core.c 109.9 KB
Newer Older
1
/*
2 3 4 5
 * Per core/cpu state
 *
 * Used to coordinate shared registers between HT threads or
 * among events on a single PMU.
6
 */
7

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11 12 13
#include <linux/stddef.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
14
#include <linux/export.h>
15
#include <linux/nmi.h>
16

17
#include <asm/cpufeature.h>
18 19 20
#include <asm/hardirq.h>
#include <asm/apic.h>

21
#include "../perf_event.h"
22

23
/*
24
 * Intel PerfMon, used on Core and later.
25
 */
26
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
27
{
28 29 30 31 32 33 34 35
	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
36 37
};

38
static struct event_constraint intel_core_event_constraints[] __read_mostly =
39 40 41 42 43 44 45 46 47 48
{
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
	EVENT_CONSTRAINT_END
};

49
static struct event_constraint intel_core2_event_constraints[] __read_mostly =
50
{
51 52
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
53
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
54 55 56 57 58 59 60 61
	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
62
	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
63 64 65 66
	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
	EVENT_CONSTRAINT_END
};

67
static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
68
{
69 70
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
71
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
72 73 74 75 76 77 78 79 80 81 82
	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
	EVENT_CONSTRAINT_END
};

83
static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
84
{
85 86
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
87
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
88 89 90
	EVENT_EXTRA_END
};

91
static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
92
{
93 94
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
95
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
96 97 98
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
99
	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
100 101 102
	EVENT_CONSTRAINT_END
};

103
static struct event_constraint intel_snb_event_constraints[] __read_mostly =
104 105 106
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
107
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
108 109 110 111
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
112 113 114
	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
115 116
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
117 118 119 120 121 122

	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

123 124 125
	EVENT_CONSTRAINT_END
};

126 127 128 129 130 131 132 133
static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
134
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
135 136 137 138 139 140
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
141 142 143 144 145 146

	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

147 148 149
	EVENT_CONSTRAINT_END
};

150
static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
151
{
152 153 154
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
155
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
156 157 158
	EVENT_EXTRA_END
};

159 160 161 162 163
static struct event_constraint intel_v1_event_constraints[] __read_mostly =
{
	EVENT_CONSTRAINT_END
};

164
static struct event_constraint intel_gen_event_constraints[] __read_mostly =
165
{
166 167
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
168
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
169 170 171
	EVENT_CONSTRAINT_END
};

172 173 174 175 176 177 178 179
static struct event_constraint intel_slm_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
	EVENT_CONSTRAINT_END
};

180 181 182 183 184 185 186 187
struct event_constraint intel_skl_event_constraints[] = {
	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
	EVENT_CONSTRAINT_END
};

188 189 190 191 192 193 194 195
static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
	INTEL_UEVENT_EXTRA_REG(0x01b7,
			       MSR_OFFCORE_RSP_0, 0x7f9ffbffffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x02b7,
			       MSR_OFFCORE_RSP_1, 0x3f9ffbffffull, RSP_1),
	EVENT_EXTRA_END
};

196
static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
197 198 199
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
200
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
201 202 203 204
	EVENT_EXTRA_END
};

static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
205 206 207
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
208
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
209 210 211
	EVENT_EXTRA_END
};

212 213 214 215
static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
216 217 218 219 220
	/*
	 * Note the low 8 bits eventsel code is not a continuous field, containing
	 * some #GPing bits. These are masked out.
	 */
	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
221 222 223
	EVENT_EXTRA_END
};

224 225 226
EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
227 228 229 230 231 232 233 234

struct attribute *nhm_events_attrs[] = {
	EVENT_PTR(mem_ld_nhm),
	NULL,
};

struct attribute *snb_events_attrs[] = {
	EVENT_PTR(mem_ld_snb),
235
	EVENT_PTR(mem_st_snb),
236 237 238
	NULL,
};

239 240 241 242
static struct event_constraint intel_hsw_event_constraints[] = {
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
243
	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
244 245 246
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
247
	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
248
	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
249
	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
250
	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
251
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
252 253 254 255 256 257

	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

258 259 260
	EVENT_CONSTRAINT_END
};

261 262 263 264 265
struct event_constraint intel_bdw_event_constraints[] = {
	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
266
	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
267 268 269
	EVENT_CONSTRAINT_END
};

270 271 272 273 274
static u64 intel_pmu_event_map(int hw_event)
{
	return intel_perfmon_event_map[hw_event];
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
/*
 * Notes on the events:
 * - data reads do not include code reads (comparable to earlier tables)
 * - data counts include speculative execution (except L1 write, dtlb, bpu)
 * - remote node access includes remote memory, remote cache, remote mmio.
 * - prefetches are not included in the counts.
 * - icache miss does not include decoded icache
 */

#define SKL_DEMAND_DATA_RD		BIT_ULL(0)
#define SKL_DEMAND_RFO			BIT_ULL(1)
#define SKL_ANY_RESPONSE		BIT_ULL(16)
#define SKL_SUPPLIER_NONE		BIT_ULL(17)
#define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
#define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
#define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
#define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
#define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
#define SKL_SPL_HIT			BIT_ULL(30)
#define SKL_SNOOP_NONE			BIT_ULL(31)
#define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
#define SKL_SNOOP_MISS			BIT_ULL(33)
#define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
#define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
#define SKL_SNOOP_HITM			BIT_ULL(36)
#define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
#define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
#define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
#define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
					 SKL_SNOOP_HITM|SKL_SPL_HIT)
#define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
#define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
#define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)

static __initconst const u64 skl_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x608,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x649,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

static __initconst const u64 skl_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
				       SKL_L3_MISS|SKL_ANY_SNOOP|
				       SKL_SUPPLIER_NONE,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
				       SKL_L3_MISS|SKL_ANY_SNOOP|
				       SKL_SUPPLIER_NONE,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
#define SNB_DMND_DATA_RD	(1ULL << 0)
#define SNB_DMND_RFO		(1ULL << 1)
#define SNB_DMND_IFETCH		(1ULL << 2)
#define SNB_DMND_WB		(1ULL << 3)
#define SNB_PF_DATA_RD		(1ULL << 4)
#define SNB_PF_RFO		(1ULL << 5)
#define SNB_PF_IFETCH		(1ULL << 6)
#define SNB_LLC_DATA_RD		(1ULL << 7)
#define SNB_LLC_RFO		(1ULL << 8)
#define SNB_LLC_IFETCH		(1ULL << 9)
#define SNB_BUS_LOCKS		(1ULL << 10)
#define SNB_STRM_ST		(1ULL << 11)
#define SNB_OTHER		(1ULL << 15)
#define SNB_RESP_ANY		(1ULL << 16)
#define SNB_NO_SUPP		(1ULL << 17)
#define SNB_LLC_HITM		(1ULL << 18)
#define SNB_LLC_HITE		(1ULL << 19)
#define SNB_LLC_HITS		(1ULL << 20)
#define SNB_LLC_HITF		(1ULL << 21)
#define SNB_LOCAL		(1ULL << 22)
#define SNB_REMOTE		(0xffULL << 23)
#define SNB_SNP_NONE		(1ULL << 31)
#define SNB_SNP_NOT_NEEDED	(1ULL << 32)
#define SNB_SNP_MISS		(1ULL << 33)
#define SNB_NO_FWD		(1ULL << 34)
#define SNB_SNP_FWD		(1ULL << 35)
#define SNB_HITM		(1ULL << 36)
#define SNB_NON_DRAM		(1ULL << 37)

#define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
#define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
#define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)

#define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
				 SNB_HITM)

#define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
#define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)

#define SNB_L3_ACCESS		SNB_RESP_ANY
#define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)

static __initconst const u64 snb_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
	},
 },
};

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
static __initconst const u64 snb_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
582
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
583
		[ C(RESULT_ACCESS) ] = 0x01b7,
584 585
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
586 587
	},
	[ C(OP_WRITE) ] = {
588
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
589
		[ C(RESULT_ACCESS) ] = 0x01b7,
590 591
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
592 593
	},
	[ C(OP_PREFETCH) ] = {
594
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
595
		[ C(RESULT_ACCESS) ] = 0x01b7,
596 597
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
642 643
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
644 645
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
646 647
	},
	[ C(OP_WRITE) ] = {
648 649
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
650 651
	},
	[ C(OP_PREFETCH) ] = {
652 653
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
654 655 656
	},
 },

657 658
};

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
/*
 * Notes on the events:
 * - data reads do not include code reads (comparable to earlier tables)
 * - data counts include speculative execution (except L1 write, dtlb, bpu)
 * - remote node access includes remote memory, remote cache, remote mmio.
 * - prefetches are not included in the counts because they are not
 *   reliably counted.
 */

#define HSW_DEMAND_DATA_RD		BIT_ULL(0)
#define HSW_DEMAND_RFO			BIT_ULL(1)
#define HSW_ANY_RESPONSE		BIT_ULL(16)
#define HSW_SUPPLIER_NONE		BIT_ULL(17)
#define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
#define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
#define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
#define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
#define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
					 HSW_L3_MISS_REMOTE_HOP2P)
#define HSW_SNOOP_NONE			BIT_ULL(31)
#define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
#define HSW_SNOOP_MISS			BIT_ULL(33)
#define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
#define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
#define HSW_SNOOP_HITM			BIT_ULL(36)
#define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
#define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
#define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
#define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
#define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
#define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
#define HSW_LLC_ACCESS			HSW_ANY_RESPONSE

697 698 699 700 701 702
#define BDW_L3_MISS_LOCAL		BIT(26)
#define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
					 HSW_L3_MISS_REMOTE_HOP2P)


