core.c 42.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Linux Socket Filter - Kernel level socket filtering
 *
 * Based on the design of the Berkeley Packet Filter. The new
 * internal format has been designed by PLUMgrid:
 *
 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
 *
 * Authors:
 *
 *	Jay Schulist <jschlst@samba.org>
 *	Alexei Starovoitov <ast@plumgrid.com>
 *	Daniel Borkmann <dborkman@redhat.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Andi Kleen - Fix a few bad bugs and races.
21
 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22
 */
23

24 25
#include <linux/filter.h>
#include <linux/skbuff.h>
26
#include <linux/vmalloc.h>
27 28
#include <linux/random.h>
#include <linux/moduleloader.h>
29
#include <linux/bpf.h>
30
#include <linux/frame.h>
31 32 33
#include <linux/rbtree_latch.h>
#include <linux/kallsyms.h>
#include <linux/rcupdate.h>
34

D
Daniel Borkmann 已提交
35 36
#include <asm/unaligned.h>

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
/* Registers */
#define BPF_R0	regs[BPF_REG_0]
#define BPF_R1	regs[BPF_REG_1]
#define BPF_R2	regs[BPF_REG_2]
#define BPF_R3	regs[BPF_REG_3]
#define BPF_R4	regs[BPF_REG_4]
#define BPF_R5	regs[BPF_REG_5]
#define BPF_R6	regs[BPF_REG_6]
#define BPF_R7	regs[BPF_REG_7]
#define BPF_R8	regs[BPF_REG_8]
#define BPF_R9	regs[BPF_REG_9]
#define BPF_R10	regs[BPF_REG_10]

/* Named registers */
#define DST	regs[insn->dst_reg]
#define SRC	regs[insn->src_reg]
#define FP	regs[BPF_REG_FP]
#define ARG1	regs[BPF_REG_ARG1]
#define CTX	regs[BPF_REG_CTX]
#define IMM	insn->imm

/* No hurry in this branch
 *
 * Exported for the bpf jit load helper.
 */
void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
{
	u8 *ptr = NULL;

	if (k >= SKF_NET_OFF)
		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
	else if (k >= SKF_LL_OFF)
		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
D
Daniel Borkmann 已提交
70

71 72 73 74 75 76
	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
		return ptr;

	return NULL;
}

77 78
struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
{
79
	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
80
	struct bpf_prog_aux *aux;
81 82 83 84 85 86 87
	struct bpf_prog *fp;

	size = round_up(size, PAGE_SIZE);
	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
	if (fp == NULL)
		return NULL;

88 89
	kmemcheck_annotate_bitfield(fp, meta);

90 91
	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
	if (aux == NULL) {
92 93 94 95 96
		vfree(fp);
		return NULL;
	}

	fp->pages = size / PAGE_SIZE;
97
	fp->aux = aux;
98
	fp->aux->prog = fp;
99

100 101
	INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);

102 103 104 105 106 107 108
	return fp;
}
EXPORT_SYMBOL_GPL(bpf_prog_alloc);

struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
				  gfp_t gfp_extra_flags)
{
109
	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
110
	struct bpf_prog *fp;
111 112
	u32 pages, delta;
	int ret;
113 114 115 116

	BUG_ON(fp_old == NULL);

	size = round_up(size, PAGE_SIZE);
117 118
	pages = size / PAGE_SIZE;
	if (pages <= fp_old->pages)
119 120
		return fp_old;

121 122 123 124 125
	delta = pages - fp_old->pages;
	ret = __bpf_prog_charge(fp_old->aux->user, delta);
	if (ret)
		return NULL;

126
	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
127 128 129
	if (fp == NULL) {
		__bpf_prog_uncharge(fp_old->aux->user, delta);
	} else {
130 131
		kmemcheck_annotate_bitfield(fp, meta);

132
		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
133
		fp->pages = pages;
134
		fp->aux->prog = fp;
135

136
		/* We keep fp->aux from fp_old around in the new
137 138
		 * reallocated structure.
		 */
139
		fp_old->aux = NULL;
140 141 142 143 144 145 146 147
		__bpf_prog_free(fp_old);
	}

	return fp;
}

void __bpf_prog_free(struct bpf_prog *fp)
{
148
	kfree(fp->aux);
149 150 151
	vfree(fp);
}

152
int bpf_prog_calc_tag(struct bpf_prog *fp)
153 154
{
	const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
155 156
	u32 raw_size = bpf_prog_tag_scratch_size(fp);
	u32 digest[SHA_DIGEST_WORDS];
157
	u32 ws[SHA_WORKSPACE_WORDS];
158
	u32 i, bsize, psize, blocks;
159
	struct bpf_insn *dst;
160
	bool was_ld_map;
161
	u8 *raw, *todo;
162 163 164
	__be32 *result;
	__be64 *bits;

165 166 167 168
	raw = vmalloc(raw_size);
	if (!raw)
		return -ENOMEM;

169
	sha_init(digest);
170 171 172 173 174
	memset(ws, 0, sizeof(ws));

	/* We need to take out the map fd for the digest calculation
	 * since they are unstable from user space side.
	 */
175
	dst = (void *)raw;
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	for (i = 0, was_ld_map = false; i < fp->len; i++) {
		dst[i] = fp->insnsi[i];
		if (!was_ld_map &&
		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
		    dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
			was_ld_map = true;
			dst[i].imm = 0;
		} else if (was_ld_map &&
			   dst[i].code == 0 &&
			   dst[i].dst_reg == 0 &&
			   dst[i].src_reg == 0 &&
			   dst[i].off == 0) {
			was_ld_map = false;
			dst[i].imm = 0;
		} else {
			was_ld_map = false;
		}
	}

