clock.c 26.7 KB
Newer Older
1 2 3
/*
 *  linux/arch/arm/mach-omap2/clock.c
 *
4 5
 *  Copyright (C) 2005-2008 Texas Instruments, Inc.
 *  Copyright (C) 2004-2008 Nokia Corporation
6
 *
7 8
 *  Contacts:
 *  Richard Woodruff <r-woodruff2@ti.com>
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 *  Paul Walmsley
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#undef DEBUG

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/clk.h>
24
#include <linux/io.h>
25
#include <linux/bitops.h>
26

27
#include <mach/clock.h>
28
#include <mach/clockdomain.h>
29
#include <mach/cpu.h>
30 31
#include <asm/div64.h>

32
#include <mach/sdrc.h>
33 34 35 36 37 38 39 40 41 42
#include "sdrc.h"
#include "clock.h"
#include "prm.h"
#include "prm-regbits-24xx.h"
#include "cm.h"
#include "cm-regbits-24xx.h"
#include "cm-regbits-34xx.h"

#define MAX_CLOCK_ENABLE_WAIT		100000

43 44 45 46 47
/* DPLL rate rounding: minimum DPLL multiplier, divider values */
#define DPLL_MIN_MULTIPLIER		1
#define DPLL_MIN_DIVIDER		1

/* Possible error results from _dpll_test_mult */
48
#define DPLL_MULT_UNDERFLOW		-1
49 50 51 52 53 54 55 56 57 58 59 60

/*
 * Scale factor to mitigate roundoff errors in DPLL rate rounding.
 * The higher the scale factor, the greater the risk of arithmetic overflow,
 * but the closer the rounded rate to the target rate.  DPLL_SCALE_FACTOR
 * must be a power of DPLL_SCALE_BASE.
 */
#define DPLL_SCALE_FACTOR		64
#define DPLL_SCALE_BASE			2
#define DPLL_ROUNDING_VAL		((DPLL_SCALE_BASE / 2) * \
					 (DPLL_SCALE_FACTOR / DPLL_SCALE_BASE))

61 62 63 64 65 66 67 68 69 70
/* DPLL valid Fint frequency band limits - from 34xx TRM Section 4.7.6.2 */
#define DPLL_FINT_BAND1_MIN		750000
#define DPLL_FINT_BAND1_MAX		2100000
#define DPLL_FINT_BAND2_MIN		7500000
#define DPLL_FINT_BAND2_MAX		21000000

/* _dpll_test_fint() return codes */
#define DPLL_FINT_UNDERFLOW		-1
#define DPLL_FINT_INVALID		-2

71 72 73
u8 cpu_mask;

/*-------------------------------------------------------------------------
74
 * OMAP2/3 specific clock functions
75 76
 *-------------------------------------------------------------------------*/

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/**
 * _omap2xxx_clk_commit - commit clock parent/rate changes in hardware
 * @clk: struct clk *
 *
 * If @clk has the DELAYED_APP flag set, meaning that parent/rate changes
 * don't take effect until the VALID_CONFIG bit is written, write the
 * VALID_CONFIG bit and wait for the write to complete.  No return value.
 */
static void _omap2xxx_clk_commit(struct clk *clk)
{
	if (!cpu_is_omap24xx())
		return;

	if (!(clk->flags & DELAYED_APP))
		return;

	prm_write_mod_reg(OMAP24XX_VALID_CONFIG, OMAP24XX_GR_MOD,
		OMAP24XX_PRCM_CLKCFG_CTRL_OFFSET);
	/* OCP barrier */
	prm_read_mod_reg(OMAP24XX_GR_MOD, OMAP24XX_PRCM_CLKCFG_CTRL_OFFSET);
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
/*
 * _dpll_test_fint - test whether an Fint value is valid for the DPLL
 * @clk: DPLL struct clk to test
 * @n: divider value (N) to test
 *
 * Tests whether a particular divider @n will result in a valid DPLL
 * internal clock frequency Fint. See the 34xx TRM 4.7.6.2 "DPLL Jitter
 * Correction".  Returns 0 if OK, -1 if the enclosing loop can terminate
 * (assuming that it is counting N upwards), or -2 if the enclosing loop
 * should skip to the next iteration (again assuming N is increasing).
 */
static int _dpll_test_fint(struct clk *clk, u8 n)
{
	struct dpll_data *dd;
	long fint;
	int ret = 0;

	dd = clk->dpll_data;

