extent_cache.c 16.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/*
 * f2fs extent cache support
 *
 * Copyright (c) 2015 Motorola Mobility
 * Copyright (c) 2015 Samsung Electronics
 * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
 *          Chao Yu <chao2.yu@samsung.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/fs.h>
#include <linux/f2fs_fs.h>

#include "f2fs.h"
#include "node.h"
#include <trace/events/f2fs.h>

static struct kmem_cache *extent_tree_slab;
static struct kmem_cache *extent_node_slab;

static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
				struct extent_tree *et, struct extent_info *ei,
				struct rb_node *parent, struct rb_node **p)
{
	struct extent_node *en;

	en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
	if (!en)
		return NULL;

	en->ei = *ei;
	INIT_LIST_HEAD(&en->list);

	rb_link_node(&en->rb_node, parent, p);
	rb_insert_color(&en->rb_node, &et->root);
	et->count++;
	atomic_inc(&sbi->total_ext_node);
	return en;
}

static void __detach_extent_node(struct f2fs_sb_info *sbi,
				struct extent_tree *et, struct extent_node *en)
{
	rb_erase(&en->rb_node, &et->root);
	et->count--;
	atomic_dec(&sbi->total_ext_node);

	if (et->cached_en == en)
		et->cached_en = NULL;
}

static struct extent_tree *__grab_extent_tree(struct inode *inode)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct extent_tree *et;
	nid_t ino = inode->i_ino;

	down_write(&sbi->extent_tree_lock);
	et = radix_tree_lookup(&sbi->extent_tree_root, ino);
	if (!et) {
		et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
		f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
		memset(et, 0, sizeof(struct extent_tree));
		et->ino = ino;
		et->root = RB_ROOT;
		et->cached_en = NULL;
		rwlock_init(&et->lock);
		atomic_set(&et->refcount, 0);
		et->count = 0;
		sbi->total_ext_tree++;
	}
	atomic_inc(&et->refcount);
	up_write(&sbi->extent_tree_lock);

	/* never died until evict_inode */
	F2FS_I(inode)->extent_tree = et;

	return et;
}

84 85
static struct extent_node *__lookup_extent_tree(struct f2fs_sb_info *sbi,
				struct extent_tree *et, unsigned int fofs)
86 87
{
	struct rb_node *node = et->root.rb_node;
88
	struct extent_node *en = et->cached_en;
89

90 91
	if (en) {
		struct extent_info *cei = &en->ei;
92

93 94
		if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) {
			stat_inc_cached_node_hit(sbi);
95
			return en;
96
		}
97 98 99 100 101
	}

	while (node) {
		en = rb_entry(node, struct extent_node, rb_node);

102
		if (fofs < en->ei.fofs) {
103
			node = node->rb_left;
104
		} else if (fofs >= en->ei.fofs + en->ei.len) {
105
			node = node->rb_right;
106 107
		} else {
			stat_inc_rbtree_node_hit(sbi);
108
			return en;
109
		}
110 111 112 113
	}
	return NULL;
}

114 115
static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi,
				struct extent_tree *et, struct extent_info *ei)
116 117 118 119
{
	struct rb_node **p = &et->root.rb_node;
	struct extent_node *en;

120
	en = __attach_extent_node(sbi, et, ei, NULL, p);
121 122
	if (!en)
		return NULL;
123 124

	et->largest = en->ei;
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
	et->cached_en = en;
	return en;
}

static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
					struct extent_tree *et, bool free_all)
{
	struct rb_node *node, *next;
	struct extent_node *en;
	unsigned int count = et->count;

	node = rb_first(&et->root);
	while (node) {
		next = rb_next(node);
		en = rb_entry(node, struct extent_node, rb_node);

		if (free_all) {
			spin_lock(&sbi->extent_lock);
			if (!list_empty(&en->list))
				list_del_init(&en->list);
			spin_unlock(&sbi->extent_lock);
		}

		if (free_all || list_empty(&en->list)) {
			__detach_extent_node(sbi, et, en);
			kmem_cache_free(extent_node_slab, en);
		}
		node = next;
	}

	return count - et->count;
}

void f2fs_drop_largest_extent(struct inode *inode, pgoff_t fofs)
{
	struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest;

	if (largest->fofs <= fofs && largest->fofs + largest->len > fofs)
		largest->len = 0;
}

void f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct extent_tree *et;
	struct extent_node *en;
	struct extent_info ei;

	if (!f2fs_may_extent_tree(inode))
		return;

	et = __grab_extent_tree(inode);

	if (!i_ext || le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
		return;

	set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
		le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));

	write_lock(&et->lock);
	if (et->count)
		goto out;