195 196
	psize = bpf_prog_insn_size(fp);
	memset(&raw[psize], 0, raw_size - psize);
197 198 199 200
	raw[psize++] = 0x80;

	bsize  = round_up(psize, SHA_MESSAGE_BYTES);
	blocks = bsize / SHA_MESSAGE_BYTES;
201
	todo   = raw;
202 203 204 205 206 207 208 209 210
	if (bsize - psize >= sizeof(__be64)) {
		bits = (__be64 *)(todo + bsize - sizeof(__be64));
	} else {
		bits = (__be64 *)(todo + bsize + bits_offset);
		blocks++;
	}
	*bits = cpu_to_be64((psize - 1) << 3);

	while (blocks--) {
211
		sha_transform(digest, todo, ws);
212 213 214
		todo += SHA_MESSAGE_BYTES;
	}

215
	result = (__force __be32 *)digest;
216
	for (i = 0; i < SHA_DIGEST_WORDS; i++)
217 218
		result[i] = cpu_to_be32(digest[i]);
	memcpy(fp->tag, result, sizeof(fp->tag));
219 220 221

	vfree(raw);
	return 0;
222 223
}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
{
	return BPF_CLASS(insn->code) == BPF_JMP  &&
	       /* Call and Exit are both special jumps with no
		* target inside the BPF instruction image.
		*/
	       BPF_OP(insn->code) != BPF_CALL &&
	       BPF_OP(insn->code) != BPF_EXIT;
}

static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
{
	struct bpf_insn *insn = prog->insnsi;
	u32 i, insn_cnt = prog->len;

	for (i = 0; i < insn_cnt; i++, insn++) {
		if (!bpf_is_jmp_and_has_target(insn))
			continue;

		/* Adjust offset of jmps if we cross boundaries. */
		if (i < pos && i + insn->off + 1 > pos)
			insn->off += delta;
		else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
			insn->off -= delta;
	}
}

struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
				       const struct bpf_insn *patch, u32 len)
{
	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
	struct bpf_prog *prog_adj;

	/* Since our patchlet doesn't expand the image, we're done. */
	if (insn_delta == 0) {
		memcpy(prog->insnsi + off, patch, sizeof(*patch));
		return prog;
	}

	insn_adj_cnt = prog->len + insn_delta;

	/* Several new instructions need to be inserted. Make room
	 * for them. Likely, there's no need for a new allocation as
	 * last page could have large enough tailroom.
	 */
	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
				    GFP_USER);
	if (!prog_adj)
		return NULL;

	prog_adj->len = insn_adj_cnt;

	/* Patching happens in 3 steps:
	 *
	 * 1) Move over tail of insnsi from next instruction onwards,
	 *    so we can patch the single target insn with one or more
	 *    new ones (patching is always from 1 to n insns, n > 0).
	 * 2) Inject new instructions at the target location.
	 * 3) Adjust branch offsets if necessary.
	 */
	insn_rest = insn_adj_cnt - off - len;

	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
		sizeof(*patch) * insn_rest);
	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);

	bpf_adj_branches(prog_adj, off, insn_delta);

	return prog_adj;
}

295
#ifdef CONFIG_BPF_JIT
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static __always_inline void
bpf_get_prog_addr_region(const struct bpf_prog *prog,
			 unsigned long *symbol_start,
			 unsigned long *symbol_end)
{
	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
	unsigned long addr = (unsigned long)hdr;

	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));

	*symbol_start = addr;
	*symbol_end   = addr + hdr->pages * PAGE_SIZE;
}

static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
{
312 313
	const char *end = sym + KSYM_NAME_LEN;

314
	BUILD_BUG_ON(sizeof("bpf_prog_") +
315 316 317 318 319 320 321 322 323
		     sizeof(prog->tag) * 2 +
		     /* name has been null terminated.
		      * We should need +1 for the '_' preceding
		      * the name.  However, the null character
		      * is double counted between the name and the
		      * sizeof("bpf_prog_") above, so we omit
		      * the +1 here.
		      */
		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
324 325 326

	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
327 328 329 330
	if (prog->aux->name[0])
		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
	else
		*sym = 0;
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
}

static __always_inline unsigned long
bpf_get_prog_addr_start(struct latch_tree_node *n)
{
	unsigned long symbol_start, symbol_end;
	const struct bpf_prog_aux *aux;

	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);

	return symbol_start;
}

static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
					  struct latch_tree_node *b)
{
	return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
}

static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
{
	unsigned long val = (unsigned long)key;
	unsigned long symbol_start, symbol_end;
	const struct bpf_prog_aux *aux;

	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);

	if (val < symbol_start)
		return -1;
	if (val >= symbol_end)
		return  1;

	return 0;
}

static const struct latch_tree_ops bpf_tree_ops = {
	.less	= bpf_tree_less,
	.comp	= bpf_tree_comp,
};

static DEFINE_SPINLOCK(bpf_lock);
static LIST_HEAD(bpf_kallsyms);
static struct latch_tree_root bpf_tree __cacheline_aligned;

int bpf_jit_kallsyms __read_mostly;

static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
{
	WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
	list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
	latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
}

static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
{
	if (list_empty(&aux->ksym_lnode))
		return;

	latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
	list_del_rcu(&aux->ksym_lnode);
}

static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
{
	return fp->jited && !bpf_prog_was_classic(fp);
}

static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
{
	return list_empty(&fp->aux->ksym_lnode) ||
	       fp->aux->ksym_lnode.prev == LIST_POISON2;
}

void bpf_prog_kallsyms_add(struct bpf_prog *fp)
{
	if (!bpf_prog_kallsyms_candidate(fp) ||
	    !capable(CAP_SYS_ADMIN))
		return;