	/* DPLL divider must result in a valid jitter correction val */
	fint = clk->parent->rate / (n + 1);
	if (fint < DPLL_FINT_BAND1_MIN) {

		pr_debug("rejecting n=%d due to Fint failure, "
			 "lowering max_divider\n", n);
		dd->max_divider = n;
		ret = DPLL_FINT_UNDERFLOW;

	} else if (fint > DPLL_FINT_BAND1_MAX &&
		   fint < DPLL_FINT_BAND2_MIN) {

		pr_debug("rejecting n=%d due to Fint failure\n", n);
		ret = DPLL_FINT_INVALID;

	} else if (fint > DPLL_FINT_BAND2_MAX) {

		pr_debug("rejecting n=%d due to Fint failure, "
			 "boosting min_divider\n", n);
		dd->min_divider = n;
		ret = DPLL_FINT_INVALID;

	}

	return ret;
}

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/**
 * omap2_init_clk_clkdm - look up a clockdomain name, store pointer in clk
 * @clk: OMAP clock struct ptr to use
 *
 * Convert a clockdomain name stored in a struct clk 'clk' into a
 * clockdomain pointer, and save it into the struct clk.  Intended to be
 * called during clk_register().  No return value.
 */
void omap2_init_clk_clkdm(struct clk *clk)
{
	struct clockdomain *clkdm;

	if (!clk->clkdm_name)
		return;

	clkdm = clkdm_lookup(clk->clkdm_name);
	if (clkdm) {
		pr_debug("clock: associated clk %s to clkdm %s\n",
			 clk->name, clk->clkdm_name);
		clk->clkdm = clkdm;
	} else {
		pr_debug("clock: could not associate clk %s to "
			 "clkdm %s\n", clk->name, clk->clkdm_name);
	}
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
/**
 * omap2_init_clksel_parent - set a clksel clk's parent field from the hardware
 * @clk: OMAP clock struct ptr to use
 *
 * Given a pointer to a source-selectable struct clk, read the hardware
 * register and determine what its parent is currently set to.  Update the
 * clk->parent field with the appropriate clk ptr.
 */
void omap2_init_clksel_parent(struct clk *clk)
{
	const struct clksel *clks;
	const struct clksel_rate *clkr;
	u32 r, found = 0;

	if (!clk->clksel)
		return;

	r = __raw_readl(clk->clksel_reg) & clk->clksel_mask;
	r >>= __ffs(clk->clksel_mask);

	for (clks = clk->clksel; clks->parent && !found; clks++) {
		for (clkr = clks->rates; clkr->div && !found; clkr++) {
			if ((clkr->flags & cpu_mask) && (clkr->val == r)) {
				if (clk->parent != clks->parent) {
					pr_debug("clock: inited %s parent "
						 "to %s (was %s)\n",
						 clk->name, clks->parent->name,
						 ((clk->parent) ?
						  clk->parent->name : "NULL"));
200
					clk_reparent(clk, clks->parent);
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
				};
				found = 1;
			}
		}
	}

	if (!found)
		printk(KERN_ERR "clock: init parent: could not find "
		       "regval %0x for clock %s\n", r,  clk->name);

	return;
}

/* Returns the DPLL rate */
u32 omap2_get_dpll_rate(struct clk *clk)
{
	long long dpll_clk;
	u32 dpll_mult, dpll_div, dpll;
219
	struct dpll_data *dd;
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

	dd = clk->dpll_data;
	/* REVISIT: What do we return on error? */
	if (!dd)
		return 0;

	dpll = __raw_readl(dd->mult_div1_reg);
	dpll_mult = dpll & dd->mult_mask;
	dpll_mult >>= __ffs(dd->mult_mask);
	dpll_div = dpll & dd->div1_mask;
	dpll_div >>= __ffs(dd->div1_mask);

	dpll_clk = (long long)clk->parent->rate * dpll_mult;
	do_div(dpll_clk, dpll_div + 1);

	return dpll_clk;
}

/*
 * Used for clocks that have the same value as the parent clock,
 * divided by some factor
 */
void omap2_fixed_divisor_recalc(struct clk *clk)
{
	WARN_ON(!clk->fixed_div);

	clk->rate = clk->parent->rate / clk->fixed_div;
}

/**
 * omap2_wait_clock_ready - wait for clock to enable
 * @reg: physical address of clock IDLEST register
 * @mask: value to mask against to determine if the clock is active
 * @name: name of the clock (for printk)
 *
 * Returns 1 if the clock enabled in time, or 0 if it failed to enable
 * in roughly MAX_CLOCK_ENABLE_WAIT microseconds.
 */
int omap2_wait_clock_ready(void __iomem *reg, u32 mask, const char *name)
{
	int i = 0;
	int ena = 0;

