spu_base.c 17.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Low-level SPU handling
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23
#undef DEBUG
24 25 26 27 28 29 30 31 32 33 34

#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/poll.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/wait.h>

#include <asm/io.h>
#include <asm/prom.h>
35
#include <linux/mutex.h>
36
#include <asm/spu.h>
37
#include <asm/spu_priv1.h>
38 39 40 41
#include <asm/mmu_context.h>

#include "interrupt.h"

42 43 44 45
const struct spu_priv1_ops *spu_priv1_ops;

EXPORT_SYMBOL_GPL(spu_priv1_ops);

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
static int __spu_trap_invalid_dma(struct spu *spu)
{
	pr_debug("%s\n", __FUNCTION__);
	force_sig(SIGBUS, /* info, */ current);
	return 0;
}

static int __spu_trap_dma_align(struct spu *spu)
{
	pr_debug("%s\n", __FUNCTION__);
	force_sig(SIGBUS, /* info, */ current);
	return 0;
}

static int __spu_trap_error(struct spu *spu)
{
	pr_debug("%s\n", __FUNCTION__);
	force_sig(SIGILL, /* info, */ current);
	return 0;
}

static void spu_restart_dma(struct spu *spu)
{
	struct spu_priv2 __iomem *priv2 = spu->priv2;
70

71
	if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags))
72
		out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
73 74 75 76
}

static int __spu_trap_data_seg(struct spu *spu, unsigned long ea)
{
77 78
	struct spu_priv2 __iomem *priv2 = spu->priv2;
	struct mm_struct *mm = spu->mm;
79
	u64 esid, vsid, llp;
80 81 82

	pr_debug("%s\n", __FUNCTION__);

83
	if (test_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags)) {
84 85 86
		/* SLBs are pre-loaded for context switch, so
		 * we should never get here!
		 */
87 88 89
		printk("%s: invalid access during switch!\n", __func__);
		return 1;
	}
90 91 92 93
	if (!mm || (REGION_ID(ea) != USER_REGION_ID)) {
		/* Future: support kernel segments so that drivers
		 * can use SPUs.
		 */
94 95 96 97
		pr_debug("invalid region access at %016lx\n", ea);
		return 1;
	}

98
	esid = (ea & ESID_MASK) | SLB_ESID_V;
99
#ifdef CONFIG_HUGETLB_PAGE
100
	if (in_hugepage_area(mm->context, ea))
101 102 103 104 105 106
		llp = mmu_psize_defs[mmu_huge_psize].sllp;
	else
#endif
		llp = mmu_psize_defs[mmu_virtual_psize].sllp;
	vsid = (get_vsid(mm->context.id, ea) << SLB_VSID_SHIFT) |
			SLB_VSID_USER | llp;
107

108 109 110 111 112
	out_be64(&priv2->slb_index_W, spu->slb_replace);
	out_be64(&priv2->slb_vsid_RW, vsid);
	out_be64(&priv2->slb_esid_RW, esid);

	spu->slb_replace++;
113 114 115 116 117 118 119 120
	if (spu->slb_replace >= 8)
		spu->slb_replace = 0;

	spu_restart_dma(spu);

	return 0;
}

121
extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); //XXX
122
static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr)
123
{
124
	pr_debug("%s, %lx, %lx\n", __FUNCTION__, dsisr, ea);
125

126 127 128 129 130 131 132 133 134
	/* Handle kernel space hash faults immediately.
	   User hash faults need to be deferred to process context. */
	if ((dsisr & MFC_DSISR_PTE_NOT_FOUND)
	    && REGION_ID(ea) != USER_REGION_ID
	    && hash_page(ea, _PAGE_PRESENT, 0x300) == 0) {
		spu_restart_dma(spu);
		return 0;
	}

135
	if (test_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags)) {
136 137 138
		printk("%s: invalid access during switch!\n", __func__);
		return 1;
	}
139

140 141 142
	spu->dar = ea;
	spu->dsisr = dsisr;
	mb();
143
	spu->stop_callback(spu);
144 145 146 147 148 149 150 151 152 153
	return 0;
}

static irqreturn_t
spu_irq_class_0(int irq, void *data, struct pt_regs *regs)
{
	struct spu *spu;

	spu = data;
	spu->class_0_pending = 1;
154
	spu->stop_callback(spu);
155 156 157 158

	return IRQ_HANDLED;
}

159
int
160 161
spu_irq_class_0_bottom(struct spu *spu)
{
162
	unsigned long stat, mask;
163 164 165

	spu->class_0_pending = 0;

