit
	 * side which is currently locked out by the flush lock.
	 */
	lv = NULL;
	num_iovecs = 0;
	while (!list_empty(&cil->xc_cil)) {
		struct xfs_log_item	*item;

		item = list_first_entry(&cil->xc_cil,
					struct xfs_log_item, li_cil);
		list_del_init(&item->li_cil);
		if (!ctx->lv_chain)
			ctx->lv_chain = item->li_lv;
		else
			lv->lv_next = item->li_lv;
		lv = item->li_lv;
		item->li_lv = NULL;
		num_iovecs += lv->lv_niovecs;
	}

	/*
	 * initialise the new context and attach it to the CIL. Then attach
	 * the current context to the CIL committing lsit so it can be found
	 * during log forces to extract the commit lsn of the sequence that
	 * needs to be forced.
	 */
	INIT_LIST_HEAD(&new_ctx->committing);
	INIT_LIST_HEAD(&new_ctx->busy_extents);
	new_ctx->sequence = ctx->sequence + 1;
	new_ctx->cil = cil;
	cil->xc_ctx = new_ctx;

532 533 534 535 536 537 538
	/*
	 * mirror the new sequence into the cil structure so that we can do
	 * unlocked checks against the current sequence in log forces without
	 * risking deferencing a freed context pointer.
	 */
	cil->xc_current_sequence = new_ctx->sequence;

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	/*
	 * The switch is now done, so we can drop the context lock and move out
	 * of a shared context. We can't just go straight to the commit record,
	 * though - we need to synchronise with previous and future commits so
	 * that the commit records are correctly ordered in the log to ensure
	 * that we process items during log IO completion in the correct order.
	 *
	 * For example, if we get an EFI in one checkpoint and the EFD in the
	 * next (e.g. due to log forces), we do not want the checkpoint with
	 * the EFD to be committed before the checkpoint with the EFI.  Hence
	 * we must strictly order the commit records of the checkpoints so
	 * that: a) the checkpoint callbacks are attached to the iclogs in the
	 * correct order; and b) the checkpoints are replayed in correct order
	 * in log recovery.
	 *
	 * Hence we need to add this context to the committing context list so
	 * that higher sequences will wait for us to write out a commit record
	 * before they do.
	 */
	spin_lock(&cil->xc_cil_lock);
	list_add(&ctx->committing, &cil->xc_committing);
	spin_unlock(&cil->xc_cil_lock);
	up_write(&cil->xc_ctx_lock);

	/*
	 * Build a checkpoint transaction header and write it to the log to
	 * begin the transaction. We need to account for the space used by the
	 * transaction header here as it is not accounted for in xlog_write().
	 *
	 * The LSN we need to pass to the log items on transaction commit is
	 * the LSN reported by the first log vector write. If we use the commit
	 * record lsn then we can move the tail beyond the grant write head.
	 */
	tic = ctx->ticket;
	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
	thdr.th_type = XFS_TRANS_CHECKPOINT;
	thdr.th_tid = tic->t_tid;
	thdr.th_num_items = num_iovecs;
577
	lhdr.i_addr = &thdr;
578 579 580 581 582 583 584 585 586 587
	lhdr.i_len = sizeof(xfs_trans_header_t);
	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);

	lvhdr.lv_niovecs = 1;
	lvhdr.lv_iovecp = &lhdr;
	lvhdr.lv_next = ctx->lv_chain;

	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
	if (error)
588
		goto out_abort_free_ticket;
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607

	/*
	 * now that we've written the checkpoint into the log, strictly
	 * order the commit records so replay will get them in the right order.
	 */
restart:
	spin_lock(&cil->xc_cil_lock);
	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
		/*
		 * Higher sequences will wait for this one so skip them.
		 * Don't wait for own own sequence, either.
		 */
		if (new_ctx->sequence >= ctx->sequence)
			continue;
		if (!new_ctx->commit_lsn) {
			/*
			 * It is still being pushed! Wait for the push to
			 * complete, then start again from the beginning.
			 */
608
			xlog_wait(&cil->xc_commit_wait, &cil->xc_cil_lock);
609 610 611 612 613
			goto restart;
		}
	}
	spin_unlock(&cil->xc_cil_lock);

614
	/* xfs_log_done always frees the ticket on error. */
615
	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0);
616
	if (commit_lsn == -1)
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
		goto out_abort;

	/* attach all the transactions w/ busy extents to iclog */
	ctx->log_cb.cb_func = xlog_cil_committed;
	ctx->log_cb.cb_arg = ctx;
	error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
	if (error)
		goto out_abort;

	/*
	 * now the checkpoint commit is complete and we've attached the
	 * callbacks to the iclog we can assign the commit LSN to the context
	 * and wake up anyone who is waiting for the commit to complete.
	 */
	spin_lock(&cil->xc_cil_lock);
	ctx->commit_lsn = commit_lsn;
633
	wake_up_all(&cil->xc_commit_wait);
634 635 636 637 638 639 640 641 642 643 644
	spin_unlock(&cil->xc_cil_lock);