	/*
	 * 24xx uses 0 to indicate not ready, and 1 to indicate ready.
	 * 34xx reverses this, just to keep us on our toes
	 */
267
	if (cpu_mask & (RATE_IN_242X | RATE_IN_243X))
268
		ena = mask;
269
	else if (cpu_mask & RATE_IN_343X)
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
		ena = 0;

	/* Wait for lock */
	while (((__raw_readl(reg) & mask) != ena) &&
	       (i++ < MAX_CLOCK_ENABLE_WAIT)) {
		udelay(1);
	}

	if (i < MAX_CLOCK_ENABLE_WAIT)
		pr_debug("Clock %s stable after %d loops\n", name, i);
	else
		printk(KERN_ERR "Clock %s didn't enable in %d tries\n",
		       name, MAX_CLOCK_ENABLE_WAIT);


	return (i < MAX_CLOCK_ENABLE_WAIT) ? 1 : 0;
};


/*
 * Note: We don't need special code here for INVERT_ENABLE
 * for the time being since INVERT_ENABLE only applies to clocks enabled by
 * CM_CLKEN_PLL
 */
static void omap2_clk_wait_ready(struct clk *clk)
{
	void __iomem *reg, *other_reg, *st_reg;
	u32 bit;

	/*
	 * REVISIT: This code is pretty ugly.  It would be nice to generalize
	 * it and pull it into struct clk itself somehow.
	 */
	reg = clk->enable_reg;
304 305 306 307 308 309

	/*
	 * Convert CM_ICLKEN* <-> CM_FCLKEN*.  This conversion assumes
	 * it's just a matter of XORing the bits.
	 */
	other_reg = (void __iomem *)((u32)reg ^ (CM_FCLKEN ^ CM_ICLKEN));
310 311 312 313 314 315 316 317 318 319 320

	/* Check if both functional and interface clocks
	 * are running. */
	bit = 1 << clk->enable_bit;
	if (!(__raw_readl(other_reg) & bit))
		return;
	st_reg = (void __iomem *)(((u32)other_reg & ~0xf0) | 0x20); /* CM_IDLEST* */

	omap2_wait_clock_ready(st_reg, bit, clk->name);
}

321
static int omap2_dflt_clk_enable(struct clk *clk)
322
{
323
	u32 v;
324

325
	if (unlikely(clk->enable_reg == NULL)) {
326 327 328 329 330
		printk(KERN_ERR "clock.c: Enable for %s without enable code\n",
		       clk->name);
		return 0; /* REVISIT: -EINVAL */
	}

331
	v = __raw_readl(clk->enable_reg);
332
	if (clk->flags & INVERT_ENABLE)
333
		v &= ~(1 << clk->enable_bit);
334
	else
335 336
		v |= (1 << clk->enable_bit);
	__raw_writel(v, clk->enable_reg);
337
	v = __raw_readl(clk->enable_reg); /* OCP barrier */
338 339 340 341

	return 0;
}

342 343 344 345
static int omap2_dflt_clk_enable_wait(struct clk *clk)
{
	int ret;

346
	if (!clk->enable_reg) {
347 348 349 350 351 352 353 354 355 356 357
		printk(KERN_ERR "clock.c: Enable for %s without enable code\n",
		       clk->name);
		return 0; /* REVISIT: -EINVAL */
	}

	ret = omap2_dflt_clk_enable(clk);
	if (ret == 0)
		omap2_clk_wait_ready(clk);
	return ret;
}

358
static void omap2_dflt_clk_disable(struct clk *clk)
359
{
360
	u32 v;
361

362
	if (!clk->enable_reg) {
363 364 365 366 367 368 369 370 371
		/*
		 * 'Independent' here refers to a clock which is not
		 * controlled by its parent.
		 */
		printk(KERN_ERR "clock: clk_disable called on independent "
		       "clock %s which has no enable_reg\n", clk->name);
		return;
	}

372
	v = __raw_readl(clk->enable_reg);
373
	if (clk->flags & INVERT_ENABLE)
374
		v |= (1 << clk->enable_bit);
375
	else
376 377
		v &= ~(1 << clk->enable_bit);
	__raw_writel(v, clk->enable_reg);
378
	/* No OCP barrier needed here since it is a disable operation */
379 380
}