188
	en = __init_extent_tree(sbi, et, &ei);
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
	if (en) {
		spin_lock(&sbi->extent_lock);
		list_add_tail(&en->list, &sbi->extent_list);
		spin_unlock(&sbi->extent_lock);
	}
out:
	write_unlock(&et->lock);
}

static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
							struct extent_info *ei)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct extent_tree *et = F2FS_I(inode)->extent_tree;
	struct extent_node *en;
	bool ret = false;

	f2fs_bug_on(sbi, !et);

	trace_f2fs_lookup_extent_tree_start(inode, pgofs);

	read_lock(&et->lock);

	if (et->largest.fofs <= pgofs &&
			et->largest.fofs + et->largest.len > pgofs) {
		*ei = et->largest;
		ret = true;
216
		stat_inc_largest_node_hit(sbi);
217 218 219
		goto out;
	}

220
	en = __lookup_extent_tree(sbi, et, pgofs);
221 222 223 224 225 226 227 228 229 230
	if (en) {
		*ei = en->ei;
		spin_lock(&sbi->extent_lock);
		if (!list_empty(&en->list))
			list_move_tail(&en->list, &sbi->extent_list);
		et->cached_en = en;
		spin_unlock(&sbi->extent_lock);
		ret = true;
	}
out:
231
	stat_inc_total_hit(sbi);
232 233 234 235 236 237
	read_unlock(&et->lock);

	trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
	return ret;
}

238 239 240 241 242 243 244 245 246 247 248

/*
 * lookup extent at @fofs, if hit, return the extent
 * if not, return NULL and
 * @prev_ex: extent before fofs
 * @next_ex: extent after fofs
 * @insert_p: insert point for new extent at fofs
 * in order to simpfy the insertion after.
 * tree must stay unchanged between lookup and insertion.
 */
static struct extent_node *__lookup_extent_tree_ret(struct extent_tree *et,
249 250
				unsigned int fofs,
				struct extent_node **prev_ex,
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
				struct extent_node **next_ex,
				struct rb_node ***insert_p,
				struct rb_node **insert_parent)
{
	struct rb_node **pnode = &et->root.rb_node;
	struct rb_node *parent = NULL, *tmp_node;
	struct extent_node *en;

	if (et->cached_en) {
		struct extent_info *cei = &et->cached_en->ei;

		if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
			return et->cached_en;
	}

	while (*pnode) {
		parent = *pnode;
		en = rb_entry(*pnode, struct extent_node, rb_node);

		if (fofs < en->ei.fofs)
			pnode = &(*pnode)->rb_left;
		else if (fofs >= en->ei.fofs + en->ei.len)
			pnode = &(*pnode)->rb_right;
		else
			return en;
	}

	*insert_p = pnode;
	*insert_parent = parent;

	en = rb_entry(parent, struct extent_node, rb_node);
	tmp_node = parent;
	if (parent && fofs > en->ei.fofs)
		tmp_node = rb_next(parent);
	*next_ex = tmp_node ?
		rb_entry(tmp_node, struct extent_node, rb_node) : NULL;

	tmp_node = parent;
	if (parent && fofs < en->ei.fofs)
		tmp_node = rb_prev(parent);
	*prev_ex = tmp_node ?
		rb_entry(tmp_node, struct extent_node, rb_node) : NULL;

	return NULL;
}

297
static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
298 299 300
				struct extent_tree *et, struct extent_info *ei,
				struct extent_node **den,
				struct extent_node *prev_ex,
301
				struct extent_node *next_ex)
302 303 304 305 306 307 308 309
{
	struct extent_node *en = NULL;

	if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
		prev_ex->ei.len += ei->len;
		ei = &prev_ex->ei;
		en = prev_ex;
	}
310