703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
static __initconst const u64 hsw_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

static __initconst const u64 hsw_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
				       HSW_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
				       HSW_L3_MISS|HSW_ANY_SNOOP,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
				       HSW_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
				       HSW_L3_MISS|HSW_ANY_SNOOP,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
				       HSW_L3_MISS_LOCAL_DRAM|
				       HSW_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
				       HSW_L3_MISS_REMOTE|
				       HSW_SNOOP_DRAM,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
				       HSW_L3_MISS_LOCAL_DRAM|
				       HSW_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
				       HSW_L3_MISS_REMOTE|
				       HSW_SNOOP_DRAM,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

855
static __initconst const u64 westmere_hw_cache_event_ids
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
890
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
891
		[ C(RESULT_ACCESS) ] = 0x01b7,
892 893
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
894
	},
895 896 897 898
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
899
	[ C(OP_WRITE) ] = {
900 901 902
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
903
		[ C(RESULT_MISS)   ] = 0x01b7,
904 905
	},
	[ C(OP_PREFETCH) ] = {
906
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
907
		[ C(RESULT_ACCESS) ] = 0x01b7,
908 909
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
954 955 956 957 958 959 960 961 962 963 964 965 966 967
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
968 969
};

970
/*
971 972
 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
 * See IA32 SDM Vol 3B 30.6.1.3
973 974
 */

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
#define NHM_DMND_DATA_RD	(1 << 0)
#define NHM_DMND_RFO		(1 << 1)
#define NHM_DMND_IFETCH		(1 << 2)
#define NHM_DMND_WB		(1 << 3)
#define NHM_PF_DATA_RD		(1 << 4)
#define NHM_PF_DATA_RFO		(1 << 5)
#define NHM_PF_IFETCH		(1 << 6)
#define NHM_OFFCORE_OTHER	(1 << 7)
#define NHM_UNCORE_HIT		(1 << 8)
#define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
#define NHM_OTHER_CORE_HITM	(1 << 10)
        			/* reserved */
#define NHM_REMOTE_CACHE_FWD	(1 << 12)
#define NHM_REMOTE_DRAM		(1 << 13)
#define NHM_LOCAL_DRAM		(1 << 14)
#define NHM_NON_DRAM		(1 << 15)

992 993
#define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
#define NHM_REMOTE		(NHM_REMOTE_DRAM)
994 995 996 997 998 999

#define NHM_DMND_READ		(NHM_DMND_DATA_RD)
#define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
#define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)

#define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1000
#define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1001
#define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1002 1003 1004 1005 1006 1007 1008 1009

static __initconst const u64 nehalem_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
1010 1011
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1012 1013
	},
	[ C(OP_WRITE) ] = {
1014 1015
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1016 1017
	},
	[ C(OP_PREFETCH) ] = {
1018 1019
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1020
	},
1021 1022 1023
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
1024 1025
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1026 1027
	},
	[ C(OP_WRITE) ] = {
1028 1029
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1030 1031
	},
	[ C(OP_PREFETCH) ] = {
1032 1033
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1034 1035
	},
 },
1036 1037
};

1038
static __initconst const u64 nehalem_hw_cache_event_ids
1039 1040 1041 1042 1043 1044
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
1045 1046
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1047 1048
	},
	[ C(OP_WRITE) ] = {
1049 1050
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
1073 1074 1075 1076
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
1077
	},
1078 1079 1080 1081
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
1082
	[ C(OP_WRITE) ] = {
1083 1084 1085 1086
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
1087 1088
	},
	[ C(OP_PREFETCH) ] = {
1089 1090 1091 1092
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
1151 1152
};

1153
static __initconst const u64 core2_hw_cache_event_ids
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

1244
static __initconst const u64 atom_hw_cache_event_ids
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

1335 1336 1337
static struct extra_reg intel_slm_extra_regs[] __read_mostly =
{
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1338
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1339
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	EVENT_EXTRA_END
};

#define SLM_DMND_READ		SNB_DMND_DATA_RD
#define SLM_DMND_WRITE		SNB_DMND_RFO
#define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)

#define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
#define SLM_LLC_ACCESS		SNB_RESP_ANY
#define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)

static __initconst const u64 slm_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1359
		[ C(RESULT_MISS)   ] = 0,
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
	},
 },
};

static __initconst const u64 slm_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
1409
		[ C(RESULT_MISS)   ] = 0,
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	},
	[ C(OP_WRITE) ] = {
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1441
		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
	EVENT_EXTRA_END
};

#define GLM_DEMAND_DATA_RD		BIT_ULL(0)
#define GLM_DEMAND_RFO			BIT_ULL(1)
#define GLM_ANY_RESPONSE		BIT_ULL(16)
#define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
#define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
#define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
#define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
#define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
#define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
#define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)

static __initconst const u64 glm_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(L1D)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(L1I)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
	},
	[C(DTLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(ITLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
	},
	[C(BPU)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
	},
};

static __initconst const u64 glm_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
						  GLM_LLC_MISS,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
						  GLM_LLC_MISS,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
						  GLM_LLC_MISS,
		},
	},
};

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
#define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
#define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
#define KNL_MCDRAM_LOCAL	BIT_ULL(21)
#define KNL_MCDRAM_FAR		BIT_ULL(22)
#define KNL_DDR_LOCAL		BIT_ULL(23)
#define KNL_DDR_FAR		BIT_ULL(24)
#define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
				    KNL_DDR_LOCAL | KNL_DDR_FAR)
#define KNL_L2_READ		SLM_DMND_READ
#define KNL_L2_WRITE		SLM_DMND_WRITE
#define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
#define KNL_L2_ACCESS		SLM_LLC_ACCESS
#define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
				   KNL_DRAM_ANY | SNB_SNP_ANY | \
						  SNB_NON_DRAM)

static __initconst const u64 knl_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
			[C(RESULT_MISS)]   = 0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
		},
	},
};

1638
/*
1639 1640 1641 1642 1643 1644 1645 1646 1647
 * Used from PMIs where the LBRs are already disabled.
 *
 * This function could be called consecutively. It is required to remain in
 * disabled state if called consecutively.
 *
 * During consecutive calls, the same disable value will be written to related
 * registers, so the PMU state remains unchanged. hw.state in
 * intel_bts_disable_local will remain PERF_HES_STOPPED too in consecutive
 * calls.
1648 1649
 */
static void __intel_pmu_disable_all(void)
1650
{
1651
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1652 1653 1654

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);

1655
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1656
		intel_pmu_disable_bts();
1657 1658
	else
		intel_bts_disable_local();
1659 1660

	intel_pmu_pebs_disable_all();
1661 1662 1663 1664 1665
}

static void intel_pmu_disable_all(void)
{
	__intel_pmu_disable_all();
1666
	intel_pmu_lbr_disable_all();
1667 1668
}

1669
static void __intel_pmu_enable_all(int added, bool pmi)
1670
{
1671
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1672

1673
	intel_pmu_pebs_enable_all();
1674
	intel_pmu_lbr_enable_all(pmi);
1675 1676
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1677

1678
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1679
		struct perf_event *event =
1680
			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1681 1682 1683 1684 1685

		if (WARN_ON_ONCE(!event))
			return;

		intel_pmu_enable_bts(event->hw.config);
1686 1687
	} else
		intel_bts_enable_local();
1688 1689
}

1690 1691 1692 1693 1694
static void intel_pmu_enable_all(int added)
{
	__intel_pmu_enable_all(added, false);
}

1695 1696 1697 1698
/*
 * Workaround for:
 *   Intel Errata AAK100 (model 26)
 *   Intel Errata AAP53  (model 30)
1699
 *   Intel Errata BD53   (model 44)
1700
 *
1701 1702 1703 1704 1705 1706 1707
 * The official story:
 *   These chips need to be 'reset' when adding counters by programming the
 *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
 *   in sequence on the same PMC or on different PMCs.
 *
 * In practise it appears some of these events do in fact count, and
 * we need to programm all 4 events.
1708
 */
1709
static void intel_pmu_nhm_workaround(void)
1710
{
1711
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1712 1713 1714 1715 1716 1717 1718 1719
	static const unsigned long nhm_magic[4] = {
		0x4300B5,
		0x4300D2,
		0x4300B1,
		0x4300B1
	};
	struct perf_event *event;
	int i;
1720

1721 1722 1723 1724 1725 1726 1727 1728 1729
	/*
	 * The Errata requires below steps:
	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
	 *    the corresponding PMCx;
	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
	 */
1730

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	/*
	 * The real steps we choose are a little different from above.
	 * A) To reduce MSR operations, we don't run step 1) as they
	 *    are already cleared before this function is called;
	 * B) Call x86_perf_event_update to save PMCx before configuring
	 *    PERFEVTSELx with magic number;
	 * C) With step 5), we do clear only when the PERFEVTSELx is
	 *    not used currently.
	 * D) Call x86_perf_event_set_period to restore PMCx;
	 */
1741

1742 1743 1744 1745 1746 1747
	/* We always operate 4 pairs of PERF Counters */
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];
		if (event)
			x86_perf_event_update(event);
	}
1748

1749 1750 1751 1752 1753 1754 1755
	for (i = 0; i < 4; i++) {
		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
	}

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1756

1757 1758 1759 1760 1761
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];

		if (event) {
			x86_perf_event_set_period(event);
1762
			__x86_pmu_enable_event(&event->hw,
1763 1764 1765
					ARCH_PERFMON_EVENTSEL_ENABLE);
		} else
			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1766
	}
1767 1768 1769 1770 1771 1772
}

static void intel_pmu_nhm_enable_all(int added)
{
	if (added)
		intel_pmu_nhm_workaround();
1773 1774 1775
	intel_pmu_enable_all(added);
}

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
static inline u64 intel_pmu_get_status(void)
{
	u64 status;

	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);

	return status;
}

static inline void intel_pmu_ack_status(u64 ack)
{
	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
}

1790
static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1791
{
1792
	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1793 1794 1795 1796 1797 1798
	u64 ctrl_val, mask;

	mask = 0xfULL << (idx * 4);