381 382 383 384 385
const struct clkops clkops_omap2_dflt_wait = {
	.enable		= omap2_dflt_clk_enable_wait,
	.disable	= omap2_dflt_clk_disable,
};

386 387 388 389 390
const struct clkops clkops_omap2_dflt = {
	.enable		= omap2_dflt_clk_enable,
	.disable	= omap2_dflt_clk_disable,
};

391 392 393 394 395 396 397 398 399 400 401 402 403 404
/* Enables clock without considering parent dependencies or use count
 * REVISIT: Maybe change this to use clk->enable like on omap1?
 */
static int _omap2_clk_enable(struct clk *clk)
{
	return clk->ops->enable(clk);
}

/* Disables clock without considering parent dependencies or use count */
static void _omap2_clk_disable(struct clk *clk)
{
	clk->ops->disable(clk);
}

405 406 407 408
void omap2_clk_disable(struct clk *clk)
{
	if (clk->usecount > 0 && !(--clk->usecount)) {
		_omap2_clk_disable(clk);
409
		if (clk->parent)
410
			omap2_clk_disable(clk->parent);
411 412 413
		if (clk->clkdm)
			omap2_clkdm_clk_disable(clk->clkdm, clk);

414 415 416 417 418 419 420 421
	}
}

int omap2_clk_enable(struct clk *clk)
{
	int ret = 0;

	if (clk->usecount++ == 0) {
422
		if (clk->parent)
423 424
			ret = omap2_clk_enable(clk->parent);

425
		if (ret != 0) {
426 427 428 429
			clk->usecount--;
			return ret;
		}

430 431 432
		if (clk->clkdm)
			omap2_clkdm_clk_enable(clk->clkdm, clk);

433 434
		ret = _omap2_clk_enable(clk);

435
		if (ret != 0) {
436 437 438 439 440 441 442
			if (clk->clkdm)
				omap2_clkdm_clk_disable(clk->clkdm, clk);

			if (clk->parent) {
				omap2_clk_disable(clk->parent);
				clk->usecount--;
			}
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
		}
	}

	return ret;
}

/*
 * Used for clocks that are part of CLKSEL_xyz governed clocks.
 * REVISIT: Maybe change to use clk->enable() functions like on omap1?
 */
void omap2_clksel_recalc(struct clk *clk)
{
	u32 div = 0;

	pr_debug("clock: recalc'ing clksel clk %s\n", clk->name);

	div = omap2_clksel_get_divisor(clk);
	if (div == 0)
		return;

463
	if (clk->rate == (clk->parent->rate / div))
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
		return;
	clk->rate = clk->parent->rate / div;

	pr_debug("clock: new clock rate is %ld (div %d)\n", clk->rate, div);
}

/**
 * omap2_get_clksel_by_parent - return clksel struct for a given clk & parent
 * @clk: OMAP struct clk ptr to inspect
 * @src_clk: OMAP struct clk ptr of the parent clk to search for
 *
 * Scan the struct clksel array associated with the clock to find
 * the element associated with the supplied parent clock address.
 * Returns a pointer to the struct clksel on success or NULL on error.
 */
479 480
static const struct clksel *omap2_get_clksel_by_parent(struct clk *clk,
						       struct clk *src_clk)
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
{
	const struct clksel *clks;

	if (!clk->clksel)
		return NULL;

	for (clks = clk->clksel; clks->parent; clks++) {
		if (clks->parent == src_clk)
			break; /* Found the requested parent */
	}

	if (!clks->parent) {
		printk(KERN_ERR "clock: Could not find parent clock %s in "
		       "clksel array of clock %s\n", src_clk->name,
		       clk->name);
		return NULL;
	}

	return clks;
}

/**
 * omap2_clksel_round_rate_div - find divisor for the given clock and rate
 * @clk: OMAP struct clk to use
 * @target_rate: desired clock rate
 * @new_div: ptr to where we should store the divisor
 *
 * Finds 'best' divider value in an array based on the source and target
 * rates.  The divider array must be sorted with smallest divider first.
 * Note that this will not work for clocks which are part of CONFIG_PARTICIPANT,
 * they are only settable as part of virtual_prcm set.
 *
 * Returns the rounded clock rate or returns 0xffffffff on error.
 */
u32 omap2_clksel_round_rate_div(struct clk *clk, unsigned long target_rate,
				u32 *new_div)
{
	unsigned long test_rate;
	const struct clksel *clks;
	const struct clksel_rate *clkr;
	u32 last_div = 0;

	printk(KERN_INFO "clock: clksel_round_rate_div: %s target_rate %ld\n",
	       clk->name, target_rate);