	/* release the hounds! */
	return xfs_log_release_iclog(log->l_mp, commit_iclog);

out_skip:
	up_write(&cil->xc_ctx_lock);
	xfs_log_ticket_put(new_ctx->ticket);
	kmem_free(new_ctx);
	return 0;

645 646
out_abort_free_ticket:
	xfs_log_ticket_put(tic);
647 648 649 650 651
out_abort:
	xlog_cil_committed(ctx, XFS_LI_ABORTED);
	return XFS_ERROR(EIO);
}

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
static void
xlog_cil_push_work(
	struct work_struct	*work)
{
	struct xfs_cil		*cil = container_of(work, struct xfs_cil,
							xc_push_work);
	xlog_cil_push(cil->xc_log);
}

/*
 * We need to push CIL every so often so we don't cache more than we can fit in
 * the log. The limit really is that a checkpoint can't be more than half the
 * log (the current checkpoint is not allowed to overwrite the previous
 * checkpoint), but commit latency and memory usage limit this to a smaller
 * size.
 */
static void
xlog_cil_push_background(
670
	struct xlog	*log)
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
{
	struct xfs_cil	*cil = log->l_cilp;

	/*
	 * The cil won't be empty because we are called while holding the
	 * context lock so whatever we added to the CIL will still be there
	 */
	ASSERT(!list_empty(&cil->xc_cil));

	/*
	 * don't do a background push if we haven't used up all the
	 * space available yet.
	 */
	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
		return;

	spin_lock(&cil->xc_cil_lock);
	if (cil->xc_push_seq < cil->xc_current_sequence) {
		cil->xc_push_seq = cil->xc_current_sequence;
		queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
	}
	spin_unlock(&cil->xc_cil_lock);

}

static void
xlog_cil_push_foreground(
698
	struct xlog	*log,
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
	xfs_lsn_t	push_seq)
{
	struct xfs_cil	*cil = log->l_cilp;

	if (!cil)
		return;

	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);

	/* start on any pending background push to minimise wait time on it */
	flush_work(&cil->xc_push_work);

	/*
	 * If the CIL is empty or we've already pushed the sequence then
	 * there's no work we need to do.
	 */
	spin_lock(&cil->xc_cil_lock);
	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
		spin_unlock(&cil->xc_cil_lock);
		return;
	}

	cil->xc_push_seq = push_seq;
	spin_unlock(&cil->xc_cil_lock);

	/* do the push now */
	xlog_cil_push(log);
}

728 729 730 731 732 733 734 735 736 737 738 739 740
/*
 * Commit a transaction with the given vector to the Committed Item List.
 *
 * To do this, we need to format the item, pin it in memory if required and
 * account for the space used by the transaction. Once we have done that we
 * need to release the unused reservation for the transaction, attach the
 * transaction to the checkpoint context so we carry the busy extents through
 * to checkpoint completion, and then unlock all the items in the transaction.
 *
 * Called with the context lock already held in read mode to lock out
 * background commit, returns without it held once background commits are
 * allowed again.
 */
741
int
742 743 744 745 746 747
xfs_log_commit_cil(
	struct xfs_mount	*mp,
	struct xfs_trans	*tp,
	xfs_lsn_t		*commit_lsn,
	int			flags)
{
748
	struct xlog		*log = mp->m_log;
749
	int			log_flags = 0;
750
	struct xfs_log_vec	*log_vector;
751 752 753 754

	if (flags & XFS_TRANS_RELEASE_LOG_RES)
		log_flags = XFS_LOG_REL_PERM_RESERV;

755 756 757
	/* lock out background commit */
	down_read(&log->l_cilp->xc_ctx_lock);

758 759 760
	log_vector = xlog_cil_prepare_log_vecs(tp);
	if (!log_vector)
		return ENOMEM;
761

762 763 764
	if (commit_lsn)
		*commit_lsn = log->l_cilp->xc_ctx->sequence;

765
	/* xlog_cil_insert_items() destroys log_vector list */
766
	xlog_cil_insert_items(log, log_vector, tp->t_ticket);
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

	/* check we didn't blow the reservation */
	if (tp->t_ticket->t_curr_res < 0)
		xlog_print_tic_res(log->l_mp, tp->t_ticket);

	/* attach the transaction to the CIL if it has any busy extents */
	if (!list_empty(&tp->t_busy)) {
		spin_lock(&log->l_cilp->xc_cil_lock);
		list_splice_init(&tp->t_busy,
					&log->l_cilp->xc_ctx->busy_extents);
		spin_unlock(&log->l_cilp->xc_cil_lock);
	}

	tp->t_commit_lsn = *commit_lsn;
	xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
	xfs_trans_unreserve_and_mod_sb(tp);