166 167
	mask = spu_int_mask_get(spu, 0);
	stat = spu_int_stat_get(spu, 0);
168

169 170
	stat &= mask;

171
	if (stat & 1) /* invalid DMA alignment */
172 173
		__spu_trap_dma_align(spu);

174 175 176
	if (stat & 2) /* invalid MFC DMA */
		__spu_trap_invalid_dma(spu);

177 178 179
	if (stat & 4) /* error on SPU */
		__spu_trap_error(spu);

180
	spu_int_stat_clear(spu, 0, stat);
181 182

	return (stat & 0x7) ? -EIO : 0;
183
}
184
EXPORT_SYMBOL_GPL(spu_irq_class_0_bottom);
185 186 187 188 189

static irqreturn_t
spu_irq_class_1(int irq, void *data, struct pt_regs *regs)
{
	struct spu *spu;
190
	unsigned long stat, mask, dar, dsisr;
191 192

	spu = data;
193 194 195

	/* atomically read & clear class1 status. */
	spin_lock(&spu->register_lock);
196 197 198 199
	mask  = spu_int_mask_get(spu, 1);
	stat  = spu_int_stat_get(spu, 1) & mask;
	dar   = spu_mfc_dar_get(spu);
	dsisr = spu_mfc_dsisr_get(spu);
200
	if (stat & 2) /* mapping fault */
201 202
		spu_mfc_dsisr_set(spu, 0ul);
	spu_int_stat_clear(spu, 1, stat);
203
	spin_unlock(&spu->register_lock);
204 205
	pr_debug("%s: %lx %lx %lx %lx\n", __FUNCTION__, mask, stat,
			dar, dsisr);
206 207 208 209 210

	if (stat & 1) /* segment fault */
		__spu_trap_data_seg(spu, dar);

	if (stat & 2) { /* mapping fault */
211
		__spu_trap_data_map(spu, dar, dsisr);
212 213 214 215 216 217 218 219 220 221
	}

	if (stat & 4) /* ls compare & suspend on get */
		;

	if (stat & 8) /* ls compare & suspend on put */
		;

	return stat ? IRQ_HANDLED : IRQ_NONE;
}
222
EXPORT_SYMBOL_GPL(spu_irq_class_1_bottom);
223 224 225 226 227 228

static irqreturn_t
spu_irq_class_2(int irq, void *data, struct pt_regs *regs)
{
	struct spu *spu;
	unsigned long stat;
229
	unsigned long mask;
230 231

	spu = data;
232
	spin_lock(&spu->register_lock);
233 234
	stat = spu_int_stat_get(spu, 2);
	mask = spu_int_mask_get(spu, 2);
235 236 237 238 239 240 241 242 243 244 245
	/* ignore interrupts we're not waiting for */
	stat &= mask;
	/*
	 * mailbox interrupts (0x1 and 0x10) are level triggered.
	 * mask them now before acknowledging.
	 */
	if (stat & 0x11)
		spu_int_mask_and(spu, 2, ~(stat & 0x11));
	/* acknowledge all interrupts before the callbacks */
	spu_int_stat_clear(spu, 2, stat);
	spin_unlock(&spu->register_lock);
246

247
	pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask);
248 249

	if (stat & 1)  /* PPC core mailbox */
250
		spu->ibox_callback(spu);
251 252

	if (stat & 2) /* SPU stop-and-signal */
253
		spu->stop_callback(spu);
254 255

	if (stat & 4) /* SPU halted */
256
		spu->stop_callback(spu);
257 258

	if (stat & 8) /* DMA tag group complete */
259
		spu->mfc_callback(spu);
260 261

	if (stat & 0x10) /* SPU mailbox threshold */
262
		spu->wbox_callback(spu);
263 264 265 266