	*new_div = 1;

	clks = omap2_get_clksel_by_parent(clk, clk->parent);
529
	if (!clks)
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
		return ~0;

	for (clkr = clks->rates; clkr->div; clkr++) {
		if (!(clkr->flags & cpu_mask))
		    continue;

		/* Sanity check */
		if (clkr->div <= last_div)
			printk(KERN_ERR "clock: clksel_rate table not sorted "
			       "for clock %s", clk->name);

		last_div = clkr->div;

		test_rate = clk->parent->rate / clkr->div;

		if (test_rate <= target_rate)
			break; /* found it */
	}

	if (!clkr->div) {
		printk(KERN_ERR "clock: Could not find divisor for target "
		       "rate %ld for clock %s parent %s\n", target_rate,
		       clk->name, clk->parent->name);
		return ~0;
	}

	*new_div = clkr->div;

	printk(KERN_INFO "clock: new_div = %d, new_rate = %ld\n", *new_div,
	       (clk->parent->rate / clkr->div));

	return (clk->parent->rate / clkr->div);
}

/**
 * omap2_clksel_round_rate - find rounded rate for the given clock and rate
 * @clk: OMAP struct clk to use
 * @target_rate: desired clock rate
 *
 * Compatibility wrapper for OMAP clock framework
 * Finds best target rate based on the source clock and possible dividers.
 * rates. The divider array must be sorted with smallest divider first.
 * Note that this will not work for clocks which are part of CONFIG_PARTICIPANT,
 * they are only settable as part of virtual_prcm set.
 *
 * Returns the rounded clock rate or returns 0xffffffff on error.
 */
long omap2_clksel_round_rate(struct clk *clk, unsigned long target_rate)
{
	u32 new_div;

	return omap2_clksel_round_rate_div(clk, target_rate, &new_div);
}


/* Given a clock and a rate apply a clock specific rounding function */
long omap2_clk_round_rate(struct clk *clk, unsigned long rate)
{
588
	if (clk->round_rate)
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
		return clk->round_rate(clk, rate);

	if (clk->flags & RATE_FIXED)
		printk(KERN_ERR "clock: generic omap2_clk_round_rate called "
		       "on fixed-rate clock %s\n", clk->name);

	return clk->rate;
}

/**
 * omap2_clksel_to_divisor() - turn clksel field value into integer divider
 * @clk: OMAP struct clk to use
 * @field_val: register field value to find
 *
 * Given a struct clk of a rate-selectable clksel clock, and a register field
 * value to search for, find the corresponding clock divisor.  The register
 * field value should be pre-masked and shifted down so the LSB is at bit 0
 * before calling.  Returns 0 on error
 */
u32 omap2_clksel_to_divisor(struct clk *clk, u32 field_val)
{
	const struct clksel *clks;
	const struct clksel_rate *clkr;

	clks = omap2_get_clksel_by_parent(clk, clk->parent);
614
	if (!clks)
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
		return 0;

	for (clkr = clks->rates; clkr->div; clkr++) {
		if ((clkr->flags & cpu_mask) && (clkr->val == field_val))
			break;
	}

	if (!clkr->div) {
		printk(KERN_ERR "clock: Could not find fieldval %d for "
		       "clock %s parent %s\n", field_val, clk->name,
		       clk->parent->name);
		return 0;
	}

	return clkr->div;
}

/**
 * omap2_divisor_to_clksel() - turn clksel integer divisor into a field value
 * @clk: OMAP struct clk to use
 * @div: integer divisor to search for
 *
 * Given a struct clk of a rate-selectable clksel clock, and a clock divisor,
 * find the corresponding register field value.  The return register value is
 * the value before left-shifting.  Returns 0xffffffff on error
 */
u32 omap2_divisor_to_clksel(struct clk *clk, u32 div)
{
	const struct clksel *clks;
	const struct clksel_rate *clkr;