	/*
	 * Once all the items of the transaction have been copied to the CIL,
	 * the items can be unlocked and freed.
	 *
	 * This needs to be done before we drop the CIL context lock because we
	 * have to update state in the log items and unlock them before they go
	 * to disk. If we don't, then the CIL checkpoint can race with us and
	 * we can run checkpoint completion before we've updated and unlocked
	 * the log items. This affects (at least) processing of stale buffers,
	 * inodes and EFIs.
	 */
	xfs_trans_free_items(tp, *commit_lsn, 0);

797
	xlog_cil_push_background(log);
798 799

	up_read(&log->l_cilp->xc_ctx_lock);
800
	return 0;
801 802
}

803 804 805 806 807 808 809 810 811 812 813
/*
 * Conditionally push the CIL based on the sequence passed in.
 *
 * We only need to push if we haven't already pushed the sequence
 * number given. Hence the only time we will trigger a push here is
 * if the push sequence is the same as the current context.
 *
 * We return the current commit lsn to allow the callers to determine if a
 * iclog flush is necessary following this call.
 */
xfs_lsn_t
814
xlog_cil_force_lsn(
815
	struct xlog	*log,
816
	xfs_lsn_t	sequence)
817 818 819 820 821
{
	struct xfs_cil		*cil = log->l_cilp;
	struct xfs_cil_ctx	*ctx;
	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;

822 823 824 825 826 827 828
	ASSERT(sequence <= cil->xc_current_sequence);

	/*
	 * check to see if we need to force out the current context.
	 * xlog_cil_push() handles racing pushes for the same sequence,
	 * so no need to deal with it here.
	 */
829
	xlog_cil_push_foreground(log, sequence);
830 831 832 833 834 835 836

	/*
	 * See if we can find a previous sequence still committing.
	 * We need to wait for all previous sequence commits to complete
	 * before allowing the force of push_seq to go ahead. Hence block
	 * on commits for those as well.
	 */
837
restart:
838 839
	spin_lock(&cil->xc_cil_lock);
	list_for_each_entry(ctx, &cil->xc_committing, committing) {
840
		if (ctx->sequence > sequence)
841 842 843 844 845 846
			continue;
		if (!ctx->commit_lsn) {
			/*
			 * It is still being pushed! Wait for the push to
			 * complete, then start again from the beginning.
			 */
847
			xlog_wait(&cil->xc_commit_wait, &cil->xc_cil_lock);
848 849
			goto restart;
		}
850
		if (ctx->sequence != sequence)
851 852 853 854 855 856 857
			continue;
		/* found it! */
		commit_lsn = ctx->commit_lsn;
	}
	spin_unlock(&cil->xc_cil_lock);
	return commit_lsn;
}
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887

/*
 * Check if the current log item was first committed in this sequence.
 * We can't rely on just the log item being in the CIL, we have to check
 * the recorded commit sequence number.
 *
 * Note: for this to be used in a non-racy manner, it has to be called with
 * CIL flushing locked out. As a result, it should only be used during the
 * transaction commit process when deciding what to format into the item.
 */
bool
xfs_log_item_in_current_chkpt(
	struct xfs_log_item *lip)
{
	struct xfs_cil_ctx *ctx;

	if (list_empty(&lip->li_cil))
		return false;

	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;

	/*
	 * li_seq is written on the first commit of a log item to record the
	 * first checkpoint it is written to. Hence if it is different to the
	 * current sequence, we're in a new checkpoint.
	 */
	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
		return false;
	return true;
}
888 889 890 891 892 893

/*
 * Perform initial CIL structure initialisation.
 */
int
xlog_cil_init(
894
	struct xlog	*log)
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
{
	struct xfs_cil	*cil;
	struct xfs_cil_ctx *ctx;

	cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
	if (!cil)
		return ENOMEM;

	ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
	if (!ctx) {
		kmem_free(cil);
		return ENOMEM;
	}

	INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
	INIT_LIST_HEAD(&cil->xc_cil);
	INIT_LIST_HEAD(&cil->xc_committing);
	spin_lock_init(&cil->xc_cil_lock);
	init_rwsem(&cil->xc_ctx_lock);
	init_waitqueue_head(&cil->xc_commit_wait);

	INIT_LIST_HEAD(&ctx->committing);
	INIT_LIST_HEAD(&ctx->busy_extents);
	ctx->sequence = 1;
	ctx->cil = cil;
	cil->xc_ctx = ctx;
	cil->xc_current_sequence = ctx->sequence;

	cil->xc_log = log;
	log->l_cilp = cil;
	return 0;
}

void
xlog_cil_destroy(
930
	struct xlog	*log)
931 932 933 934 935 936 937 938 939 940 941
{
	if (log->l_cilp->xc_ctx) {
		if (log->l_cilp->xc_ctx->ticket)
			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
		kmem_free(log->l_cilp->xc_ctx);
	}

	ASSERT(list_empty(&log->l_cilp->xc_cil));
	kmem_free(log->l_cilp);
}