	return stat ? IRQ_HANDLED : IRQ_NONE;
}

267
static int spu_request_irqs(struct spu *spu)
268
{
269
	int ret = 0;
270

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	if (spu->irqs[0] != NO_IRQ) {
		snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0",
			 spu->number);
		ret = request_irq(spu->irqs[0], spu_irq_class_0,
				  IRQF_DISABLED,
				  spu->irq_c0, spu);
		if (ret)
			goto bail0;
	}
	if (spu->irqs[1] != NO_IRQ) {
		snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1",
			 spu->number);
		ret = request_irq(spu->irqs[1], spu_irq_class_1,
				  IRQF_DISABLED,
				  spu->irq_c1, spu);
		if (ret)
			goto bail1;
	}
	if (spu->irqs[2] != NO_IRQ) {
		snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2",
			 spu->number);
		ret = request_irq(spu->irqs[2], spu_irq_class_2,
				  IRQF_DISABLED,
				  spu->irq_c2, spu);
		if (ret)
			goto bail2;
	}
	return 0;
299

300 301 302 303 304 305 306
bail2:
	if (spu->irqs[1] != NO_IRQ)
		free_irq(spu->irqs[1], spu);
bail1:
	if (spu->irqs[0] != NO_IRQ)
		free_irq(spu->irqs[0], spu);
bail0:
307 308 309
	return ret;
}

310
static void spu_free_irqs(struct spu *spu)
311
{
312 313 314 315 316 317
	if (spu->irqs[0] != NO_IRQ)
		free_irq(spu->irqs[0], spu);
	if (spu->irqs[1] != NO_IRQ)
		free_irq(spu->irqs[1], spu);
	if (spu->irqs[2] != NO_IRQ)
		free_irq(spu->irqs[2], spu);
318 319 320
}

static LIST_HEAD(spu_list);
321
static DEFINE_MUTEX(spu_mutex);
322 323 324 325 326 327 328 329 330 331 332 333 334 335

static void spu_init_channels(struct spu *spu)
{
	static const struct {
		 unsigned channel;
		 unsigned count;
	} zero_list[] = {
		{ 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, },
		{ 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, },
	}, count_list[] = {
		{ 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, },
		{ 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, },
		{ 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, },
	};
336
	struct spu_priv2 __iomem *priv2;
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
	int i;

	priv2 = spu->priv2;

	/* initialize all channel data to zero */
	for (i = 0; i < ARRAY_SIZE(zero_list); i++) {
		int count;

		out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel);
		for (count = 0; count < zero_list[i].count; count++)
			out_be64(&priv2->spu_chnldata_RW, 0);
	}

	/* initialize channel counts to meaningful values */
	for (i = 0; i < ARRAY_SIZE(count_list); i++) {
		out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel);
		out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count);
	}
}

struct spu *spu_alloc(void)
{
	struct spu *spu;

361
	mutex_lock(&spu_mutex);
362 363 364 365 366 367 368 369
	if (!list_empty(&spu_list)) {
		spu = list_entry(spu_list.next, struct spu, list);
		list_del_init(&spu->list);
		pr_debug("Got SPU %x %d\n", spu->isrc, spu->number);
	} else {
		pr_debug("No SPU left\n");
		spu = NULL;
	}
370
	mutex_unlock(&spu_mutex);
371

372
	if (spu)
373 374 375 376
		spu_init_channels(spu);

	return spu;
}
377
EXPORT_SYMBOL_GPL(spu_alloc);
378 379 380

void spu_free(struct spu *spu)
{
381
	mutex_lock(&spu_mutex);
382
	list_add_tail(&spu->list, &spu_list);
383
	mutex_unlock(&spu_mutex);
384
}
385
EXPORT_SYMBOL_GPL(spu_free);
386 387 388 389 390 391 392 393

static int spu_handle_mm_fault(struct spu *spu)
{
	struct mm_struct *mm = spu->mm;
	struct vm_area_struct *vma;
	u64 ea, dsisr, is_write;
	int ret;