412
	spin_lock_bh(&bpf_lock);
413
	bpf_prog_ksym_node_add(fp->aux);
414
	spin_unlock_bh(&bpf_lock);
415 416 417 418 419 420 421
}

void bpf_prog_kallsyms_del(struct bpf_prog *fp)
{
	if (!bpf_prog_kallsyms_candidate(fp))
		return;

422
	spin_lock_bh(&bpf_lock);
423
	bpf_prog_ksym_node_del(fp->aux);
424
	spin_unlock_bh(&bpf_lock);
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
}

static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
{
	struct latch_tree_node *n;

	if (!bpf_jit_kallsyms_enabled())
		return NULL;

	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
	return n ?
	       container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
	       NULL;
}

const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
				 unsigned long *off, char *sym)
{
	unsigned long symbol_start, symbol_end;
	struct bpf_prog *prog;
	char *ret = NULL;

	rcu_read_lock();
	prog = bpf_prog_kallsyms_find(addr);
	if (prog) {
		bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
		bpf_get_prog_name(prog, sym);

		ret = sym;
		if (size)
			*size = symbol_end - symbol_start;
		if (off)
			*off  = addr - symbol_start;
	}
	rcu_read_unlock();

	return ret;
}

bool is_bpf_text_address(unsigned long addr)
{
	bool ret;

	rcu_read_lock();
	ret = bpf_prog_kallsyms_find(addr) != NULL;
	rcu_read_unlock();

	return ret;
}

int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
		    char *sym)
{
	unsigned long symbol_start, symbol_end;
	struct bpf_prog_aux *aux;
	unsigned int it = 0;
	int ret = -ERANGE;

	if (!bpf_jit_kallsyms_enabled())
		return ret;

	rcu_read_lock();
	list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
		if (it++ != symnum)
			continue;

		bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
		bpf_get_prog_name(aux->prog, sym);

		*value = symbol_start;
		*type  = BPF_SYM_ELF_TYPE;

		ret = 0;
		break;
	}
	rcu_read_unlock();

	return ret;
}

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
		     unsigned int alignment,
		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
{
	struct bpf_binary_header *hdr;
	unsigned int size, hole, start;

	/* Most of BPF filters are really small, but if some of them
	 * fill a page, allow at least 128 extra bytes to insert a
	 * random section of illegal instructions.
	 */
	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
	hdr = module_alloc(size);
	if (hdr == NULL)
		return NULL;

	/* Fill space with illegal/arch-dep instructions. */
	bpf_fill_ill_insns(hdr, size);

	hdr->pages = size / PAGE_SIZE;
	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
		     PAGE_SIZE - sizeof(*hdr));
528
	start = (get_random_int() % hole) & ~(alignment - 1);
529 530 531 532 533 534 535 536 537

	/* Leave a random number of instructions before BPF code. */
	*image_ptr = &hdr->image[start];

	return hdr;
}

void bpf_jit_binary_free(struct bpf_binary_header *hdr)
{
538
	module_memfree(hdr);
539
}
540

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
/* This symbol is only overridden by archs that have different
 * requirements than the usual eBPF JITs, f.e. when they only
 * implement cBPF JIT, do not set images read-only, etc.
 */
void __weak bpf_jit_free(struct bpf_prog *fp)
{
	if (fp->jited) {
		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);

		bpf_jit_binary_unlock_ro(hdr);
		bpf_jit_binary_free(hdr);

		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
	}

	bpf_prog_unlock_free(fp);
}

559 560 561 562 563 564 565
int bpf_jit_harden __read_mostly;

static int bpf_jit_blind_insn(const struct bpf_insn *from,
			      const struct bpf_insn *aux,
			      struct bpf_insn *to_buff)
{
	struct bpf_insn *to = to_buff;
566
	u32 imm_rnd = get_random_int();
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	s16 off;

	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);

	if (from->imm == 0 &&
	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
		goto out;
	}

	switch (from->code) {
	case BPF_ALU | BPF_ADD | BPF_K:
	case BPF_ALU | BPF_SUB | BPF_K:
	case BPF_ALU | BPF_AND | BPF_K:
	case BPF_ALU | BPF_OR  | BPF_K:
	case BPF_ALU | BPF_XOR | BPF_K:
	case BPF_ALU | BPF_MUL | BPF_K:
	case BPF_ALU | BPF_MOV | BPF_K:
	case BPF_ALU | BPF_DIV | BPF_K:
	case BPF_ALU | BPF_MOD | BPF_K:
		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
		break;

	case BPF_ALU64 | BPF_ADD | BPF_K:
	case BPF_ALU64 | BPF_SUB | BPF_K:
	case BPF_ALU64 | BPF_AND | BPF_K:
	case BPF_ALU64 | BPF_OR  | BPF_K:
	case BPF_ALU64 | BPF_XOR | BPF_K:
	case BPF_ALU64 | BPF_MUL | BPF_K:
	case BPF_ALU64 | BPF_MOV | BPF_K:
	case BPF_ALU64 | BPF_DIV | BPF_K:
	case BPF_ALU64 | BPF_MOD | BPF_K:
		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
		break;