	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
1799
	wrmsrl(hwc->config_base, ctrl_val);
1800 1801
}

1802 1803 1804 1805 1806
static inline bool event_is_checkpointed(struct perf_event *event)
{
	return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
}

1807
static void intel_pmu_disable_event(struct perf_event *event)
1808
{
1809
	struct hw_perf_event *hwc = &event->hw;
1810
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1811

1812
	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1813 1814 1815 1816 1817
		intel_pmu_disable_bts();
		intel_pmu_drain_bts_buffer();
		return;
	}

1818 1819
	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1820
	cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1821

1822 1823 1824 1825
	/*
	 * must disable before any actual event
	 * because any event may be combined with LBR
	 */
1826
	if (needs_branch_stack(event))
1827 1828
		intel_pmu_lbr_disable(event);

1829
	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1830
		intel_pmu_disable_fixed(hwc);
1831 1832 1833
		return;
	}

1834
	x86_pmu_disable_event(event);
1835

P
Peter Zijlstra 已提交
1836
	if (unlikely(event->attr.precise_ip))
1837
		intel_pmu_pebs_disable(event);
1838 1839
}

1840
static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1841
{
1842
	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
	u64 ctrl_val, bits, mask;

	/*
	 * Enable IRQ generation (0x8),
	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
	 * if requested:
	 */
	bits = 0x8ULL;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
		bits |= 0x2;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
		bits |= 0x1;

	/*
	 * ANY bit is supported in v3 and up
	 */
	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
		bits |= 0x4;

	bits <<= (idx * 4);
	mask = 0xfULL << (idx * 4);

	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
	ctrl_val |= bits;
1868
	wrmsrl(hwc->config_base, ctrl_val);
1869 1870
}

1871
static void intel_pmu_enable_event(struct perf_event *event)
1872
{
1873
	struct hw_perf_event *hwc = &event->hw;
1874
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1875

1876
	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
T
Tejun Heo 已提交
1877
		if (!__this_cpu_read(cpu_hw_events.enabled))
1878 1879 1880 1881 1882
			return;

		intel_pmu_enable_bts(hwc->config);
		return;
	}
1883 1884 1885 1886
	/*
	 * must enabled before any actual event
	 * because any event may be combined with LBR
	 */
1887
	if (needs_branch_stack(event))
1888
		intel_pmu_lbr_enable(event);
1889

1890 1891 1892 1893 1894
	if (event->attr.exclude_host)
		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
	if (event->attr.exclude_guest)
		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);

1895 1896 1897
	if (unlikely(event_is_checkpointed(event)))
		cpuc->intel_cp_status |= (1ull << hwc->idx);

1898
	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1899
		intel_pmu_enable_fixed(hwc);
1900 1901 1902
		return;
	}

P
Peter Zijlstra 已提交
1903
	if (unlikely(event->attr.precise_ip))
1904
		intel_pmu_pebs_enable(event);
1905

1906
	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1907 1908 1909 1910 1911 1912
}

/*
 * Save and restart an expired event. Called by NMI contexts,
 * so it has to be careful about preempting normal event ops:
 */
1913
int intel_pmu_save_and_restart(struct perf_event *event)
1914
{
1915
	x86_perf_event_update(event);
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
	/*
	 * For a checkpointed counter always reset back to 0.  This
	 * avoids a situation where the counter overflows, aborts the
	 * transaction and is then set back to shortly before the
	 * overflow, and overflows and aborts again.
	 */
	if (unlikely(event_is_checkpointed(event))) {
		/* No race with NMIs because the counter should not be armed */
		wrmsrl(event->hw.event_base, 0);
		local64_set(&event->hw.prev_count, 0);
	}
1927
	return x86_perf_event_set_period(event);
1928 1929 1930 1931
}

static void intel_pmu_reset(void)
{
T
Tejun Heo 已提交
1932
	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1933 1934 1935
	unsigned long flags;
	int idx;

1936
	if (!x86_pmu.num_counters)
1937 1938 1939 1940
		return;

	local_irq_save(flags);

1941
	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1942

1943
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1944 1945
		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1946
	}
1947
	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1948
		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1949

1950 1951 1952
	if (ds)
		ds->bts_index = ds->bts_buffer_base;

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
	/* Ack all overflows and disable fixed counters */
	if (x86_pmu.version >= 2) {
		intel_pmu_ack_status(intel_pmu_get_status());
		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
	}

	/* Reset LBRs and LBR freezing */
	if (x86_pmu.lbr_nr) {
		update_debugctlmsr(get_debugctlmsr() &
			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
	}

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
	local_irq_restore(flags);
}

/*
 * This handler is triggered by the local APIC, so the APIC IRQ handling
 * rules apply:
 */
static int intel_pmu_handle_irq(struct pt_regs *regs)
{
	struct perf_sample_data data;
	struct cpu_hw_events *cpuc;
	int bit, loops;
1977
	u64 status;
1978
	int handled;
1979

1980
	cpuc = this_cpu_ptr(&cpu_hw_events);
1981

1982
	/*
1983 1984
	 * No known reason to not always do late ACK,
	 * but just in case do it opt-in.
1985
	 */
1986 1987
	if (!x86_pmu.late_ack)
		apic_write(APIC_LVTPC, APIC_DM_NMI);
1988
	__intel_pmu_disable_all();
1989
	handled = intel_pmu_drain_bts_buffer();
1990
	handled += intel_bts_interrupt();
1991
	status = intel_pmu_get_status();
1992 1993
	if (!status)
		goto done;
1994 1995 1996

	loops = 0;
again:
1997
	intel_pmu_lbr_read();
1998
	intel_pmu_ack_status(status);
1999
	if (++loops > 100) {
2000 2001 2002 2003 2004 2005
		static bool warned = false;
		if (!warned) {
			WARN(1, "perfevents: irq loop stuck!\n");
			perf_event_print_debug();
			warned = true;
		}
2006
		intel_pmu_reset();
2007
		goto done;
2008 2009 2010
	}

	inc_irq_stat(apic_perf_irqs);
2011

2012

2013
	/*
2014 2015
	 * Ignore a range of extra bits in status that do not indicate
	 * overflow by themselves.
2016
	 */
2017 2018 2019 2020 2021
	status &= ~(GLOBAL_STATUS_COND_CHG |
		    GLOBAL_STATUS_ASIF |
		    GLOBAL_STATUS_LBRS_FROZEN);
	if (!status)
		goto done;
2022

2023 2024 2025
	/*
	 * PEBS overflow sets bit 62 in the global status register
	 */
2026 2027
	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
		handled++;
2028
		x86_pmu.drain_pebs(regs);
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
		/*
		 * There are cases where, even though, the PEBS ovfl bit is set
		 * in GLOBAL_OVF_STATUS, the PEBS events may also have their
		 * overflow bits set for their counters. We must clear them
		 * here because they have been processed as exact samples in
		 * the drain_pebs() routine. They must not be processed again
		 * in the for_each_bit_set() loop for regular samples below.
		 */
		status &= ~cpuc->pebs_enabled;
		status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2039
	}
2040

2041 2042 2043 2044 2045 2046 2047 2048
	/*
	 * Intel PT
	 */
	if (__test_and_clear_bit(55, (unsigned long *)&status)) {
		handled++;
		intel_pt_interrupt();
	}

2049
	/*
2050 2051 2052
	 * Checkpointed counters can lead to 'spurious' PMIs because the
	 * rollback caused by the PMI will have cleared the overflow status
	 * bit. Therefore always force probe these counters.
2053
	 */
2054
	status |= cpuc->intel_cp_status;
2055

2056
	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2057 2058
		struct perf_event *event = cpuc->events[bit];

2059 2060
		handled++;

2061 2062 2063 2064 2065 2066
		if (!test_bit(bit, cpuc->active_mask))
			continue;

		if (!intel_pmu_save_and_restart(event))
			continue;

2067
		perf_sample_data_init(&data, 0, event->hw.last_period);
2068

2069 2070 2071
		if (has_branch_stack(event))
			data.br_stack = &cpuc->lbr_stack;

2072
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
2073
			x86_pmu_stop(event, 0);
2074 2075 2076 2077 2078 2079 2080 2081 2082
	}

	/*
	 * Repeat if there is more work to be done:
	 */
	status = intel_pmu_get_status();
	if (status)
		goto again;

2083
done:
2084 2085 2086 2087
	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
	if (cpuc->enabled)
		__intel_pmu_enable_all(0, true);

2088 2089 2090 2091 2092 2093 2094
	/*
	 * Only unmask the NMI after the overflow counters
	 * have been reset. This avoids spurious NMIs on
	 * Haswell CPUs.
	 */
	if (x86_pmu.late_ack)
		apic_write(APIC_LVTPC, APIC_DM_NMI);
2095
	return handled;
2096 2097 2098
}

static struct event_constraint *
2099
intel_bts_constraints(struct perf_event *event)
2100
{
2101 2102
	struct hw_perf_event *hwc = &event->hw;
	unsigned int hw_event, bts_event;
2103

P
Peter Zijlstra 已提交
2104 2105 2106
	if (event->attr.freq)
		return NULL;

2107 2108
	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
2109

2110
	if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
2111
		return &bts_constraint;
2112

2113 2114 2115
	return NULL;
}

2116
static int intel_alt_er(int idx, u64 config)
2117
{
2118 2119
	int alt_idx = idx;

2120
	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2121
		return idx;
2122

2123
	if (idx == EXTRA_REG_RSP_0)
2124
		alt_idx = EXTRA_REG_RSP_1;
2125 2126

	if (idx == EXTRA_REG_RSP_1)
2127
		alt_idx = EXTRA_REG_RSP_0;
2128

2129 2130 2131 2132
	if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
		return idx;

	return alt_idx;
2133 2134 2135 2136 2137 2138 2139
}

static void intel_fixup_er(struct perf_event *event, int idx)
{
	event->hw.extra_reg.idx = idx;

	if (idx == EXTRA_REG_RSP_0) {
2140
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2141
		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2142
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2143 2144
	} else if (idx == EXTRA_REG_RSP_1) {
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2145
		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2146
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2147 2148 2149
	}
}

