hrtimer.c 19.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 *  linux/kernel/hrtimer.c
 *
 *  Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
24 25 26 27 28 29
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
#include <linux/interrupt.h>

#include <asm/uaccess.h>

/**
 * ktime_get - get the monotonic time in ktime_t format
 *
 * returns the time in ktime_t format
 */
static ktime_t ktime_get(void)
{
	struct timespec now;

	ktime_get_ts(&now);

	return timespec_to_ktime(now);
}

/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
static ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}

EXPORT_SYMBOL_GPL(ktime_get_real);

/*
 * The timer bases:
75 76 77 78 79 80
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
 */

#define MAX_HRTIMER_BASES 2

static DEFINE_PER_CPU(struct hrtimer_base, hrtimer_bases[MAX_HRTIMER_BASES]) =
{
	{
		.index = CLOCK_REALTIME,
		.get_time = &ktime_get_real,
		.resolution = KTIME_REALTIME_RES,
	},
	{
		.index = CLOCK_MONOTONIC,
		.get_time = &ktime_get,
		.resolution = KTIME_MONOTONIC_RES,
	},
};

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
105
 * in normalized timespec format in the variable pointed to by @ts.
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		getnstimeofday(ts);
		tomono = wall_to_monotonic;

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec);
}
M
Matt Helsley 已提交
122
EXPORT_SYMBOL_GPL(ktime_get_ts);
123

124 125 126 127 128 129 130
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
static void hrtimer_get_softirq_time(struct hrtimer_base *base)
{
	ktime_t xtim, tomono;
J
john stultz 已提交
131
	struct timespec xts;
132 133 134 135
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
J
john stultz 已提交
136 137 138 139 140
#ifdef CONFIG_NO_HZ
		getnstimeofday(&xts);
#else
		xts = xtime;
#endif
141 142
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
143 144
	xtim = timespec_to_ktime(xts);
	tomono = timespec_to_ktime(wall_to_monotonic);
145 146 147 148
	base[CLOCK_REALTIME].softirq_time = xtim;
	base[CLOCK_MONOTONIC].softirq_time = ktime_add(xtim, tomono);
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

#define set_curr_timer(b, t)		do { (b)->curr_timer = (t); } while (0)

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
static struct hrtimer_base *lock_hrtimer_base(const struct hrtimer *timer,
					      unsigned long *flags)
{
	struct hrtimer_base *base;

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
			spin_lock_irqsave(&base->lock, *flags);
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
			spin_unlock_irqrestore(&base->lock, *flags);
		}
		cpu_relax();
	}
}

/*
 * Switch the timer base to the current CPU when possible.
 */
static inline struct hrtimer_base *
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base)
{
	struct hrtimer_base *new_base;

195
	new_base = &__get_cpu_var(hrtimer_bases)[base->index];
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

	if (base != new_base) {
		/*
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
		if (unlikely(base->curr_timer == timer))
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
		spin_unlock(&base->lock);
		spin_lock(&new_base->lock);
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

#define set_curr_timer(b, t)		do { } while (0)

static inline struct hrtimer_base *
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
	struct hrtimer_base *base = timer->base;

	spin_lock_irqsave(&base->lock, *flags);

	return base;
}

#define switch_hrtimer_base(t, b)	(b)

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}

#else /* CONFIG_KTIME_SCALAR */

# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
272
static unsigned long ktime_divns(const ktime_t kt, s64 div)
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
{
	u64 dclc, inc, dns;
	int sft = 0;

	dclc = dns = ktime_to_ns(kt);
	inc = div;
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

	return (unsigned long) dclc;
}

#else /* BITS_PER_LONG < 64 */
# define ktime_divns(kt, div)		(unsigned long)((kt).tv64 / (div))
#endif /* BITS_PER_LONG >= 64 */

/*
 * Counterpart to lock_timer_base above:
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
	spin_unlock_irqrestore(&timer->base->lock, *flags);
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
306
 * @now:	forward past this time
307 308 309
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
310
 * Returns the number of overruns.
311 312
 */
unsigned long
313
hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
314 315
{
	unsigned long orun = 1;
316
	ktime_t delta;
317 318 319 320 321 322

	delta = ktime_sub(now, timer->expires);

	if (delta.tv64 < 0)
		return 0;

323 324 325
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

326
	if (unlikely(delta.tv64 >= interval.tv64)) {
327
		s64 incr = ktime_to_ns(interval);
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

		orun = ktime_divns(delta, incr);
		timer->expires = ktime_add_ns(timer->expires, incr * orun);
		if (timer->expires.tv64 > now.tv64)
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
	timer->expires = ktime_add(timer->expires, interval);

	return orun;
}

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
 */
static void enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
		if (timer->expires.tv64 < entry->expires.tv64)
			link = &(*link)->rb_left;
368
		else
369 370 371 372
			link = &(*link)->rb_right;
	}

	/*
373 374
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
375 376 377 378
	 */
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);