	case BPF_JMP | BPF_JEQ  | BPF_K:
	case BPF_JMP | BPF_JNE  | BPF_K:
	case BPF_JMP | BPF_JGT  | BPF_K:
611
	case BPF_JMP | BPF_JLT  | BPF_K:
612
	case BPF_JMP | BPF_JGE  | BPF_K:
613
	case BPF_JMP | BPF_JLE  | BPF_K:
614
	case BPF_JMP | BPF_JSGT | BPF_K:
615
	case BPF_JMP | BPF_JSLT | BPF_K:
616
	case BPF_JMP | BPF_JSGE | BPF_K:
617
	case BPF_JMP | BPF_JSLE | BPF_K:
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
	case BPF_JMP | BPF_JSET | BPF_K:
		/* Accommodate for extra offset in case of a backjump. */
		off = from->off;
		if (off < 0)
			off -= 2;
		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
		break;

	case BPF_LD | BPF_ABS | BPF_W:
	case BPF_LD | BPF_ABS | BPF_H:
	case BPF_LD | BPF_ABS | BPF_B:
		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
		break;

	case BPF_LD | BPF_IND | BPF_W:
	case BPF_LD | BPF_IND | BPF_H:
	case BPF_LD | BPF_IND | BPF_B:
		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
		*to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
		break;

	case BPF_LD | BPF_IMM | BPF_DW:
		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
		break;
	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
		break;

	case BPF_ST | BPF_MEM | BPF_DW:
	case BPF_ST | BPF_MEM | BPF_W:
	case BPF_ST | BPF_MEM | BPF_H:
	case BPF_ST | BPF_MEM | BPF_B:
		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
		break;
	}
out:
	return to - to_buff;
}

static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
					      gfp_t gfp_extra_flags)
{
673
	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
	struct bpf_prog *fp;

	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
	if (fp != NULL) {
		kmemcheck_annotate_bitfield(fp, meta);

		/* aux->prog still points to the fp_other one, so
		 * when promoting the clone to the real program,
		 * this still needs to be adapted.
		 */
		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
	}

	return fp;
}

static void bpf_prog_clone_free(struct bpf_prog *fp)
{
	/* aux was stolen by the other clone, so we cannot free
	 * it from this path! It will be freed eventually by the
	 * other program on release.
	 *
	 * At this point, we don't need a deferred release since
	 * clone is guaranteed to not be locked.
	 */
	fp->aux = NULL;
	__bpf_prog_free(fp);
}

void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
{
	/* We have to repoint aux->prog to self, as we don't
	 * know whether fp here is the clone or the original.
	 */
	fp->aux->prog = fp;
	bpf_prog_clone_free(fp_other);
}

struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
{
	struct bpf_insn insn_buff[16], aux[2];
	struct bpf_prog *clone, *tmp;
	int insn_delta, insn_cnt;
	struct bpf_insn *insn;
	int i, rewritten;

	if (!bpf_jit_blinding_enabled())
		return prog;

	clone = bpf_prog_clone_create(prog, GFP_USER);
	if (!clone)
		return ERR_PTR(-ENOMEM);

	insn_cnt = clone->len;
	insn = clone->insnsi;

	for (i = 0; i < insn_cnt; i++, insn++) {
		/* We temporarily need to hold the original ld64 insn
		 * so that we can still access the first part in the
		 * second blinding run.
		 */
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
		    insn[1].code == 0)
			memcpy(aux, insn, sizeof(aux));

		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
		if (!rewritten)
			continue;

		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
		if (!tmp) {
			/* Patching may have repointed aux->prog during
			 * realloc from the original one, so we need to
			 * fix it up here on error.
			 */
			bpf_jit_prog_release_other(prog, clone);
			return ERR_PTR(-ENOMEM);
		}

		clone = tmp;
		insn_delta = rewritten - 1;

		/* Walk new program and skip insns we just inserted. */
		insn = clone->insnsi + i + insn_delta;
		insn_cnt += insn_delta;
		i        += insn_delta;
	}

	return clone;
}
764
#endif /* CONFIG_BPF_JIT */
765

766 767 768 769 770 771 772 773
/* Base function for offset calculation. Needs to go into .text section,
 * therefore keeping it non-static as well; will also be used by JITs
 * anyway later on, so do not let the compiler omit it.
 */
noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
	return 0;
}
774
EXPORT_SYMBOL_GPL(__bpf_call_base);
775 776