2150 2151 2152 2153 2154 2155 2156
/*
 * manage allocation of shared extra msr for certain events
 *
 * sharing can be:
 * per-cpu: to be shared between the various events on a single PMU
 * per-core: per-cpu + shared by HT threads
 */
2157
static struct event_constraint *
2158
__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2159 2160
				   struct perf_event *event,
				   struct hw_perf_event_extra *reg)
2161
{
2162
	struct event_constraint *c = &emptyconstraint;
2163
	struct er_account *era;
2164
	unsigned long flags;
2165
	int idx = reg->idx;
2166

2167 2168 2169 2170 2171 2172
	/*
	 * reg->alloc can be set due to existing state, so for fake cpuc we
	 * need to ignore this, otherwise we might fail to allocate proper fake
	 * state for this extra reg constraint. Also see the comment below.
	 */
	if (reg->alloc && !cpuc->is_fake)
2173
		return NULL; /* call x86_get_event_constraint() */
2174

2175
again:
2176
	era = &cpuc->shared_regs->regs[idx];
2177 2178 2179 2180 2181
	/*
	 * we use spin_lock_irqsave() to avoid lockdep issues when
	 * passing a fake cpuc
	 */
	raw_spin_lock_irqsave(&era->lock, flags);
2182 2183 2184

	if (!atomic_read(&era->ref) || era->config == reg->config) {

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
		/*
		 * If its a fake cpuc -- as per validate_{group,event}() we
		 * shouldn't touch event state and we can avoid doing so
		 * since both will only call get_event_constraints() once
		 * on each event, this avoids the need for reg->alloc.
		 *
		 * Not doing the ER fixup will only result in era->reg being
		 * wrong, but since we won't actually try and program hardware
		 * this isn't a problem either.
		 */
		if (!cpuc->is_fake) {
			if (idx != reg->idx)
				intel_fixup_er(event, idx);

			/*
			 * x86_schedule_events() can call get_event_constraints()
			 * multiple times on events in the case of incremental
			 * scheduling(). reg->alloc ensures we only do the ER
			 * allocation once.
			 */
			reg->alloc = 1;
		}

2208 2209 2210 2211 2212 2213 2214
		/* lock in msr value */
		era->config = reg->config;
		era->reg = reg->reg;

		/* one more user */
		atomic_inc(&era->ref);

2215
		/*
2216 2217
		 * need to call x86_get_event_constraint()
		 * to check if associated event has constraints
2218
		 */
2219
		c = NULL;
2220
	} else {
2221
		idx = intel_alt_er(idx, reg->config);
2222 2223 2224 2225
		if (idx != reg->idx) {
			raw_spin_unlock_irqrestore(&era->lock, flags);
			goto again;
		}
2226
	}
2227
	raw_spin_unlock_irqrestore(&era->lock, flags);
2228

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
	return c;
}

static void
__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
				   struct hw_perf_event_extra *reg)
{
	struct er_account *era;

	/*
2239 2240 2241 2242 2243 2244
	 * Only put constraint if extra reg was actually allocated. Also takes
	 * care of event which do not use an extra shared reg.
	 *
	 * Also, if this is a fake cpuc we shouldn't touch any event state
	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
	 * either since it'll be thrown out.
2245
	 */
2246
	if (!reg->alloc || cpuc->is_fake)
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
		return;

	era = &cpuc->shared_regs->regs[reg->idx];

	/* one fewer user */
	atomic_dec(&era->ref);

	/* allocate again next time */
	reg->alloc = 0;
}

static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
			      struct perf_event *event)
{
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
	struct event_constraint *c = NULL, *d;
	struct hw_perf_event_extra *xreg, *breg;

	xreg = &event->hw.extra_reg;
	if (xreg->idx != EXTRA_REG_NONE) {
		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
		if (c == &emptyconstraint)
			return c;
	}
	breg = &event->hw.branch_reg;
	if (breg->idx != EXTRA_REG_NONE) {
		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
		if (d == &emptyconstraint) {
			__intel_shared_reg_put_constraints(cpuc, xreg);
			c = d;
		}
	}
2279
	return c;
2280 2281
}

2282
struct event_constraint *
2283 2284
x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
2285 2286 2287 2288 2289
{
	struct event_constraint *c;

	if (x86_pmu.event_constraints) {
		for_each_event_constraint(c, x86_pmu.event_constraints) {
2290 2291
			if ((event->hw.config & c->cmask) == c->code) {
				event->hw.flags |= c->flags;
2292
				return c;
2293
			}
2294 2295 2296 2297 2298 2299
		}
	}

	return &unconstrained;
}

2300
static struct event_constraint *
2301
__intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2302
			    struct perf_event *event)
2303 2304 2305
{
	struct event_constraint *c;

2306 2307 2308 2309
	c = intel_bts_constraints(event);
	if (c)
		return c;

2310
	c = intel_shared_regs_constraints(cpuc, event);
2311 2312 2313
	if (c)
		return c;

2314
	c = intel_pebs_constraints(event);
2315 2316 2317
	if (c)
		return c;

2318
	return x86_get_event_constraints(cpuc, idx, event);
2319 2320
}

2321 2322 2323 2324
static void
intel_start_scheduling(struct cpu_hw_events *cpuc)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2325
	struct intel_excl_states *xl;
2326 2327 2328 2329 2330
	int tid = cpuc->excl_thread_id;

	/*
	 * nothing needed if in group validation mode
	 */
2331
	if (cpuc->is_fake || !is_ht_workaround_enabled())
2332
		return;
2333

2334 2335 2336
	/*
	 * no exclusion needed
	 */
2337
	if (WARN_ON_ONCE(!excl_cntrs))
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
		return;

	xl = &excl_cntrs->states[tid];

	xl->sched_started = true;
	/*
	 * lock shared state until we are done scheduling
	 * in stop_event_scheduling()
	 * makes scheduling appear as a transaction
	 */
	raw_spin_lock(&excl_cntrs->lock);
}

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
	struct event_constraint *c = cpuc->event_constraint[idx];
	struct intel_excl_states *xl;
	int tid = cpuc->excl_thread_id;

	if (cpuc->is_fake || !is_ht_workaround_enabled())
		return;

	if (WARN_ON_ONCE(!excl_cntrs))
		return;

	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
		return;

	xl = &excl_cntrs->states[tid];

	lockdep_assert_held(&excl_cntrs->lock);

2371
	if (c->flags & PERF_X86_EVENT_EXCL)
2372
		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2373
	else
2374
		xl->state[cntr] = INTEL_EXCL_SHARED;
2375 2376
}

2377 2378 2379 2380
static void
intel_stop_scheduling(struct cpu_hw_events *cpuc)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2381
	struct intel_excl_states *xl;
2382 2383 2384 2385 2386
	int tid = cpuc->excl_thread_id;

	/*
	 * nothing needed if in group validation mode
	 */
2387
	if (cpuc->is_fake || !is_ht_workaround_enabled())
2388 2389 2390 2391
		return;
	/*
	 * no exclusion needed
	 */
2392
	if (WARN_ON_ONCE(!excl_cntrs))
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
		return;

	xl = &excl_cntrs->states[tid];

	xl->sched_started = false;
	/*
	 * release shared state lock (acquired in intel_start_scheduling())
	 */
	raw_spin_unlock(&excl_cntrs->lock);
}

static struct event_constraint *
intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
			   int idx, struct event_constraint *c)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2409
	struct intel_excl_states *xlo;
2410
	int tid = cpuc->excl_thread_id;
2411
	int is_excl, i;
2412 2413 2414 2415 2416

	/*
	 * validating a group does not require
	 * enforcing cross-thread  exclusion
	 */
2417 2418 2419 2420 2421 2422
	if (cpuc->is_fake || !is_ht_workaround_enabled())
		return c;

	/*
	 * no exclusion needed
	 */
2423
	if (WARN_ON_ONCE(!excl_cntrs))
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
		return c;

	/*
	 * because we modify the constraint, we need
	 * to make a copy. Static constraints come
	 * from static const tables.
	 *
	 * only needed when constraint has not yet
	 * been cloned (marked dynamic)
	 */
	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2435
		struct event_constraint *cx;
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445

		/*
		 * grab pre-allocated constraint entry
		 */
		cx = &cpuc->constraint_list[idx];

		/*
		 * initialize dynamic constraint
		 * with static constraint
		 */
2446
		*cx = *c;
2447 2448 2449 2450 2451 2452

		/*
		 * mark constraint as dynamic, so we
		 * can free it later on
		 */
		cx->flags |= PERF_X86_EVENT_DYNAMIC;
2453
		c = cx;
2454 2455 2456 2457 2458 2459 2460 2461 2462
	}

	/*
	 * From here on, the constraint is dynamic.
	 * Either it was just allocated above, or it
	 * was allocated during a earlier invocation
	 * of this function
	 */

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
	/*
	 * state of sibling HT
	 */
	xlo = &excl_cntrs->states[tid ^ 1];

	/*
	 * event requires exclusive counter access
	 * across HT threads
	 */
	is_excl = c->flags & PERF_X86_EVENT_EXCL;
	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
		if (!cpuc->n_excl++)
			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
	}

2479 2480 2481 2482 2483 2484 2485 2486
	/*
	 * Modify static constraint with current dynamic
	 * state of thread
	 *
	 * EXCLUSIVE: sibling counter measuring exclusive event
	 * SHARED   : sibling counter measuring non-exclusive event
	 * UNUSED   : sibling counter unused
	 */
2487
	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2488 2489 2490 2491 2492
		/*
		 * exclusive event in sibling counter
		 * our corresponding counter cannot be used
		 * regardless of our event
		 */
2493
		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2494
			__clear_bit(i, c->idxmsk);
2495 2496 2497 2498 2499
		/*
		 * if measuring an exclusive event, sibling
		 * measuring non-exclusive, then counter cannot
		 * be used
		 */
2500
		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2501
			__clear_bit(i, c->idxmsk);
2502 2503 2504 2505 2506
	}