394 395
	ea = spu->dar;
	dsisr = spu->dsisr;
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
#if 0
	if (!IS_VALID_EA(ea)) {
		return -EFAULT;
	}
#endif /* XXX */
	if (mm == NULL) {
		return -EFAULT;
	}
	if (mm->pgd == NULL) {
		return -EFAULT;
	}

	down_read(&mm->mmap_sem);
	vma = find_vma(mm, ea);
	if (!vma)
		goto bad_area;
	if (vma->vm_start <= ea)
		goto good_area;
	if (!(vma->vm_flags & VM_GROWSDOWN))
		goto bad_area;
#if 0
	if (expand_stack(vma, ea))
		goto bad_area;
#endif /* XXX */
good_area:
	is_write = dsisr & MFC_DSISR_ACCESS_PUT;
	if (is_write) {
		if (!(vma->vm_flags & VM_WRITE))
			goto bad_area;
	} else {
		if (dsisr & MFC_DSISR_ACCESS_DENIED)
			goto bad_area;
		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
			goto bad_area;
	}
	ret = 0;
	switch (handle_mm_fault(mm, vma, ea, is_write)) {
	case VM_FAULT_MINOR:
		current->min_flt++;
		break;
	case VM_FAULT_MAJOR:
		current->maj_flt++;
		break;
	case VM_FAULT_SIGBUS:
		ret = -EFAULT;
		goto bad_area;
	case VM_FAULT_OOM:
		ret = -ENOMEM;
		goto bad_area;
	default:
		BUG();
	}
	up_read(&mm->mmap_sem);
	return ret;

bad_area:
	up_read(&mm->mmap_sem);
	return -EFAULT;
}

456
int spu_irq_class_1_bottom(struct spu *spu)
457 458 459 460
{
	u64 ea, dsisr, access, error = 0UL;
	int ret = 0;

461 462
	ea = spu->dar;
	dsisr = spu->dsisr;
463
	if (dsisr & (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED)) {
464 465
		u64 flags;

466 467
		access = (_PAGE_PRESENT | _PAGE_USER);
		access |= (dsisr & MFC_DSISR_ACCESS_PUT) ? _PAGE_RW : 0UL;
468
		local_irq_save(flags);
469 470
		if (hash_page(ea, access, 0x300) != 0)
			error |= CLASS1_ENABLE_STORAGE_FAULT_INTR;
471
		local_irq_restore(flags);
472
	}
473
	if (error & CLASS1_ENABLE_STORAGE_FAULT_INTR) {
474 475 476 477 478
		if ((ret = spu_handle_mm_fault(spu)) != 0)
			error |= CLASS1_ENABLE_STORAGE_FAULT_INTR;
		else
			error &= ~CLASS1_ENABLE_STORAGE_FAULT_INTR;
	}
479 480 481
	spu->dar = 0UL;
	spu->dsisr = 0UL;
	if (!error) {
482
		spu_restart_dma(spu);
483 484 485
	} else {
		__spu_trap_invalid_dma(spu);
	}
486 487 488
	return ret;
}

489 490
static int __init find_spu_node_id(struct device_node *spe)
{
491
	const unsigned int *id;
492 493
	struct device_node *cpu;
	cpu = spe->parent->parent;
494
	id = get_property(cpu, "node-id", NULL);
495 496 497
	return id ? *id : 0;
}

498 499
static int __init cell_spuprop_present(struct spu *spu, struct device_node *spe,
		const char *prop)
500 501 502
{
	static DEFINE_MUTEX(add_spumem_mutex);

503
	const struct address_prop {
504 505 506 507 508 509 510 511 512 513
		unsigned long address;
		unsigned int len;
	} __attribute__((packed)) *p;
	int proplen;

	unsigned long start_pfn, nr_pages;
	struct pglist_data *pgdata;
	struct zone *zone;
	int ret;

514
	p = get_property(spe, prop, &proplen);
515 516 517 518 519
	WARN_ON(proplen != sizeof (*p));

	start_pfn = p->address >> PAGE_SHIFT;
	nr_pages = ((unsigned long)p->len + PAGE_SIZE - 1) >> PAGE_SHIFT;

520
	pgdata = NODE_DATA(spu->nid);
521 522 523 524 525 526 527 528 529 530
	zone = pgdata->node_zones;

	/* XXX rethink locking here */
	mutex_lock(&add_spumem_mutex);
	ret = __add_pages(zone, start_pfn, nr_pages);
	mutex_unlock(&add_spumem_mutex);

	return ret;
}

531 532
static void __iomem * __init map_spe_prop(struct spu *spu,
		struct device_node *n, const char *name)
533
{
534
	const struct address_prop {
535 536 537 538
		unsigned long address;
		unsigned int len;
	} __attribute__((packed)) *prop;