/**
777 778 779
 *	__bpf_prog_run - run eBPF program on a given context
 *	@ctx: is the data we are operating on
 *	@insn: is the array of eBPF instructions
780
 *
781
 * Decode and execute eBPF instructions.
782
 */
783 784
static unsigned int ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn,
				    u64 *stack)
785
{
786
	u64 tmp;
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	static const void *jumptable[256] = {
		[0 ... 255] = &&default_label,
		/* Now overwrite non-defaults ... */
		/* 32 bit ALU operations */
		[BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
		[BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
		[BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
		[BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
		[BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
		[BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
		[BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
		[BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
		[BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
		[BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
		[BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
		[BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
		[BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
		[BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
		[BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
		[BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
		[BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
		[BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
		[BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
		[BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
		[BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
		[BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
		[BPF_ALU | BPF_NEG] = &&ALU_NEG,
		[BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
		[BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
		/* 64 bit ALU operations */
		[BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
		[BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
		[BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
		[BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
		[BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
		[BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
		[BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
		[BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
		[BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
		[BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
		[BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
		[BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
		[BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
		[BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
		[BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
		[BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
		[BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
		[BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
		[BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
		[BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
		[BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
		[BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
		[BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
		[BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
		[BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
		/* Call instruction */
		[BPF_JMP | BPF_CALL] = &&JMP_CALL,
844
		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
845 846 847 848 849 850 851 852
		/* Jumps */
		[BPF_JMP | BPF_JA] = &&JMP_JA,
		[BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
		[BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
		[BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
		[BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
		[BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
		[BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
853 854
		[BPF_JMP | BPF_JLT | BPF_X] = &&JMP_JLT_X,
		[BPF_JMP | BPF_JLT | BPF_K] = &&JMP_JLT_K,
855 856
		[BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
		[BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
857 858
		[BPF_JMP | BPF_JLE | BPF_X] = &&JMP_JLE_X,
		[BPF_JMP | BPF_JLE | BPF_K] = &&JMP_JLE_K,
859 860
		[BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
		[BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
861 862
		[BPF_JMP | BPF_JSLT | BPF_X] = &&JMP_JSLT_X,
		[BPF_JMP | BPF_JSLT | BPF_K] = &&JMP_JSLT_K,
863 864
		[BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
		[BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
865 866
		[BPF_JMP | BPF_JSLE | BPF_X] = &&JMP_JSLE_X,
		[BPF_JMP | BPF_JSLE | BPF_K] = &&JMP_JSLE_K,
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
		[BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
		[BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
		/* Program return */
		[BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
		/* Store instructions */
		[BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
		[BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
		[BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
		[BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
		[BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
		[BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
		[BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
		[BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
		[BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
		[BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
		/* Load instructions */
		[BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
		[BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
		[BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
		[BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
		[BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
		[BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
		[BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
		[BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
		[BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
		[BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
893
		[BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
894
	};
895
	u32 tail_call_cnt = 0;
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
	void *ptr;
	int off;

#define CONT	 ({ insn++; goto select_insn; })
#define CONT_JMP ({ insn++; goto select_insn; })

select_insn:
	goto *jumptable[insn->code];

	/* ALU */
#define ALU(OPCODE, OP)			\
	ALU64_##OPCODE##_X:		\
		DST = DST OP SRC;	\
		CONT;			\
	ALU_##OPCODE##_X:		\
		DST = (u32) DST OP (u32) SRC;	\
		CONT;			\
	ALU64_##OPCODE##_K:		\
		DST = DST OP IMM;		\
		CONT;			\
	ALU_##OPCODE##_K:		\
		DST = (u32) DST OP (u32) IMM;	\
		CONT;

	ALU(ADD,  +)
	ALU(SUB,  -)
	ALU(AND,  &)
	ALU(OR,   |)
	ALU(LSH, <<)
	ALU(RSH, >>)
	ALU(XOR,  ^)
	ALU(MUL,  *)
#undef ALU
	ALU_NEG:
		DST = (u32) -DST;
		CONT;
	ALU64_NEG:
		DST = -DST;
		CONT;
	ALU_MOV_X:
		DST = (u32) SRC;
		CONT;
	ALU_MOV_K:
		DST = (u32) IMM;
		CONT;
	ALU64_MOV_X:
		DST = SRC;
		CONT;
	ALU64_MOV_K:
		DST = IMM;
		CONT;
947 948 949 950
	LD_IMM_DW:
		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
		insn++;
		CONT;
951 952 953 954 955 956 957 958 959
	ALU64_ARSH_X:
		(*(s64 *) &DST) >>= SRC;
		CONT;
	ALU64_ARSH_K:
		(*(s64 *) &DST) >>= IMM;
		CONT;
	ALU64_MOD_X:
		if (unlikely(SRC == 0))
			return 0;
A
Alexei Starovoitov 已提交
960 961
		div64_u64_rem(DST, SRC, &tmp);
		DST = tmp;
962 963 964 965 966 967 968 969
		CONT;
	ALU_MOD_X:
		if (unlikely(SRC == 0))
			return 0;
		tmp = (u32) DST;
		DST = do_div(tmp, (u32) SRC);
		CONT;
	ALU64_MOD_K:
A
Alexei Starovoitov 已提交
970 971
		div64_u64_rem(DST, IMM, &tmp);
		DST = tmp;
972 973 974 975 976 977 978 979
		CONT;
	ALU_MOD_K:
		tmp = (u32) DST;
		DST = do_div(tmp, (u32) IMM);
		CONT;
	ALU64_DIV_X:
		if (unlikely(SRC == 0))
			return 0;
A
Alexei Starovoitov 已提交
980
		DST = div64_u64(DST, SRC);
981 982 983 984 985 986 987 988 989
		CONT;
	ALU_DIV_X:
		if (unlikely(SRC == 0))
			return 0;
		tmp = (u32) DST;
		do_div(tmp, (u32) SRC);
		DST = (u32) tmp;
		CONT;
	ALU64_DIV_K:
A
Alexei Starovoitov 已提交
990
		DST = div64_u64(DST, IMM);
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
		CONT;
	ALU_DIV_K:
		tmp = (u32) DST;
		do_div(tmp, (u32) IMM);
		DST = (u32) tmp;
		CONT;
	ALU_END_TO_BE:
		switch (IMM) {
		case 16:
			DST = (__force u16) cpu_to_be16(DST);
			break;
		case 32:
			DST = (__force u32) cpu_to_be32(DST);
			break;
		case 64:
			DST = (__force u64) cpu_to_be64(DST);
			break;
		}
		CONT;
	ALU_END_TO_LE:
		switch (IMM) {
		case 16:
			DST = (__force u16) cpu_to_le16(DST);
			break;
		case 32:
			DST = (__force u32) cpu_to_le32(DST);
			break;
		case 64:
			DST = (__force u64) cpu_to_le64(DST);
			break;
		}
		CONT;