	/* should never happen */
	WARN_ON(div == 0);

	clks = omap2_get_clksel_by_parent(clk, clk->parent);
650
	if (!clks)
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
		return 0;

	for (clkr = clks->rates; clkr->div; clkr++) {
		if ((clkr->flags & cpu_mask) && (clkr->div == div))
			break;
	}

	if (!clkr->div) {
		printk(KERN_ERR "clock: Could not find divisor %d for "
		       "clock %s parent %s\n", div, clk->name,
		       clk->parent->name);
		return 0;
	}

	return clkr->val;
}

/**
 * omap2_clksel_get_divisor - get current divider applied to parent clock.
 * @clk: OMAP struct clk to use.
 *
 * Returns the integer divisor upon success or 0 on error.
 */
u32 omap2_clksel_get_divisor(struct clk *clk)
{
676
	u32 v;
677

678
	if (!clk->clksel_mask)
679 680
		return 0;

681 682
	v = __raw_readl(clk->clksel_reg) & clk->clksel_mask;
	v >>= __ffs(clk->clksel_mask);
683

684
	return omap2_clksel_to_divisor(clk, v);
685 686 687 688
}

int omap2_clksel_set_rate(struct clk *clk, unsigned long rate)
{
689
	u32 v, field_val, validrate, new_div = 0;
690

691
	if (!clk->clksel_mask)
692 693
		return -EINVAL;

694 695
	validrate = omap2_clksel_round_rate_div(clk, rate, &new_div);
	if (validrate != rate)
696 697 698 699 700 701
		return -EINVAL;

	field_val = omap2_divisor_to_clksel(clk, new_div);
	if (field_val == ~0)
		return -EINVAL;

702 703 704 705
	v = __raw_readl(clk->clksel_reg);
	v &= ~clk->clksel_mask;
	v |= field_val << __ffs(clk->clksel_mask);
	__raw_writel(v, clk->clksel_reg);
706
	v = __raw_readl(clk->clksel_reg); /* OCP barrier */
707 708 709

	clk->rate = clk->parent->rate / new_div;

710
	_omap2xxx_clk_commit(clk);
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728

	return 0;
}


/* Set the clock rate for a clock source */
int omap2_clk_set_rate(struct clk *clk, unsigned long rate)
{
	int ret = -EINVAL;

	pr_debug("clock: set_rate for clock %s to rate %ld\n", clk->name, rate);

	/* CONFIG_PARTICIPANT clocks are changed only in sets via the
	   rate table mechanism, driven by mpu_speed  */
	if (clk->flags & CONFIG_PARTICIPANT)
		return -EINVAL;

	/* dpll_ck, core_ck, virt_prcm_set; plus all clksel clocks */
729
	if (clk->set_rate)
730 731 732 733 734 735 736
		ret = clk->set_rate(clk, rate);

	return ret;
}

/*
 * Converts encoded control register address into a full address
737
 * On error, the return value (parent_div) will be 0.
738
 */
739 740
static u32 _omap2_clksel_get_src_field(struct clk *src_clk, struct clk *clk,
				       u32 *field_val)
741 742 743 744 745
{
	const struct clksel *clks;
	const struct clksel_rate *clkr;

	clks = omap2_get_clksel_by_parent(clk, src_clk);
746
	if (!clks)
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
		return 0;

	for (clkr = clks->rates; clkr->div; clkr++) {
		if (clkr->flags & (cpu_mask | DEFAULT_RATE))
			break; /* Found the default rate for this platform */
	}

	if (!clkr->div) {
		printk(KERN_ERR "clock: Could not find default rate for "
		       "clock %s parent %s\n", clk->name,
		       src_clk->parent->name);
		return 0;
	}

	/* Should never happen.  Add a clksel mask to the struct clk. */
	WARN_ON(clk->clksel_mask == 0);

764
	*field_val = clkr->val;
765

766
	return clkr->div;
767 768 769 770
}

int omap2_clk_set_parent(struct clk *clk, struct clk *new_parent)
{
771
	u32 field_val, v, parent_div;
772

773
	if (clk->flags & CONFIG_PARTICIPANT)
774 775 776 777 778
		return -EINVAL;

	if (!clk->clksel)
		return -EINVAL;

779 780
	parent_div = _omap2_clksel_get_src_field(new_parent, clk, &field_val);
	if (!parent_div)
781 782 783 784 785 786
		return -EINVAL;

	if (clk->usecount > 0)
		_omap2_clk_disable(clk);

	/* Set new source value (previous dividers if any in effect) */
787 788 789 790
	v = __raw_readl(clk->clksel_reg);
	v &= ~clk->clksel_mask;
	v |= field_val << __ffs(clk->clksel_mask);
	__raw_writel(v, clk->clksel_reg);
791
	v = __raw_readl(clk->clksel_reg);    /* OCP barrier */
792