539
	const void *p;
540
	int proplen;
A
Al Viro 已提交
541
	void __iomem *ret = NULL;
542
	int err = 0;
543 544 545 546 547 548 549

	p = get_property(n, name, &proplen);
	if (proplen != sizeof (struct address_prop))
		return NULL;

	prop = p;

550
	err = cell_spuprop_present(spu, n, name);
551 552 553 554 555 556 557
	if (err && (err != -EEXIST))
		goto out;

	ret = ioremap(prop->address, prop->len);

 out:
	return ret;
558 559 560 561 562 563 564
}

static void spu_unmap(struct spu *spu)
{
	iounmap(spu->priv2);
	iounmap(spu->priv1);
	iounmap(spu->problem);
A
Al Viro 已提交
565
	iounmap((__force u8 __iomem *)spu->local_store);
566 567
}

568 569 570 571 572
/* This function shall be abstracted for HV platforms */
static int __init spu_map_interrupts(struct spu *spu, struct device_node *np)
{
	struct irq_host *host;
	unsigned int isrc;
573
	const u32 *tmp;
574 575 576 577 578 579

	host = iic_get_irq_host(spu->node);
	if (host == NULL)
		return -ENODEV;

	/* Get the interrupt source from the device-tree */
580
	tmp = get_property(np, "isrc", NULL);
581 582 583 584 585
	if (!tmp)
		return -ENODEV;
	spu->isrc = isrc = tmp[0];

	/* Now map interrupts of all 3 classes */
586 587 588
	spu->irqs[0] = irq_create_mapping(host, 0x00 | isrc);
	spu->irqs[1] = irq_create_mapping(host, 0x10 | isrc);
	spu->irqs[2] = irq_create_mapping(host, 0x20 | isrc);
589 590 591 592 593

	/* Right now, we only fail if class 2 failed */
	return spu->irqs[2] == NO_IRQ ? -EINVAL : 0;
}

594
static int __init spu_map_device(struct spu *spu, struct device_node *node)
595
{
596
	const char *prop;
597 598 599
	int ret;

	ret = -ENODEV;
600
	spu->name = get_property(node, "name", NULL);
601 602 603
	if (!spu->name)
		goto out;

604
	prop = get_property(node, "local-store", NULL);
605 606 607 608 609
	if (!prop)
		goto out;
	spu->local_store_phys = *(unsigned long *)prop;

	/* we use local store as ram, not io memory */
610 611
	spu->local_store = (void __force *)
		map_spe_prop(spu, node, "local-store");
612 613 614
	if (!spu->local_store)
		goto out;

615
	prop = get_property(node, "problem", NULL);
616 617 618 619
	if (!prop)
		goto out_unmap;
	spu->problem_phys = *(unsigned long *)prop;

620
	spu->problem= map_spe_prop(spu, node, "problem");
621 622 623
	if (!spu->problem)
		goto out_unmap;

624
	spu->priv1= map_spe_prop(spu, node, "priv1");
625
	/* priv1 is not available on a hypervisor */
626

627
	spu->priv2= map_spe_prop(spu, node, "priv2");
628 629 630 631 632 633 634 635 636 637 638
	if (!spu->priv2)
		goto out_unmap;
	ret = 0;
	goto out;

out_unmap:
	spu_unmap(spu);
out:
	return ret;
}

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
struct sysdev_class spu_sysdev_class = {
	set_kset_name("spu")
};

static ssize_t spu_show_isrc(struct sys_device *sysdev, char *buf)
{
	struct spu *spu = container_of(sysdev, struct spu, sysdev);
	return sprintf(buf, "%d\n", spu->isrc);

}
static SYSDEV_ATTR(isrc, 0400, spu_show_isrc, NULL);

extern int attach_sysdev_to_node(struct sys_device *dev, int nid);

static int spu_create_sysdev(struct spu *spu)
{
	int ret;

	spu->sysdev.id = spu->number;
	spu->sysdev.cls = &spu_sysdev_class;
	ret = sysdev_register(&spu->sysdev);
	if (ret) {
		printk(KERN_ERR "Can't register SPU %d with sysfs\n",
				spu->number);
		return ret;
	}