	/* CALL */
	JMP_CALL:
		/* Function call scratches BPF_R1-BPF_R5 registers,
		 * preserves BPF_R6-BPF_R9, and stores return value
		 * into BPF_R0.
		 */
		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
						       BPF_R4, BPF_R5);
		CONT;

1034 1035 1036 1037
	JMP_TAIL_CALL: {
		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
		struct bpf_array *array = container_of(map, struct bpf_array, map);
		struct bpf_prog *prog;
1038
		u32 index = BPF_R3;
1039 1040 1041 1042 1043 1044 1045 1046

		if (unlikely(index >= array->map.max_entries))
			goto out;
		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
			goto out;

		tail_call_cnt++;

1047
		prog = READ_ONCE(array->ptrs[index]);
1048
		if (!prog)
1049 1050
			goto out;

1051 1052 1053 1054 1055
		/* ARG1 at this point is guaranteed to point to CTX from
		 * the verifier side due to the fact that the tail call is
		 * handeled like a helper, that is, bpf_tail_call_proto,
		 * where arg1_type is ARG_PTR_TO_CTX.
		 */
1056 1057 1058 1059 1060
		insn = prog->insnsi;
		goto select_insn;
out:
		CONT;
	}
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
	/* JMP */
	JMP_JA:
		insn += insn->off;
		CONT;
	JMP_JEQ_X:
		if (DST == SRC) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JEQ_K:
		if (DST == IMM) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JNE_X:
		if (DST != SRC) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JNE_K:
		if (DST != IMM) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JGT_X:
		if (DST > SRC) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JGT_K:
		if (DST > IMM) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	JMP_JLT_X:
		if (DST < SRC) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JLT_K:
		if (DST < IMM) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	JMP_JGE_X:
		if (DST >= SRC) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JGE_K:
		if (DST >= IMM) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	JMP_JLE_X:
		if (DST <= SRC) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JLE_K:
		if (DST <= IMM) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	JMP_JSGT_X:
		if (((s64) DST) > ((s64) SRC)) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JSGT_K:
		if (((s64) DST) > ((s64) IMM)) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	JMP_JSLT_X:
		if (((s64) DST) < ((s64) SRC)) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JSLT_K:
		if (((s64) DST) < ((s64) IMM)) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	JMP_JSGE_X:
		if (((s64) DST) >= ((s64) SRC)) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JSGE_K:
		if (((s64) DST) >= ((s64) IMM)) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	JMP_JSLE_X:
		if (((s64) DST) <= ((s64) SRC)) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JSLE_K:
		if (((s64) DST) <= ((s64) IMM)) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	JMP_JSET_X:
		if (DST & SRC) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JSET_K:
		if (DST & IMM) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_EXIT:
		return BPF_R0;

	/* STX and ST and LDX*/
#define LDST(SIZEOP, SIZE)						\
	STX_MEM_##SIZEOP:						\
		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
		CONT;							\
	ST_MEM_##SIZEOP:						\
		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
		CONT;							\
	LDX_MEM_##SIZEOP:						\
		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
		CONT;

	LDST(B,   u8)
	LDST(H,  u16)
	LDST(W,  u32)
	LDST(DW, u64)
#undef LDST
	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
			   (DST + insn->off));
		CONT;
	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
			     (DST + insn->off));
		CONT;
	LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
		off = IMM;
load_word:
1228 1229 1230 1231 1232 1233
		/* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only
		 * appearing in the programs where ctx == skb
		 * (see may_access_skb() in the verifier). All programs
		 * keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6,
		 * bpf_convert_filter() saves it in BPF_R6, internal BPF
		 * verifier will check that BPF_R6 == ctx.
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
		 *
		 * BPF_ABS and BPF_IND are wrappers of function calls,
		 * so they scratch BPF_R1-BPF_R5 registers, preserve
		 * BPF_R6-BPF_R9, and store return value into BPF_R0.
		 *
		 * Implicit input:
		 *   ctx == skb == BPF_R6 == CTX
		 *
		 * Explicit input:
		 *   SRC == any register
		 *   IMM == 32-bit immediate
		 *
		 * Output:
		 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
		 */

		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
		if (likely(ptr != NULL)) {
			BPF_R0 = get_unaligned_be32(ptr);
			CONT;
		}

		return 0;
	LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
		off = IMM;
load_half:
		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
		if (likely(ptr != NULL)) {
			BPF_R0 = get_unaligned_be16(ptr);
			CONT;
		}

		return 0;
	LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
		off = IMM;
load_byte:
		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
		if (likely(ptr != NULL)) {
			BPF_R0 = *(u8 *)ptr;
			CONT;
		}

		return 0;
	LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
		off = IMM + SRC;
		goto load_word;
	LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
		off = IMM + SRC;
		goto load_half;
	LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
		off = IMM + SRC;
		goto load_byte;

	default_label:
		/* If we ever reach this, we have a bug somewhere. */
		WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
		return 0;
}
1292 1293
STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
#define DEFINE_BPF_PROG_RUN(stack_size) \
static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
{ \
	u64 stack[stack_size / sizeof(u64)]; \
	u64 regs[MAX_BPF_REG]; \
\
	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
	ARG1 = (u64) (unsigned long) ctx; \
	return ___bpf_prog_run(regs, insn, stack); \
1304
}
1305