793
	_omap2xxx_clk_commit(clk);
794 795 796 797

	if (clk->usecount > 0)
		_omap2_clk_enable(clk);

798
	clk_reparent(clk, new_parent);
799 800 801 802 803 804 805 806 807 808 809 810 811

	/* CLKSEL clocks follow their parents' rates, divided by a divisor */
	clk->rate = new_parent->rate;

	if (parent_div > 0)
		clk->rate /= parent_div;

	pr_debug("clock: set parent of %s to %s (new rate %ld)\n",
		 clk->name, clk->parent->name, clk->rate);

	return 0;
}

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
/* DPLL rate rounding code */

/**
 * omap2_dpll_set_rate_tolerance: set the error tolerance during rate rounding
 * @clk: struct clk * of the DPLL
 * @tolerance: maximum rate error tolerance
 *
 * Set the maximum DPLL rate error tolerance for the rate rounding
 * algorithm.  The rate tolerance is an attempt to balance DPLL power
 * saving (the least divider value "n") vs. rate fidelity (the least
 * difference between the desired DPLL target rate and the rounded
 * rate out of the algorithm).  So, increasing the tolerance is likely
 * to decrease DPLL power consumption and increase DPLL rate error.
 * Returns -EINVAL if provided a null clock ptr or a clk that is not a
 * DPLL; or 0 upon success.
 */
int omap2_dpll_set_rate_tolerance(struct clk *clk, unsigned int tolerance)
{
	if (!clk || !clk->dpll_data)
		return -EINVAL;

	clk->dpll_data->rate_tolerance = tolerance;

	return 0;
}

838 839
static unsigned long _dpll_compute_new_rate(unsigned long parent_rate,
					    unsigned int m, unsigned int n)
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
{
	unsigned long long num;

	num = (unsigned long long)parent_rate * m;
	do_div(num, n);
	return num;
}

/*
 * _dpll_test_mult - test a DPLL multiplier value
 * @m: pointer to the DPLL m (multiplier) value under test
 * @n: current DPLL n (divider) value under test
 * @new_rate: pointer to storage for the resulting rounded rate
 * @target_rate: the desired DPLL rate
 * @parent_rate: the DPLL's parent clock rate
 *
 * This code tests a DPLL multiplier value, ensuring that the
 * resulting rate will not be higher than the target_rate, and that
 * the multiplier value itself is valid for the DPLL.  Initially, the
 * integer pointed to by the m argument should be prescaled by
 * multiplying by DPLL_SCALE_FACTOR.  The code will replace this with
 * a non-scaled m upon return.  This non-scaled m will result in a
 * new_rate as close as possible to target_rate (but not greater than
 * target_rate) given the current (parent_rate, n, prescaled m)
 * triple. Returns DPLL_MULT_UNDERFLOW in the event that the
 * non-scaled m attempted to underflow, which can allow the calling
 * function to bail out early; or 0 upon success.
 */
static int _dpll_test_mult(int *m, int n, unsigned long *new_rate,
			   unsigned long target_rate,
			   unsigned long parent_rate)
{
872
	int r = 0, carry = 0;
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892

	/* Unscale m and round if necessary */
	if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL)
		carry = 1;
	*m = (*m / DPLL_SCALE_FACTOR) + carry;

	/*
	 * The new rate must be <= the target rate to avoid programming
	 * a rate that is impossible for the hardware to handle
	 */
	*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
	if (*new_rate > target_rate) {
		(*m)--;
		*new_rate = 0;
	}

	/* Guard against m underflow */
	if (*m < DPLL_MIN_MULTIPLIER) {
		*m = DPLL_MIN_MULTIPLIER;
		*new_rate = 0;
893
		r = DPLL_MULT_UNDERFLOW;
894 895 896 897 898
	}

	if (*new_rate == 0)
		*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);