666 667
	if (spu->isrc != 0)
		sysdev_create_file(&spu->sysdev, &attr_isrc);
668 669 670 671 672 673 674 675 676 677 678 679
	sysfs_add_device_to_node(&spu->sysdev, spu->nid);

	return 0;
}

static void spu_destroy_sysdev(struct spu *spu)
{
	sysdev_remove_file(&spu->sysdev, &attr_isrc);
	sysfs_remove_device_from_node(&spu->sysdev, spu->nid);
	sysdev_unregister(&spu->sysdev);
}

680 681 682 683 684 685 686
static int __init create_spu(struct device_node *spe)
{
	struct spu *spu;
	int ret;
	static int number;

	ret = -ENOMEM;
687
	spu = kzalloc(sizeof (*spu), GFP_KERNEL);
688 689 690 691 692 693 694 695
	if (!spu)
		goto out;

	ret = spu_map_device(spu, spe);
	if (ret)
		goto out_free;

	spu->node = find_spu_node_id(spe);
696 697 698
	spu->nid = of_node_to_nid(spe);
	if (spu->nid == -1)
		spu->nid = 0;
699 700 701
	ret = spu_map_interrupts(spu, spe);
	if (ret)
		goto out_unmap;
702
	spin_lock_init(&spu->register_lock);
703 704
	spu_mfc_sdr_set(spu, mfspr(SPRN_SDR1));
	spu_mfc_sr1_set(spu, 0x33);
705
	mutex_lock(&spu_mutex);
706

707 708 709 710 711
	spu->number = number++;
	ret = spu_request_irqs(spu);
	if (ret)
		goto out_unmap;

712 713 714 715
	ret = spu_create_sysdev(spu);
	if (ret)
		goto out_free_irqs;

716
	list_add(&spu->list, &spu_list);
717
	mutex_unlock(&spu_mutex);
718 719 720 721 722 723

	pr_debug(KERN_DEBUG "Using SPE %s %02x %p %p %p %p %d\n",
		spu->name, spu->isrc, spu->local_store,
		spu->problem, spu->priv1, spu->priv2, spu->number);
	goto out;

724 725 726
out_free_irqs:
	spu_free_irqs(spu);

727
out_unmap:
728
	mutex_unlock(&spu_mutex);
729 730 731 732 733 734 735 736 737 738 739
	spu_unmap(spu);
out_free:
	kfree(spu);
out:
	return ret;
}

static void destroy_spu(struct spu *spu)
{
	list_del_init(&spu->list);

740
	spu_destroy_sysdev(spu);
741 742 743 744 745 746 747 748
	spu_free_irqs(spu);
	spu_unmap(spu);
	kfree(spu);
}

static void cleanup_spu_base(void)
{
	struct spu *spu, *tmp;
749
	mutex_lock(&spu_mutex);
750 751
	list_for_each_entry_safe(spu, tmp, &spu_list, list)
		destroy_spu(spu);
752
	mutex_unlock(&spu_mutex);
753
	sysdev_class_unregister(&spu_sysdev_class);
754 755 756 757 758 759 760 761
}
module_exit(cleanup_spu_base);

static int __init init_spu_base(void)
{
	struct device_node *node;
	int ret;

762 763 764 765 766
	/* create sysdev class for spus */
	ret = sysdev_class_register(&spu_sysdev_class);
	if (ret)
		return ret;

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
	ret = -ENODEV;
	for (node = of_find_node_by_type(NULL, "spe");
			node; node = of_find_node_by_type(node, "spe")) {
		ret = create_spu(node);
		if (ret) {
			printk(KERN_WARNING "%s: Error initializing %s\n",
				__FUNCTION__, node->name);
			cleanup_spu_base();
			break;
		}
	}
	/* in some old firmware versions, the spe is called 'spc', so we
	   look for that as well */
	for (node = of_find_node_by_type(NULL, "spc");
			node; node = of_find_node_by_type(node, "spc")) {
		ret = create_spu(node);
		if (ret) {
			printk(KERN_WARNING "%s: Error initializing %s\n",
				__FUNCTION__, node->name);
			cleanup_spu_base();
			break;
		}
	}
	return ret;
}
module_init(init_spu_base);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Arnd Bergmann <arndb@de.ibm.com>");