379 380 381 382
	if (!base->first || timer->expires.tv64 <
	    rb_entry(base->first, struct hrtimer, node)->expires.tv64)
		base->first = &timer->node;
}
383 384 385 386 387 388 389 390 391

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
 */
static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
{
	/*
392 393
	 * Remove the timer from the rbtree and replace the
	 * first entry pointer if necessary.
394
	 */
395 396
	if (base->first == &timer->node)
		base->first = rb_next(&timer->node);
397
	rb_erase(&timer->node, &base->active);
398
	rb_set_parent(&timer->node, &timer->node);
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
{
	if (hrtimer_active(timer)) {
		__remove_hrtimer(timer, base);
		return 1;
	}
	return 0;
}

/**
 * hrtimer_start - (re)start an relative timer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
	struct hrtimer_base *base, *new_base;
	unsigned long flags;
	int ret;

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base);

439
	if (mode == HRTIMER_REL) {
440
		tim = ktime_add(tim, new_base->get_time());
441 442 443 444 445 446 447 448 449 450 451
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
		tim = ktime_add(tim, base->resolution);
#endif
	}
452 453 454 455 456 457 458 459
	timer->expires = tim;

	enqueue_hrtimer(timer, new_base);

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
460
EXPORT_SYMBOL_GPL(hrtimer_start);
461 462 463 464 465 466 467 468 469

/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
470
 *    cannot be stopped
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
	struct hrtimer_base *base;
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

	if (base->curr_timer != timer)
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
488
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
505
		cpu_relax();
506 507
	}
}
508
EXPORT_SYMBOL_GPL(hrtimer_cancel);
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	struct hrtimer_base *base;
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
	rem = ktime_sub(timer->expires, timer->base->get_time());
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
526
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
527

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
#ifdef CONFIG_NO_IDLE_HZ
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
	struct hrtimer_base *base = __get_cpu_var(hrtimer_bases);
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

	for (i = 0; i < MAX_HRTIMER_BASES; i++, base++) {
		struct hrtimer *timer;

		spin_lock_irqsave(&base->lock, flags);
		if (!base->first) {
			spin_unlock_irqrestore(&base->lock, flags);
			continue;
		}
		timer = rb_entry(base->first, struct hrtimer, node);
		delta.tv64 = timer->expires.tv64;
		spin_unlock_irqrestore(&base->lock, flags);
		delta = ktime_sub(delta, base->get_time());
		if (delta.tv64 < mindelta.tv64)
			mindelta.tv64 = delta.tv64;
	}
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

563
/**
564 565
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
566
 * @clock_id:	the clock to be used
567
 * @mode:	timer mode abs/rel
568
 */
569 570
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
571 572 573
{
	struct hrtimer_base *bases;

574 575
	memset(timer, 0, sizeof(struct hrtimer));

576
	bases = __raw_get_cpu_var(hrtimer_bases);
577

578 579 580 581
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_ABS)
		clock_id = CLOCK_MONOTONIC;

	timer->base = &bases[clock_id];
582
	rb_set_parent(&timer->node, &timer->node);
583
}
584
EXPORT_SYMBOL_GPL(hrtimer_init);
585 586 587 588 589 590

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
591 592
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
593 594 595 596 597
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
	struct hrtimer_base *bases;

598
	bases = __raw_get_cpu_var(hrtimer_bases);
599
	*tp = ktime_to_timespec(bases[which_clock].resolution);
600 601 602

	return 0;
}
603
EXPORT_SYMBOL_GPL(hrtimer_get_res);
604 605 606 607 608 609

/*
 * Expire the per base hrtimer-queue:
 */
static inline void run_hrtimer_queue(struct hrtimer_base *base)
{
610
	struct rb_node *node;
611

612 613 614
	if (!base->first)
		return;

615 616 617
	if (base->get_softirq_time)
		base->softirq_time = base->get_softirq_time();

618 619
	spin_lock_irq(&base->lock);

620
	while ((node = base->first)) {
621
		struct hrtimer *timer;
622
		int (*fn)(struct hrtimer *);
623 624
		int restart;

625
		timer = rb_entry(node, struct hrtimer, node);
626
		if (base->softirq_time.tv64 <= timer->expires.tv64)
627 628 629 630 631 632 633
			break;

		fn = timer->function;
		set_curr_timer(base, timer);
		__remove_hrtimer(timer, base);
		spin_unlock_irq(&base->lock);

634
		restart = fn(timer);
635 636 637

		spin_lock_irq(&base->lock);

638 639
		if (restart != HRTIMER_NORESTART) {
			BUG_ON(hrtimer_active(timer));
640
			enqueue_hrtimer(timer, base);
641
		}
642 643 644 645 646 647 648 649 650 651 652 653 654
	}
	set_curr_timer(base, NULL);
	spin_unlock_irq(&base->lock);
}

/*
 * Called from timer softirq every jiffy, expire hrtimers:
 */
void hrtimer_run_queues(void)
{
	struct hrtimer_base *base = __get_cpu_var(hrtimer_bases);
	int i;

655 656
	hrtimer_get_softirq_time(base);