	/*
	 * recompute actual bit weight for scheduling algorithm
	 */
2507
	c->weight = hweight64(c->idxmsk64);
2508 2509 2510 2511 2512 2513

	/*
	 * if we return an empty mask, then switch
	 * back to static empty constraint to avoid
	 * the cost of freeing later on
	 */
2514 2515
	if (c->weight == 0)
		c = &emptyconstraint;
2516

2517
	return c;
2518 2519 2520 2521 2522 2523
}

static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			    struct perf_event *event)
{
2524
	struct event_constraint *c1 = NULL;
2525
	struct event_constraint *c2;
2526

2527 2528 2529
	if (idx >= 0) /* fake does < 0 */
		c1 = cpuc->event_constraint[idx];

2530 2531 2532 2533 2534
	/*
	 * first time only
	 * - static constraint: no change across incremental scheduling calls
	 * - dynamic constraint: handled by intel_get_excl_constraints()
	 */
2535 2536 2537 2538 2539 2540
	c2 = __intel_get_event_constraints(cpuc, idx, event);
	if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
		c1->weight = c2->weight;
		c2 = c1;
	}
2541 2542

	if (cpuc->excl_cntrs)
2543
		return intel_get_excl_constraints(cpuc, event, idx, c2);
2544

2545
	return c2;
2546 2547 2548 2549 2550 2551 2552 2553
}

static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
		struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
	int tid = cpuc->excl_thread_id;
2554
	struct intel_excl_states *xl;
2555 2556 2557 2558 2559 2560 2561

	/*
	 * nothing needed if in group validation mode
	 */
	if (cpuc->is_fake)
		return;

2562
	if (WARN_ON_ONCE(!excl_cntrs))
2563 2564
		return;

2565 2566 2567 2568 2569
	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
		if (!--cpuc->n_excl)
			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
	}
2570 2571

	/*
2572 2573
	 * If event was actually assigned, then mark the counter state as
	 * unused now.
2574
	 */
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
	if (hwc->idx >= 0) {
		xl = &excl_cntrs->states[tid];

		/*
		 * put_constraint may be called from x86_schedule_events()
		 * which already has the lock held so here make locking
		 * conditional.
		 */
		if (!xl->sched_started)
			raw_spin_lock(&excl_cntrs->lock);
2585

2586
		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2587

2588 2589 2590
		if (!xl->sched_started)
			raw_spin_unlock(&excl_cntrs->lock);
	}
2591 2592
}

2593 2594
static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2595 2596
					struct perf_event *event)
{
2597
	struct hw_perf_event_extra *reg;
2598

2599 2600 2601
	reg = &event->hw.extra_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
2602 2603 2604 2605

	reg = &event->hw.branch_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
2606
}
2607

2608 2609 2610 2611
static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
					struct perf_event *event)
{
	intel_put_shared_regs_event_constraints(cpuc, event);
2612 2613 2614 2615 2616 2617

	/*
	 * is PMU has exclusive counter restrictions, then
	 * all events are subject to and must call the
	 * put_excl_constraints() routine
	 */
2618
	if (cpuc->excl_cntrs)
2619 2620 2621
		intel_put_excl_constraints(cpuc, event);
}

2622
static void intel_pebs_aliases_core2(struct perf_event *event)
2623
{
2624
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use INST_RETIRED.ANY_P
		 * (0x00c0), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * INST_RETIRED.ANY_P counts the number of cycles that retires
		 * CNTMASK instructions. By setting CNTMASK to a value (16)
		 * larger than the maximum number of instructions that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less instructions, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
2643 2644
		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
}

static void intel_pebs_aliases_snb(struct perf_event *event)
{
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use UOPS_RETIRED.ALL
		 * (0x01c2), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * UOPS_RETIRED.ALL counts the number of cycles that retires
		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
		 * larger than the maximum number of micro-ops that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less micro-ops, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2672 2673 2674 2675

		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
2676 2677
}

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
static void intel_pebs_aliases_precdist(struct perf_event *event)
{
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
		 * (0x01c0), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * The PREC_DIST event has special support to minimize sample
		 * shadowing effects. One drawback is that it can be
		 * only programmed on counter 1, but that seems like an
		 * acceptable trade off.
		 */
		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);

		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
}

static void intel_pebs_aliases_ivb(struct perf_event *event)
{
	if (event->attr.precise_ip < 3)
		return intel_pebs_aliases_snb(event);
	return intel_pebs_aliases_precdist(event);
}

static void intel_pebs_aliases_skl(struct perf_event *event)
{
	if (event->attr.precise_ip < 3)
		return intel_pebs_aliases_core2(event);
	return intel_pebs_aliases_precdist(event);
}

2716 2717 2718 2719 2720 2721 2722 2723 2724
static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
{
	unsigned long flags = x86_pmu.free_running_flags;

	if (event->attr.use_clockid)
		flags &= ~PERF_SAMPLE_TIME;
	return flags;
}

2725 2726 2727 2728 2729 2730 2731
static int intel_pmu_hw_config(struct perf_event *event)
{
	int ret = x86_pmu_hw_config(event);

	if (ret)
		return ret;

2732
	if (event->attr.precise_ip) {
2733
		if (!event->attr.freq) {
2734
			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2735 2736
			if (!(event->attr.sample_type &
			      ~intel_pmu_free_running_flags(event)))
2737 2738
				event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
		}
2739 2740 2741
		if (x86_pmu.pebs_aliases)
			x86_pmu.pebs_aliases(event);
	}
2742

2743
	if (needs_branch_stack(event)) {
2744 2745 2746
		ret = intel_pmu_setup_lbr_filter(event);
		if (ret)
			return ret;
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757

		/*
		 * BTS is set up earlier in this path, so don't account twice
		 */
		if (!intel_pmu_has_bts(event)) {
			/* disallow lbr if conflicting events are present */
			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
				return -EBUSY;

			event->destroy = hw_perf_lbr_event_destroy;
		}
2758 2759
	}

2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
	if (event->attr.type != PERF_TYPE_RAW)
		return 0;

	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
		return 0;

	if (x86_pmu.version < 3)
		return -EINVAL;

	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
		return -EACCES;

	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;

	return 0;
}

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
{
	if (x86_pmu.guest_get_msrs)
		return x86_pmu.guest_get_msrs(nr);
	*nr = 0;
	return NULL;
}
EXPORT_SYMBOL_GPL(perf_guest_get_msrs);

static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
{
2788
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2789 2790 2791 2792 2793
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;

	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2794 2795 2796 2797 2798 2799 2800 2801
	/*
	 * If PMU counter has PEBS enabled it is not enough to disable counter
	 * on a guest entry since PEBS memory write can overshoot guest entry
	 * and corrupt guest memory. Disabling PEBS solves the problem.
	 */
	arr[1].msr = MSR_IA32_PEBS_ENABLE;
	arr[1].host = cpuc->pebs_enabled;
	arr[1].guest = 0;
2802

2803
	*nr = 2;
2804 2805 2806 2807 2808
	return arr;
}

static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
{
2809
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
		struct perf_event *event = cpuc->events[idx];

		arr[idx].msr = x86_pmu_config_addr(idx);
		arr[idx].host = arr[idx].guest = 0;

		if (!test_bit(idx, cpuc->active_mask))
			continue;

		arr[idx].host = arr[idx].guest =
			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;

		if (event->attr.exclude_host)
			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
		else if (event->attr.exclude_guest)
			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
	}

	*nr = x86_pmu.num_counters;
	return arr;
}

static void core_pmu_enable_event(struct perf_event *event)
{
	if (!event->attr.exclude_host)
		x86_pmu_enable_event(event);
}

static void core_pmu_enable_all(int added)
{
2843
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;

		if (!test_bit(idx, cpuc->active_mask) ||
				cpuc->events[idx]->attr.exclude_host)
			continue;

		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
	}
}

2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
static int hsw_hw_config(struct perf_event *event)
{
	int ret = intel_pmu_hw_config(event);

	if (ret)
		return ret;
	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
		return 0;
	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);

	/*
	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
	 * this combination.
	 */
	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
	      event->attr.precise_ip > 0))
		return -EOPNOTSUPP;

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
	if (event_is_checkpointed(event)) {
		/*
		 * Sampling of checkpointed events can cause situations where
		 * the CPU constantly aborts because of a overflow, which is
		 * then checkpointed back and ignored. Forbid checkpointing
		 * for sampling.
		 *
		 * But still allow a long sampling period, so that perf stat
		 * from KVM works.
		 */
		if (event->attr.sample_period > 0 &&
		    event->attr.sample_period < 0x7fffffff)
			return -EOPNOTSUPP;
	}
2891 2892 2893 2894 2895 2896 2897
	return 0;
}

static struct event_constraint counter2_constraint =
			EVENT_CONSTRAINT(0, 0x4, 0);

static struct event_constraint *
2898 2899
hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
2900
{
2901 2902 2903
	struct event_constraint *c;

	c = intel_get_event_constraints(cpuc, idx, event);
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914

	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
		if (c->idxmsk64 & (1U << 2))
			return &counter2_constraint;
		return &emptyconstraint;
	}

	return c;
}

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
/*
 * Broadwell:
 *
 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
 * the two to enforce a minimum period of 128 (the smallest value that has bits
 * 0-5 cleared and >= 100).
 *
 * Because of how the code in x86_perf_event_set_period() works, the truncation
 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
 * to make up for the 'lost' events due to carrying the 'error' in period_left.
 *
 * Therefore the effective (average) period matches the requested period,
 * despite coarser hardware granularity.
 */
static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
{
	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
			X86_CONFIG(.event=0xc0, .umask=0x01)) {
		if (left < 128)
			left = 128;
		left &= ~0x3fu;
	}
	return left;
}