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
#define EVAL1(FN, X) FN(X)
#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)

EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);

#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),

static unsigned int (*interpreters[])(const void *ctx,
				      const struct bpf_insn *insn) = {
EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
};

D
Daniel Borkmann 已提交
1326 1327
bool bpf_prog_array_compatible(struct bpf_array *array,
			       const struct bpf_prog *fp)
1328
{
D
Daniel Borkmann 已提交
1329 1330 1331 1332
	if (!array->owner_prog_type) {
		/* There's no owner yet where we could check for
		 * compatibility.
		 */
1333 1334
		array->owner_prog_type = fp->type;
		array->owner_jited = fp->jited;
D
Daniel Borkmann 已提交
1335 1336

		return true;
1337
	}
D
Daniel Borkmann 已提交
1338 1339 1340

	return array->owner_prog_type == fp->type &&
	       array->owner_jited == fp->jited;
1341 1342
}

D
Daniel Borkmann 已提交
1343
static int bpf_check_tail_call(const struct bpf_prog *fp)
1344 1345 1346 1347 1348
{
	struct bpf_prog_aux *aux = fp->aux;
	int i;

	for (i = 0; i < aux->used_map_cnt; i++) {
D
Daniel Borkmann 已提交
1349
		struct bpf_map *map = aux->used_maps[i];
1350 1351 1352 1353
		struct bpf_array *array;

		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			continue;
D
Daniel Borkmann 已提交
1354

1355 1356 1357 1358 1359 1360 1361 1362
		array = container_of(map, struct bpf_array, map);
		if (!bpf_prog_array_compatible(array, fp))
			return -EINVAL;
	}

	return 0;
}

1363
/**
D
Daniel Borkmann 已提交
1364
 *	bpf_prog_select_runtime - select exec runtime for BPF program
1365
 *	@fp: bpf_prog populated with internal BPF program
1366
 *	@err: pointer to error variable
1367
 *
D
Daniel Borkmann 已提交
1368 1369
 * Try to JIT eBPF program, if JIT is not available, use interpreter.
 * The BPF program will be executed via BPF_PROG_RUN() macro.
1370
 */
1371
struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1372
{
1373 1374 1375
	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);

	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1376

1377 1378 1379 1380 1381 1382 1383
	/* eBPF JITs can rewrite the program in case constant
	 * blinding is active. However, in case of error during
	 * blinding, bpf_int_jit_compile() must always return a
	 * valid program, which in this case would simply not
	 * be JITed, but falls back to the interpreter.
	 */
	fp = bpf_int_jit_compile(fp);
1384
	bpf_prog_lock_ro(fp);
1385

D
Daniel Borkmann 已提交
1386 1387 1388 1389 1390
	/* The tail call compatibility check can only be done at
	 * this late stage as we need to determine, if we deal
	 * with JITed or non JITed program concatenations and not
	 * all eBPF JITs might immediately support all features.
	 */
1391 1392 1393
	*err = bpf_check_tail_call(fp);

	return fp;
1394
}
1395
EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1396

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
static unsigned int __bpf_prog_ret1(const void *ctx,
				    const struct bpf_insn *insn)
{
	return 1;
}

static struct bpf_prog_dummy {
	struct bpf_prog prog;
} dummy_bpf_prog = {
	.prog = {
		.bpf_func = __bpf_prog_ret1,
	},
};

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
/* to avoid allocating empty bpf_prog_array for cgroups that
 * don't have bpf program attached use one global 'empty_prog_array'
 * It will not be modified the caller of bpf_prog_array_alloc()
 * (since caller requested prog_cnt == 0)
 * that pointer should be 'freed' by bpf_prog_array_free()
 */
static struct {
	struct bpf_prog_array hdr;
	struct bpf_prog *null_prog;
} empty_prog_array = {
	.null_prog = NULL,
};

struct bpf_prog_array __rcu *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
{
	if (prog_cnt)
		return kzalloc(sizeof(struct bpf_prog_array) +
			       sizeof(struct bpf_prog *) * (prog_cnt + 1),
			       flags);

	return &empty_prog_array.hdr;
}

void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
{
	if (!progs ||
	    progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
		return;
	kfree_rcu(progs, rcu);
}

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
int bpf_prog_array_length(struct bpf_prog_array __rcu *progs)
{
	struct bpf_prog **prog;
	u32 cnt = 0;

	rcu_read_lock();
	prog = rcu_dereference(progs)->progs;
	for (; *prog; prog++)
		cnt++;
	rcu_read_unlock();
	return cnt;
}

int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *progs,
				__u32 __user *prog_ids, u32 cnt)
{
	struct bpf_prog **prog;
	u32 i = 0, id;

	rcu_read_lock();
	prog = rcu_dereference(progs)->progs;
	for (; *prog; prog++) {
		id = (*prog)->aux->id;
		if (copy_to_user(prog_ids + i, &id, sizeof(id))) {
			rcu_read_unlock();
			return -EFAULT;
		}
		if (++i == cnt) {
			prog++;
			break;
		}
	}
	rcu_read_unlock();
	if (*prog)
		return -ENOSPC;
	return 0;
}