899
	return r;
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
}

/**
 * omap2_dpll_round_rate - round a target rate for an OMAP DPLL
 * @clk: struct clk * for a DPLL
 * @target_rate: desired DPLL clock rate
 *
 * Given a DPLL, a desired target rate, and a rate tolerance, round
 * the target rate to a possible, programmable rate for this DPLL.
 * Rate tolerance is assumed to be set by the caller before this
 * function is called.  Attempts to select the minimum possible n
 * within the tolerance to reduce power consumption.  Stores the
 * computed (m, n) in the DPLL's dpll_data structure so set_rate()
 * will not need to call this (expensive) function again.  Returns ~0
 * if the target rate cannot be rounded, either because the rate is
 * too low or because the rate tolerance is set too tightly; or the
 * rounded rate upon success.
 */
long omap2_dpll_round_rate(struct clk *clk, unsigned long target_rate)
{
	int m, n, r, e, scaled_max_m;
	unsigned long scaled_rt_rp, new_rate;
	int min_e = -1, min_e_m = -1, min_e_n = -1;
923
	struct dpll_data *dd;
924 925 926 927

	if (!clk || !clk->dpll_data)
		return ~0;

928 929
	dd = clk->dpll_data;

930 931 932 933
	pr_debug("clock: starting DPLL round_rate for clock %s, target rate "
		 "%ld\n", clk->name, target_rate);

	scaled_rt_rp = target_rate / (clk->parent->rate / DPLL_SCALE_FACTOR);
934
	scaled_max_m = dd->max_multiplier * DPLL_SCALE_FACTOR;
935

936
	dd->last_rounded_rate = 0;
937

938 939 940 941 942 943 944 945
	for (n = dd->min_divider; n <= dd->max_divider; n++) {

		/* Is the (input clk, divider) pair valid for the DPLL? */
		r = _dpll_test_fint(clk, n);
		if (r == DPLL_FINT_UNDERFLOW)
			break;
		else if (r == DPLL_FINT_INVALID)
			continue;
946 947 948 949 950

		/* Compute the scaled DPLL multiplier, based on the divider */
		m = scaled_rt_rp * n;

		/*
951 952 953 954
		 * Since we're counting n up, a m overflow means we
		 * can bail out completely (since as n increases in
		 * the next iteration, there's no way that m can
		 * increase beyond the current m)
955 956
		 */
		if (m > scaled_max_m)
957
			break;
958 959 960 961

		r = _dpll_test_mult(&m, n, &new_rate, target_rate,
				    clk->parent->rate);

962 963 964 965
		/* m can't be set low enough for this n - try with a larger n */
		if (r == DPLL_MULT_UNDERFLOW)
			continue;

966 967 968 969 970
		e = target_rate - new_rate;
		pr_debug("clock: n = %d: m = %d: rate error is %d "
			 "(new_rate = %ld)\n", n, m, e, new_rate);

		if (min_e == -1 ||
971
		    min_e >= (int)(abs(e) - dd->rate_tolerance)) {
972 973 974 975 976 977
			min_e = e;
			min_e_m = m;
			min_e_n = n;

			pr_debug("clock: found new least error %d\n", min_e);

978
			/* We found good settings -- bail out now */
979
			if (min_e <= dd->rate_tolerance)
980 981
				break;
		}
982 983 984 985 986 987 988
	}

	if (min_e < 0) {
		pr_debug("clock: error: target rate or tolerance too low\n");
		return ~0;
	}

989 990 991 992
	dd->last_rounded_m = min_e_m;
	dd->last_rounded_n = min_e_n;
	dd->last_rounded_rate = _dpll_compute_new_rate(clk->parent->rate,
						       min_e_m,  min_e_n);
993 994 995 996

	pr_debug("clock: final least error: e = %d, m = %d, n = %d\n",
		 min_e, min_e_m, min_e_n);
	pr_debug("clock: final rate: %ld  (target rate: %ld)\n",
997
		 dd->last_rounded_rate, target_rate);
998

999
	return dd->last_rounded_rate;
1000 1001
}

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
/*-------------------------------------------------------------------------
 * Omap2 clock reset and init functions
 *-------------------------------------------------------------------------*/

#ifdef CONFIG_OMAP_RESET_CLOCKS
void omap2_clk_disable_unused(struct clk *clk)
{
	u32 regval32, v;

	v = (clk->flags & INVERT_ENABLE) ? (1 << clk->enable_bit) : 0;

	regval32 = __raw_readl(clk->enable_reg);
	if ((regval32 & (1 << clk->enable_bit)) == v)
		return;

	printk(KERN_INFO "Disabling unused clock \"%s\"\n", clk->name);
1018 1019 1020 1021 1022
	if (cpu_is_omap34xx()) {
		omap2_clk_enable(clk);
		omap2_clk_disable(clk);
	} else
		_omap2_clk_disable(clk);
1023 1024
}
#endif