2941 2942 2943 2944 2945 2946 2947
PMU_FORMAT_ATTR(event,	"config:0-7"	);
PMU_FORMAT_ATTR(umask,	"config:8-15"	);
PMU_FORMAT_ATTR(edge,	"config:18"	);
PMU_FORMAT_ATTR(pc,	"config:19"	);
PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
PMU_FORMAT_ATTR(inv,	"config:23"	);
PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
2948 2949
PMU_FORMAT_ATTR(in_tx,  "config:32");
PMU_FORMAT_ATTR(in_tx_cp, "config:33");
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960

static struct attribute *intel_arch_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
	NULL,
};

2961 2962 2963 2964 2965 2966 2967
ssize_t intel_event_sysfs_show(char *page, u64 config)
{
	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);

	return x86_event_sysfs_show(page, config, event);
}

2968
struct intel_shared_regs *allocate_shared_regs(int cpu)
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
{
	struct intel_shared_regs *regs;
	int i;

	regs = kzalloc_node(sizeof(struct intel_shared_regs),
			    GFP_KERNEL, cpu_to_node(cpu));
	if (regs) {
		/*
		 * initialize the locks to keep lockdep happy
		 */
		for (i = 0; i < EXTRA_REG_MAX; i++)
			raw_spin_lock_init(&regs->regs[i].lock);

		regs->core_id = -1;
	}
	return regs;
}

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
{
	struct intel_excl_cntrs *c;

	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
			 GFP_KERNEL, cpu_to_node(cpu));
	if (c) {
		raw_spin_lock_init(&c->lock);
		c->core_id = -1;
	}
	return c;
}

3000 3001 3002 3003
static int intel_pmu_cpu_prepare(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);

3004 3005 3006
	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
		cpuc->shared_regs = allocate_shared_regs(cpu);
		if (!cpuc->shared_regs)
3007
			goto err;
3008
	}
3009

3010 3011 3012 3013 3014
	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);

		cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
		if (!cpuc->constraint_list)
3015
			goto err_shared_regs;
3016 3017

		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3018 3019 3020
		if (!cpuc->excl_cntrs)
			goto err_constraint_list;

3021 3022
		cpuc->excl_thread_id = 0;
	}
3023 3024

	return NOTIFY_OK;
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035

err_constraint_list:
	kfree(cpuc->constraint_list);
	cpuc->constraint_list = NULL;

err_shared_regs:
	kfree(cpuc->shared_regs);
	cpuc->shared_regs = NULL;

err:
	return NOTIFY_BAD;
3036 3037
}

3038 3039
static void intel_pmu_cpu_starting(int cpu)
{
3040 3041 3042 3043
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
	int core_id = topology_core_id(cpu);
	int i;

3044 3045 3046 3047 3048 3049
	init_debug_store_on_cpu(cpu);
	/*
	 * Deal with CPUs that don't clear their LBRs on power-up.
	 */
	intel_pmu_lbr_reset();

3050 3051 3052
	cpuc->lbr_sel = NULL;

	if (!cpuc->shared_regs)
3053 3054
		return;

3055
	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3056
		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3057
			struct intel_shared_regs *pc;
3058

3059 3060
			pc = per_cpu(cpu_hw_events, i).shared_regs;
			if (pc && pc->core_id == core_id) {
P
Peter Zijlstra 已提交
3061
				cpuc->kfree_on_online[0] = cpuc->shared_regs;
3062 3063 3064
				cpuc->shared_regs = pc;
				break;
			}
3065
		}
3066 3067
		cpuc->shared_regs->core_id = core_id;
		cpuc->shared_regs->refcnt++;
3068 3069
	}

3070 3071
	if (x86_pmu.lbr_sel_map)
		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3072 3073

	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3074
		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
			struct intel_excl_cntrs *c;

			c = per_cpu(cpu_hw_events, i).excl_cntrs;
			if (c && c->core_id == core_id) {
				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
				cpuc->excl_cntrs = c;
				cpuc->excl_thread_id = 1;
				break;
			}
		}
		cpuc->excl_cntrs->core_id = core_id;
		cpuc->excl_cntrs->refcnt++;
	}
3088 3089
}

3090
static void free_excl_cntrs(int cpu)
3091
{
3092
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3093
	struct intel_excl_cntrs *c;
3094

3095 3096 3097 3098 3099 3100 3101 3102
	c = cpuc->excl_cntrs;
	if (c) {
		if (c->core_id == -1 || --c->refcnt == 0)
			kfree(c);
		cpuc->excl_cntrs = NULL;
		kfree(cpuc->constraint_list);
		cpuc->constraint_list = NULL;
	}
3103
}
3104

3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
static void intel_pmu_cpu_dying(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
	struct intel_shared_regs *pc;

	pc = cpuc->shared_regs;
	if (pc) {
		if (pc->core_id == -1 || --pc->refcnt == 0)
			kfree(pc);
		cpuc->shared_regs = NULL;
3115 3116
	}

3117 3118
	free_excl_cntrs(cpu);

3119 3120 3121
	fini_debug_store_on_cpu(cpu);
}

3122 3123 3124 3125 3126 3127 3128 3129 3130
static void intel_pmu_sched_task(struct perf_event_context *ctx,
				 bool sched_in)
{
	if (x86_pmu.pebs_active)
		intel_pmu_pebs_sched_task(ctx, sched_in);
	if (x86_pmu.lbr_nr)
		intel_pmu_lbr_sched_task(ctx, sched_in);
}

3131 3132
PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");

3133 3134
PMU_FORMAT_ATTR(ldlat, "config1:0-15");

3135 3136
PMU_FORMAT_ATTR(frontend, "config1:0-23");

3137 3138 3139 3140 3141 3142 3143 3144
static struct attribute *intel_arch3_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_any.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
3145 3146
	&format_attr_in_tx.attr,
	&format_attr_in_tx_cp.attr,
3147 3148

	&format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
3149
	&format_attr_ldlat.attr, /* PEBS load latency */
3150 3151 3152
	NULL,
};

3153 3154 3155 3156 3157
static struct attribute *skl_format_attr[] = {
	&format_attr_frontend.attr,
	NULL,
};

3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
static __initconst const struct x86_pmu core_pmu = {
	.name			= "core",
	.handle_irq		= x86_pmu_handle_irq,
	.disable_all		= x86_pmu_disable_all,
	.enable_all		= core_pmu_enable_all,
	.enable			= core_pmu_enable_event,
	.disable		= x86_pmu_disable_event,
	.hw_config		= x86_pmu_hw_config,
	.schedule_events	= x86_schedule_events,
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
3172 3173
	.free_running_flags	= PEBS_FREERUNNING_FLAGS,

3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
	/*
	 * Intel PMCs cannot be accessed sanely above 32-bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL<<31) - 1,
	.get_event_constraints	= intel_get_event_constraints,
	.put_event_constraints	= intel_put_event_constraints,
	.event_constraints	= intel_core_event_constraints,
	.guest_get_msrs		= core_guest_get_msrs,
	.format_attrs		= intel_arch_formats_attr,
	.events_sysfs_show	= intel_event_sysfs_show,

	/*
	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
	 * together with PMU version 1 and thus be using core_pmu with
	 * shared_regs. We need following callbacks here to allocate
	 * it properly.
	 */
	.cpu_prepare		= intel_pmu_cpu_prepare,
	.cpu_starting		= intel_pmu_cpu_starting,
	.cpu_dying		= intel_pmu_cpu_dying,
};

3198
static __initconst const struct x86_pmu intel_pmu = {
3199 3200 3201 3202 3203 3204
	.name			= "Intel",
	.handle_irq		= intel_pmu_handle_irq,
	.disable_all		= intel_pmu_disable_all,
	.enable_all		= intel_pmu_enable_all,
	.enable			= intel_pmu_enable_event,
	.disable		= intel_pmu_disable_event,
3205
	.hw_config		= intel_pmu_hw_config,
3206
	.schedule_events	= x86_schedule_events,
3207 3208 3209 3210 3211
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
3212
	.free_running_flags	= PEBS_FREERUNNING_FLAGS,
3213 3214 3215 3216 3217 3218
	/*
	 * Intel PMCs cannot be accessed sanely above 32 bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL << 31) - 1,
3219
	.get_event_constraints	= intel_get_event_constraints,
3220
	.put_event_constraints	= intel_put_event_constraints,
3221
	.pebs_aliases		= intel_pebs_aliases_core2,
3222

3223
	.format_attrs		= intel_arch3_formats_attr,
3224
	.events_sysfs_show	= intel_event_sysfs_show,
3225

3226
	.cpu_prepare		= intel_pmu_cpu_prepare,
3227 3228
	.cpu_starting		= intel_pmu_cpu_starting,
	.cpu_dying		= intel_pmu_cpu_dying,
3229
	.guest_get_msrs		= intel_guest_get_msrs,
3230
	.sched_task		= intel_pmu_sched_task,
3231 3232
};

3233
static __init void intel_clovertown_quirk(void)
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
{
	/*
	 * PEBS is unreliable due to:
	 *
	 *   AJ67  - PEBS may experience CPL leaks
	 *   AJ68  - PEBS PMI may be delayed by one event
	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
	 *
	 * AJ67 could be worked around by restricting the OS/USR flags.
	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
	 *
	 * AJ106 could possibly be worked around by not allowing LBR
	 *       usage from PEBS, including the fixup.
	 * AJ68  could possibly be worked around by always programming
3249
	 *	 a pebs_event_reset[0] value and coping with the lost events.
3250 3251 3252 3253
	 *
	 * But taken together it might just make sense to not enable PEBS on
	 * these chips.
	 */
3254
	pr_warn("PEBS disabled due to CPU errata\n");
3255 3256 3257 3258
	x86_pmu.pebs = 0;
	x86_pmu.pebs_constraints = NULL;
}