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *progs,
				struct bpf_prog *old_prog)
{
	struct bpf_prog **prog = progs->progs;

	for (; *prog; prog++)
		if (*prog == old_prog) {
			WRITE_ONCE(*prog, &dummy_bpf_prog.prog);
			break;
		}
}

int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
			struct bpf_prog *exclude_prog,
			struct bpf_prog *include_prog,
			struct bpf_prog_array **new_array)
{
	int new_prog_cnt, carry_prog_cnt = 0;
	struct bpf_prog **existing_prog;
	struct bpf_prog_array *array;
	int new_prog_idx = 0;

	/* Figure out how many existing progs we need to carry over to
	 * the new array.
	 */
	if (old_array) {
		existing_prog = old_array->progs;
		for (; *existing_prog; existing_prog++) {
			if (*existing_prog != exclude_prog &&
			    *existing_prog != &dummy_bpf_prog.prog)
				carry_prog_cnt++;
			if (*existing_prog == include_prog)
				return -EEXIST;
		}
	}

	/* How many progs (not NULL) will be in the new array? */
	new_prog_cnt = carry_prog_cnt;
	if (include_prog)
		new_prog_cnt += 1;

	/* Do we have any prog (not NULL) in the new array? */
	if (!new_prog_cnt) {
		*new_array = NULL;
		return 0;
	}

	/* +1 as the end of prog_array is marked with NULL */
	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
	if (!array)
		return -ENOMEM;

	/* Fill in the new prog array */
	if (carry_prog_cnt) {
		existing_prog = old_array->progs;
		for (; *existing_prog; existing_prog++)
			if (*existing_prog != exclude_prog &&
			    *existing_prog != &dummy_bpf_prog.prog)
				array->progs[new_prog_idx++] = *existing_prog;
	}
	if (include_prog)
		array->progs[new_prog_idx++] = include_prog;
	array->progs[new_prog_idx] = NULL;
	*new_array = array;
	return 0;
}

1547 1548
static void bpf_prog_free_deferred(struct work_struct *work)
{
1549
	struct bpf_prog_aux *aux;
1550

1551 1552
	aux = container_of(work, struct bpf_prog_aux, work);
	bpf_jit_free(aux->prog);
1553 1554 1555
}

/* Free internal BPF program */
1556
void bpf_prog_free(struct bpf_prog *fp)
1557
{
1558
	struct bpf_prog_aux *aux = fp->aux;
1559

1560 1561
	INIT_WORK(&aux->work, bpf_prog_free_deferred);
	schedule_work(&aux->work);
1562
}
1563
EXPORT_SYMBOL_GPL(bpf_prog_free);
A
Alexei Starovoitov 已提交
1564

1565 1566 1567 1568 1569 1570 1571 1572
/* RNG for unpriviledged user space with separated state from prandom_u32(). */
static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);

void bpf_user_rnd_init_once(void)
{
	prandom_init_once(&bpf_user_rnd_state);
}

1573
BPF_CALL_0(bpf_user_rnd_u32)
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
{
	/* Should someone ever have the rather unwise idea to use some
	 * of the registers passed into this function, then note that
	 * this function is called from native eBPF and classic-to-eBPF
	 * transformations. Register assignments from both sides are
	 * different, f.e. classic always sets fn(ctx, A, X) here.
	 */
	struct rnd_state *state;
	u32 res;

	state = &get_cpu_var(bpf_user_rnd_state);
	res = prandom_u32_state(state);
S
Shaohua Li 已提交
1586
	put_cpu_var(bpf_user_rnd_state);
1587 1588 1589 1590

	return res;
}

1591 1592 1593 1594 1595
/* Weak definitions of helper functions in case we don't have bpf syscall. */
const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
const struct bpf_func_proto bpf_map_update_elem_proto __weak;
const struct bpf_func_proto bpf_map_delete_elem_proto __weak;

1596
const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1597
const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1598
const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1599
const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1600

1601 1602 1603
const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1604
const struct bpf_func_proto bpf_sock_map_update_proto __weak;
1605

1606 1607 1608 1609
const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
{
	return NULL;
}
1610

1611 1612 1613
u64 __weak
bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1614
{
1615
	return -ENOTSUPP;
1616 1617
}

D
Daniel Borkmann 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
/* Always built-in helper functions. */
const struct bpf_func_proto bpf_tail_call_proto = {
	.func		= NULL,
	.gpl_only	= false,
	.ret_type	= RET_VOID,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
};

1628 1629 1630 1631
/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
 * It is encouraged to implement bpf_int_jit_compile() instead, so that
 * eBPF and implicitly also cBPF can get JITed!
 */
1632
struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
D
Daniel Borkmann 已提交
1633
{
1634
	return prog;
D
Daniel Borkmann 已提交
1635 1636
}

1637 1638 1639 1640 1641 1642 1643
/* Stub for JITs that support eBPF. All cBPF code gets transformed into
 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
 */
void __weak bpf_jit_compile(struct bpf_prog *prog)
{
}

1644
bool __weak bpf_helper_changes_pkt_data(void *func)
A
Alexei Starovoitov 已提交
1645 1646 1647 1648
{
	return false;
}

A
Alexei Starovoitov 已提交
1649 1650 1651 1652 1653 1654 1655 1656
/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
 */
int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
			 int len)
{
	return -EFAULT;
}
1657 1658 1659 1660 1661 1662 1663

/* All definitions of tracepoints related to BPF. */
#define CREATE_TRACE_POINTS
#include <linux/bpf_trace.h>

EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);

1664 1665
/* These are only used within the BPF_SYSCALL code */
#ifdef CONFIG_BPF_SYSCALL
1666 1667
EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type);
EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu);
1668
#endif