657 658 659 660
	for (i = 0; i < MAX_HRTIMER_BASES; i++)
		run_hrtimer_queue(&base[i]);
}

661 662 663
/*
 * Sleep related functions:
 */
664 665 666 667 668 669 670 671 672 673 674 675 676
static int hrtimer_wakeup(struct hrtimer *timer)
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

677
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
678 679 680 681 682
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}

683
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
684
{
685
	hrtimer_init_sleeper(t, current);
686

687 688 689 690 691 692
	do {
		set_current_state(TASK_INTERRUPTIBLE);
		hrtimer_start(&t->timer, t->timer.expires, mode);

		schedule();

693 694 695 696
		hrtimer_cancel(&t->timer);
		mode = HRTIMER_ABS;

	} while (t->task && !signal_pending(current));
697

698
	return t->task == NULL;
699 700
}

701
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
702
{
703
	struct hrtimer_sleeper t;
704 705
	struct timespec __user *rmtp;
	struct timespec tu;
706
	ktime_t time;
707 708 709

	restart->fn = do_no_restart_syscall;

710 711
	hrtimer_init(&t.timer, restart->arg0, HRTIMER_ABS);
	t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
712

713
	if (do_nanosleep(&t, HRTIMER_ABS))
714 715
		return 0;

716
	rmtp = (struct timespec __user *) restart->arg1;
717 718 719 720 721 722 723 724
	if (rmtp) {
		time = ktime_sub(t.timer.expires, t.timer.base->get_time());
		if (time.tv64 <= 0)
			return 0;
		tu = ktime_to_timespec(time);
		if (copy_to_user(rmtp, &tu, sizeof(tu)))
			return -EFAULT;
	}
725

726
	restart->fn = hrtimer_nanosleep_restart;
727 728 729 730 731 732 733 734 735

	/* The other values in restart are already filled in */
	return -ERESTART_RESTARTBLOCK;
}

long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
736
	struct hrtimer_sleeper t;
737 738 739
	struct timespec tu;
	ktime_t rem;

740 741 742
	hrtimer_init(&t.timer, clockid, mode);
	t.timer.expires = timespec_to_ktime(*rqtp);
	if (do_nanosleep(&t, mode))
743 744
		return 0;

745
	/* Absolute timers do not update the rmtp value and restart: */
746 747 748
	if (mode == HRTIMER_ABS)
		return -ERESTARTNOHAND;

749 750 751 752 753 754 755 756
	if (rmtp) {
		rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
		if (rem.tv64 <= 0)
			return 0;
		tu = ktime_to_timespec(rem);
		if (copy_to_user(rmtp, &tu, sizeof(tu)))
			return -EFAULT;
	}
757 758

	restart = &current_thread_info()->restart_block;
759 760 761 762 763
	restart->fn = hrtimer_nanosleep_restart;
	restart->arg0 = (unsigned long) t.timer.base->index;
	restart->arg1 = (unsigned long) rmtp;
	restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
	restart->arg3 = t.timer.expires.tv64 >> 32;
764 765 766 767

	return -ERESTART_RESTARTBLOCK;
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781
asmlinkage long
sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
{
	struct timespec tu;

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_REL, CLOCK_MONOTONIC);
}

782 783 784 785 786 787 788 789
/*
 * Functions related to boot-time initialization:
 */
static void __devinit init_hrtimers_cpu(int cpu)
{
	struct hrtimer_base *base = per_cpu(hrtimer_bases, cpu);
	int i;

790
	for (i = 0; i < MAX_HRTIMER_BASES; i++, base++) {
791
		spin_lock_init(&base->lock);
792 793
		lockdep_set_class(&base->lock, &base->lock_key);
	}
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
}

#ifdef CONFIG_HOTPLUG_CPU

static void migrate_hrtimer_list(struct hrtimer_base *old_base,
				struct hrtimer_base *new_base)
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
		__remove_hrtimer(timer, old_base);
		timer->base = new_base;
		enqueue_hrtimer(timer, new_base);
	}
}

static void migrate_hrtimers(int cpu)
{
	struct hrtimer_base *old_base, *new_base;
	int i;

	BUG_ON(cpu_online(cpu));
	old_base = per_cpu(hrtimer_bases, cpu);
	new_base = get_cpu_var(hrtimer_bases);

	local_irq_disable();

	for (i = 0; i < MAX_HRTIMER_BASES; i++) {

		spin_lock(&new_base->lock);
		spin_lock(&old_base->lock);

		BUG_ON(old_base->curr_timer);

		migrate_hrtimer_list(old_base, new_base);

		spin_unlock(&old_base->lock);
		spin_unlock(&new_base->lock);
		old_base++;
		new_base++;
	}

	local_irq_enable();
	put_cpu_var(hrtimer_bases);
}
#endif /* CONFIG_HOTPLUG_CPU */

843
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
					unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
		init_hrtimers_cpu(cpu);
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
		migrate_hrtimers(cpu);
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

867
static struct notifier_block __cpuinitdata hrtimers_nb = {
868 869 870 871 872 873 874 875 876 877
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
}