3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
static int intel_snb_pebs_broken(int cpu)
{
	u32 rev = UINT_MAX; /* default to broken for unknown models */

	switch (cpu_data(cpu).x86_model) {
	case 42: /* SNB */
		rev = 0x28;
		break;

	case 45: /* SNB-EP */
		switch (cpu_data(cpu).x86_mask) {
		case 6: rev = 0x618; break;
		case 7: rev = 0x70c; break;
		}
	}

	return (cpu_data(cpu).microcode < rev);
}

static void intel_snb_check_microcode(void)
{
	int pebs_broken = 0;
	int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if ((pebs_broken = intel_snb_pebs_broken(cpu)))
			break;
	}
	put_online_cpus();

	if (pebs_broken == x86_pmu.pebs_broken)
		return;

	/*
	 * Serialized by the microcode lock..
	 */
	if (x86_pmu.pebs_broken) {
		pr_info("PEBS enabled due to microcode update\n");
		x86_pmu.pebs_broken = 0;
	} else {
		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
		x86_pmu.pebs_broken = 1;
	}
}

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
/*
 * Under certain circumstances, access certain MSR may cause #GP.
 * The function tests if the input MSR can be safely accessed.
 */
static bool check_msr(unsigned long msr, u64 mask)
{
	u64 val_old, val_new, val_tmp;

	/*
	 * Read the current value, change it and read it back to see if it
	 * matches, this is needed to detect certain hardware emulators
	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
	 */
	if (rdmsrl_safe(msr, &val_old))
		return false;

	/*
	 * Only change the bits which can be updated by wrmsrl.
	 */
	val_tmp = val_old ^ mask;
	if (wrmsrl_safe(msr, val_tmp) ||
	    rdmsrl_safe(msr, &val_new))
		return false;

	if (val_new != val_tmp)
		return false;

	/* Here it's sure that the MSR can be safely accessed.
	 * Restore the old value and return.
	 */
	wrmsrl(msr, val_old);

	return true;
}

3340
static __init void intel_sandybridge_quirk(void)
3341
{
3342 3343
	x86_pmu.check_microcode = intel_snb_check_microcode;
	intel_snb_check_microcode();
3344 3345
}

3346 3347 3348 3349 3350 3351 3352 3353
static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3354 3355
};

3356 3357 3358 3359 3360 3361 3362
static __init void intel_arch_events_quirk(void)
{
	int bit;

	/* disable event that reported as not presend by cpuid */
	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3363 3364
		pr_warn("CPUID marked event: \'%s\' unavailable\n",
			intel_arch_events_map[bit].name);
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
	}
}

static __init void intel_nehalem_quirk(void)
{
	union cpuid10_ebx ebx;

	ebx.full = x86_pmu.events_maskl;
	if (ebx.split.no_branch_misses_retired) {
		/*
		 * Erratum AAJ80 detected, we work it around by using
		 * the BR_MISP_EXEC.ANY event. This will over-count
		 * branch-misses, but it's still much better than the
		 * architectural event which is often completely bogus:
		 */
		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
		ebx.split.no_branch_misses_retired = 0;
		x86_pmu.events_maskl = ebx.full;
3383
		pr_info("CPU erratum AAJ80 worked around\n");
3384 3385 3386
	}
}

3387 3388 3389 3390 3391 3392 3393
/*
 * enable software workaround for errata:
 * SNB: BJ122
 * IVB: BV98
 * HSW: HSD29
 *
 * Only needed when HT is enabled. However detecting
3394 3395 3396 3397
 * if HT is enabled is difficult (model specific). So instead,
 * we enable the workaround in the early boot, and verify if
 * it is needed in a later initcall phase once we have valid
 * topology information to check if HT is actually enabled
3398 3399 3400
 */
static __init void intel_ht_bug(void)
{
3401
	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3402 3403

	x86_pmu.start_scheduling = intel_start_scheduling;
3404
	x86_pmu.commit_scheduling = intel_commit_scheduling;
3405 3406 3407
	x86_pmu.stop_scheduling = intel_stop_scheduling;
}

3408 3409
EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
3410

3411
/* Haswell special events */
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
3424

3425
static struct attribute *hsw_events_attrs[] = {
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
	EVENT_PTR(tx_start),
	EVENT_PTR(tx_commit),
	EVENT_PTR(tx_abort),
	EVENT_PTR(tx_capacity),
	EVENT_PTR(tx_conflict),
	EVENT_PTR(el_start),
	EVENT_PTR(el_commit),
	EVENT_PTR(el_abort),
	EVENT_PTR(el_capacity),
	EVENT_PTR(el_conflict),
	EVENT_PTR(cycles_t),
	EVENT_PTR(cycles_ct),
3438 3439 3440 3441 3442
	EVENT_PTR(mem_ld_hsw),
	EVENT_PTR(mem_st_hsw),
	NULL
};

3443
__init int intel_pmu_init(void)
3444 3445 3446
{
	union cpuid10_edx edx;
	union cpuid10_eax eax;
3447
	union cpuid10_ebx ebx;
3448
	struct event_constraint *c;
3449
	unsigned int unused;
3450 3451
	struct extra_reg *er;
	int version, i;
3452 3453

	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3454 3455 3456
		switch (boot_cpu_data.x86) {
		case 0x6:
			return p6_pmu_init();
3457 3458
		case 0xb:
			return knc_pmu_init();
3459 3460 3461
		case 0xf:
			return p4_pmu_init();
		}
3462 3463 3464 3465 3466 3467 3468
		return -ENODEV;
	}

	/*
	 * Check whether the Architectural PerfMon supports
	 * Branch Misses Retired hw_event or not.
	 */
3469 3470
	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3471 3472 3473 3474 3475 3476 3477 3478 3479
		return -ENODEV;

	version = eax.split.version_id;
	if (version < 2)
		x86_pmu = core_pmu;
	else
		x86_pmu = intel_pmu;

	x86_pmu.version			= version;
3480 3481 3482
	x86_pmu.num_counters		= eax.split.num_counters;
	x86_pmu.cntval_bits		= eax.split.bit_width;
	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
3483

3484 3485 3486
	x86_pmu.events_maskl		= ebx.full;
	x86_pmu.events_mask_len		= eax.split.mask_length;

3487 3488
	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);

3489 3490 3491 3492 3493
	/*
	 * Quirk: v2 perfmon does not report fixed-purpose events, so
	 * assume at least 3 events:
	 */
	if (version > 1)
3494
		x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
3495

3496
	if (boot_cpu_has(X86_FEATURE_PDCM)) {
3497 3498 3499 3500 3501 3502
		u64 capabilities;

		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
		x86_pmu.intel_cap.capabilities = capabilities;
	}

3503 3504
	intel_ds_init();

3505 3506
	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */

3507 3508 3509 3510
	/*
	 * Install the hw-cache-events table:
	 */
	switch (boot_cpu_data.x86_model) {
3511
	case 14: /* 65nm Core "Yonah" */
3512 3513 3514
		pr_cont("Core events, ");
		break;

3515
	case 15: /* 65nm Core2 "Merom"          */
3516
		x86_add_quirk(intel_clovertown_quirk);
3517 3518 3519
	case 22: /* 65nm Core2 "Merom-L"        */
	case 23: /* 45nm Core2 "Penryn"         */
	case 29: /* 45nm Core2 "Dunnington (MP) */
3520 3521 3522
		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

3523 3524
		intel_pmu_lbr_init_core();

3525
		x86_pmu.event_constraints = intel_core2_event_constraints;
3526
		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3527 3528 3529
		pr_cont("Core2 events, ");
		break;

3530 3531 3532
	case 30: /* 45nm Nehalem    */
	case 26: /* 45nm Nehalem-EP */
	case 46: /* 45nm Nehalem-EX */
3533 3534
		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
3535 3536
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
3537

3538 3539
		intel_pmu_lbr_init_nhm();

3540
		x86_pmu.event_constraints = intel_nehalem_event_constraints;
3541
		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3542
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3543
		x86_pmu.extra_regs = intel_nehalem_extra_regs;
3544

3545 3546
		x86_pmu.cpu_events = nhm_events_attrs;

3547
		/* UOPS_ISSUED.STALLED_CYCLES */
3548 3549
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3550
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3551 3552
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3553

3554
		intel_pmu_pebs_data_source_nhm();
3555
		x86_add_quirk(intel_nehalem_quirk);
3556

3557
		pr_cont("Nehalem events, ");
3558
		break;
3559

3560 3561 3562 3563 3564
	case 28: /* 45nm Atom "Pineview"   */
	case 38: /* 45nm Atom "Lincroft"   */
	case 39: /* 32nm Atom "Penwell"    */
	case 53: /* 32nm Atom "Cloverview" */
	case 54: /* 32nm Atom "Cedarview"  */
3565 3566 3567
		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

3568 3569
		intel_pmu_lbr_init_atom();

3570
		x86_pmu.event_constraints = intel_gen_event_constraints;
3571
		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3572
		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
3573 3574 3575
		pr_cont("Atom events, ");
		break;

3576
	case 55: /* 22nm Atom "Silvermont"                */
3577
	case 76: /* 14nm Atom "Airmont"                   */
3578
	case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
3579 3580 3581 3582 3583
		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
			sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

3584
		intel_pmu_lbr_init_slm();
3585 3586 3587 3588

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
		x86_pmu.extra_regs = intel_slm_extra_regs;
3589
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3590 3591 3592
		pr_cont("Silvermont events, ");
		break;

3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
	case 92: /* 14nm Atom "Goldmont" */
	case 95: /* 14nm Atom "Goldmont Denverton" */
		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_skl();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
		x86_pmu.extra_regs = intel_glm_extra_regs;
		/*
		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
		 * for precise cycles.
		 * :pp is identical to :ppp
		 */
		x86_pmu.pebs_aliases = NULL;
		x86_pmu.pebs_prec_dist = true;
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		pr_cont("Goldmont events, ");
		break;

3616 3617 3618
	case 37: /* 32nm Westmere    */
	case 44: /* 32nm Westmere-EP */
	case 47: /* 32nm Westmere-EX */
3619 3620
		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
3621 3622
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
3623

3624 3625
		intel_pmu_lbr_init_nhm();

3626
		x86_pmu.event_constraints = intel_westmere_event_constraints;
3627
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3628
		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3629
		x86_pmu.extra_regs = intel_westmere_extra_regs;
3630
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3631

3632 3633
		x86_pmu.cpu_events = nhm_events_attrs;

3634
		/* UOPS_ISSUED.STALLED_CYCLES */
3635 3636
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3637
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3638 3639
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3640

3641
		intel_pmu_pebs_data_source_nhm();
3642 3643
		pr_cont("Westmere events, ");
		break;
3644

3645 3646
	case 42: /* 32nm SandyBridge         */
	case 45: /* 32nm SandyBridge-E/EN/EP */
3647
		x86_add_quirk(intel_sandybridge_quirk);
3648
		x86_add_quirk(intel_ht_bug);
3649 3650
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
3651 3652
		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
3653

3654
		intel_pmu_lbr_init_snb();
3655 3656

		x86_pmu.event_constraints = intel_snb_event_constraints;
3657
		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3658
		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3659 3660 3661 3662
		if (boot_cpu_data.x86_model == 45)
			x86_pmu.extra_regs = intel_snbep_extra_regs;
		else
			x86_pmu.extra_regs = intel_snb_extra_regs;
3663 3664


3665
		/* all extra regs are per-cpu when HT is on */
3666 3667
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3668

3669 3670
		x86_pmu.cpu_events = snb_events_attrs;

3671
		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3672 3673
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3674
		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3675 3676
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3677

3678 3679
		pr_cont("SandyBridge events, ");
		break;
3680 3681 3682

	case 58: /* 22nm IvyBridge       */
	case 62: /* 22nm IvyBridge-EP/EX */
3683
		x86_add_quirk(intel_ht_bug);
3684 3685
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
3686 3687 3688
		/* dTLB-load-misses on IVB is different than SNB */
		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */

3689 3690 3691 3692 3693
		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_snb();

3694
		x86_pmu.event_constraints = intel_ivb_event_constraints;
3695
		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3696 3697
		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
		x86_pmu.pebs_prec_dist = true;
3698 3699 3700 3701
		if (boot_cpu_data.x86_model == 62)
			x86_pmu.extra_regs = intel_snbep_extra_regs;
		else
			x86_pmu.extra_regs = intel_snb_extra_regs;
3702
		/* all extra regs are per-cpu when HT is on */
3703 3704
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3705

3706 3707
		x86_pmu.cpu_events = snb_events_attrs;

3708 3709 3710 3711 3712 3713 3714
		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);

		pr_cont("IvyBridge events, ");
		break;

3715

3716 3717 3718 3719
	case 60: /* 22nm Haswell Core */
	case 63: /* 22nm Haswell Server */
	case 69: /* 22nm Haswell ULT */
	case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
3720
		x86_add_quirk(intel_ht_bug);
3721
		x86_pmu.late_ack = true;
3722 3723
		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3724

3725
		intel_pmu_lbr_init_hsw();
3726 3727

		x86_pmu.event_constraints = intel_hsw_event_constraints;
3728
		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3729
		x86_pmu.extra_regs = intel_snbep_extra_regs;
3730 3731
		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
		x86_pmu.pebs_prec_dist = true;
3732
		/* all extra regs are per-cpu when HT is on */
3733 3734
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3735 3736 3737

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3738
		x86_pmu.cpu_events = hsw_events_attrs;
3739
		x86_pmu.lbr_double_abort = true;
3740 3741 3742
		pr_cont("Haswell events, ");
		break;

3743 3744
	case 61: /* 14nm Broadwell Core-M */
	case 86: /* 14nm Broadwell Xeon D */
3745 3746
	case 71: /* 14nm Broadwell + GT3e (Intel Iris Pro graphics) */
	case 79: /* 14nm Broadwell Server */
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));

		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
									 BDW_L3_MISS|HSW_SNOOP_DRAM;
		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
									  HSW_SNOOP_DRAM;
		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;

3761
		intel_pmu_lbr_init_hsw();
3762 3763

		x86_pmu.event_constraints = intel_bdw_event_constraints;
3764
		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
3765
		x86_pmu.extra_regs = intel_snbep_extra_regs;
3766 3767
		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
		x86_pmu.pebs_prec_dist = true;
3768
		/* all extra regs are per-cpu when HT is on */
3769 3770
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3771 3772 3773 3774

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = hsw_get_event_constraints;
		x86_pmu.cpu_events = hsw_events_attrs;
3775
		x86_pmu.limit_period = bdw_limit_period;
3776 3777 3778
		pr_cont("Broadwell events, ");
		break;

3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
	case 87: /* Knights Landing Xeon Phi */
		memcpy(hw_cache_event_ids,
		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs,
		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
		intel_pmu_lbr_init_knl();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
		x86_pmu.extra_regs = intel_knl_extra_regs;

		/* all extra regs are per-cpu when HT is on */
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;

		pr_cont("Knights Landing events, ");
		break;

3797 3798
	case 78: /* 14nm Skylake Mobile */
	case 94: /* 14nm Skylake Desktop */
3799
	case 85: /* 14nm Skylake Server */
3800 3801 3802 3803 3804 3805 3806 3807
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
		intel_pmu_lbr_init_skl();

		x86_pmu.event_constraints = intel_skl_event_constraints;
		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
		x86_pmu.extra_regs = intel_skl_extra_regs;
3808 3809
		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
		x86_pmu.pebs_prec_dist = true;
3810 3811 3812 3813 3814 3815
		/* all extra regs are per-cpu when HT is on */
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3816 3817
		x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
						  skl_format_attr);
3818 3819 3820 3821 3822
		WARN_ON(!x86_pmu.format_attrs);
		x86_pmu.cpu_events = hsw_events_attrs;
		pr_cont("Skylake events, ");
		break;

3823
	default:
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
		switch (x86_pmu.version) {
		case 1:
			x86_pmu.event_constraints = intel_v1_event_constraints;
			pr_cont("generic architected perfmon v1, ");
			break;
		default:
			/*
			 * default constraints for v2 and up
			 */
			x86_pmu.event_constraints = intel_gen_event_constraints;
			pr_cont("generic architected perfmon, ");
			break;
		}
3837
	}
3838

3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
	}
	x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;

	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
	}

	x86_pmu.intel_ctrl |=
		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;

	if (x86_pmu.event_constraints) {
		/*
		 * event on fixed counter2 (REF_CYCLES) only works on this
		 * counter, so do not extend mask to generic counters
		 */
		for_each_event_constraint(c, x86_pmu.event_constraints) {
3861 3862 3863
			if (c->cmask == FIXED_EVENT_FLAGS
			    && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
				c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
3864
			}
3865 3866 3867
			c->idxmsk64 &=
				~(~0UL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
			c->weight = hweight64(c->idxmsk64);
3868 3869 3870
		}
	}

3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
	/*
	 * Access LBR MSR may cause #GP under certain circumstances.
	 * E.g. KVM doesn't support LBR MSR
	 * Check all LBT MSR here.
	 * Disable LBR access if any LBR MSRs can not be accessed.
	 */
	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
		x86_pmu.lbr_nr = 0;
	for (i = 0; i < x86_pmu.lbr_nr; i++) {
		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
			x86_pmu.lbr_nr = 0;
	}

	/*
	 * Access extra MSR may cause #GP under certain circumstances.
	 * E.g. KVM doesn't support offcore event
	 * Check all extra_regs here.
	 */
	if (x86_pmu.extra_regs) {
		for (er = x86_pmu.extra_regs; er->msr; er++) {
3892
			er->extra_msr_access = check_msr(er->msr, 0x11UL);
3893 3894 3895 3896 3897 3898
			/* Disable LBR select mapping */
			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
				x86_pmu.lbr_sel_map = NULL;
		}
	}

3899 3900 3901 3902 3903 3904 3905
	/* Support full width counters using alternative MSR range */
	if (x86_pmu.intel_cap.full_width_write) {
		x86_pmu.max_period = x86_pmu.cntval_mask;
		x86_pmu.perfctr = MSR_IA32_PMC0;
		pr_cont("full-width counters, ");
	}

3906 3907
	return 0;
}
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924

/*
 * HT bug: phase 2 init
 * Called once we have valid topology information to check
 * whether or not HT is enabled
 * If HT is off, then we disable the workaround
 */
static __init int fixup_ht_bug(void)
{
	int cpu = smp_processor_id();
	int w, c;
	/*
	 * problem not present on this CPU model, nothing to do
	 */
	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
		return 0;

3925
	w = cpumask_weight(topology_sibling_cpumask(cpu));
3926 3927 3928 3929 3930
	if (w > 1) {
		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
		return 0;
	}

3931
	if (lockup_detector_suspend() != 0) {
3932 3933 3934
		pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
		return 0;
	}
3935 3936 3937 3938

	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);

	x86_pmu.start_scheduling = NULL;
3939
	x86_pmu.commit_scheduling = NULL;
3940 3941
	x86_pmu.stop_scheduling = NULL;

3942
	lockup_detector_resume();
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954

	get_online_cpus();

	for_each_online_cpu(c) {
		free_excl_cntrs(c);
	}

	put_online_cpus();
	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
	return 0;
}
subsys_initcall(fixup_ht_bug)