311
	if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
312
		if (en) {
313 314 315 316 317 318 319 320
			__detach_extent_node(sbi, et, prev_ex);
			*den = prev_ex;
		}
		next_ex->ei.fofs = ei->fofs;
		next_ex->ei.blk = ei->blk;
		next_ex->ei.len += ei->len;
		en = next_ex;
	}
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

	if (en) {
		if (en->ei.len > et->largest.len)
			et->largest = en->ei;
		et->cached_en = en;
	}
	return en;
}

static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
				struct extent_tree *et, struct extent_info *ei,
				struct rb_node **insert_p,
				struct rb_node *insert_parent)
{
	struct rb_node **p = &et->root.rb_node;
	struct rb_node *parent = NULL;
	struct extent_node *en = NULL;
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

	if (insert_p && insert_parent) {
		parent = insert_parent;
		p = insert_p;
		goto do_insert;
	}

	while (*p) {
		parent = *p;
		en = rb_entry(parent, struct extent_node, rb_node);

		if (ei->fofs < en->ei.fofs)
			p = &(*p)->rb_left;
		else if (ei->fofs >= en->ei.fofs + en->ei.len)
			p = &(*p)->rb_right;
		else
			f2fs_bug_on(sbi, 1);
	}
do_insert:
	en = __attach_extent_node(sbi, et, ei, parent, p);
	if (!en)
		return NULL;
360

361 362 363 364 365 366
	if (en->ei.len > et->largest.len)
		et->largest = en->ei;
	et->cached_en = en;
	return en;
}

367 368 369 370 371 372 373
/* return true, if on-disk extent should be updated */
static bool f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
							block_t blkaddr)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct extent_tree *et = F2FS_I(inode)->extent_tree;
	struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
374
	struct extent_node *den = NULL, *prev_ex = NULL, *next_ex = NULL;
375
	struct extent_info ei, dei, prev;
376
	struct rb_node **insert_p = NULL, *insert_parent = NULL;
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
	unsigned int endofs;

	if (!et)
		return false;

	trace_f2fs_update_extent_tree(inode, fofs, blkaddr);

	write_lock(&et->lock);

	if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) {
		write_unlock(&et->lock);
		return false;
	}

	prev = et->largest;
	dei.len = 0;

	/* we do not guarantee that the largest extent is cached all the time */
	f2fs_drop_largest_extent(inode, fofs);

	/* 1. lookup and remove existing extent info in cache */
398 399
	en = __lookup_extent_tree_ret(et, fofs, &prev_ex, &next_ex,
					&insert_p, &insert_parent);
400 401 402 403 404 405
	if (!en)
		goto update_extent;

	dei = en->ei;
	__detach_extent_node(sbi, et, en);

406
	/* 2. if extent can be split, try to split it */
407 408 409 410
	if (dei.len > F2FS_MIN_EXTENT_LEN) {
		/*  insert left part of split extent into cache */
		if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
			set_extent_info(&ei, dei.fofs, dei.blk,
411
						fofs - dei.fofs);
412
			en1 = __insert_extent_tree(sbi, et, &ei, NULL, NULL);
413 414 415 416 417 418 419
		}

		/* insert right part of split extent into cache */
		endofs = dei.fofs + dei.len - 1;
		if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
			set_extent_info(&ei, fofs + 1,
				fofs - dei.fofs + dei.blk + 1, endofs - fofs);
420
			en2 = __insert_extent_tree(sbi, et, &ei, NULL, NULL);
421 422 423 424 425 426 427
		}
	}

update_extent:
	/* 3. update extent in extent cache */
	if (blkaddr) {
		set_extent_info(&ei, fofs, blkaddr, 1);
428 429 430 431 432
		en3 = __try_merge_extent_node(sbi, et, &ei, &den,
						prev_ex, next_ex);
		if (!en3)
			en3 = __insert_extent_tree(sbi, et, &ei,
						insert_p, insert_parent);
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662

		/* give up extent_cache, if split and small updates happen */
		if (dei.len >= 1 &&
				prev.len < F2FS_MIN_EXTENT_LEN &&
				et->largest.len < F2FS_MIN_EXTENT_LEN) {
			et->largest.len = 0;
			set_inode_flag(F2FS_I(inode), FI_NO_EXTENT);
		}
	}

	/* 4. update in global extent list */
	spin_lock(&sbi->extent_lock);
	if (en && !list_empty(&en->list))
		list_del(&en->list);
	/*
	 * en1 and en2 split from en, they will become more and more smaller
	 * fragments after splitting several times. So if the length is smaller
	 * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
	 */
	if (en1)
		list_add_tail(&en1->list, &sbi->extent_list);
	if (en2)
		list_add_tail(&en2->list, &sbi->extent_list);
	if (en3) {
		if (list_empty(&en3->list))
			list_add_tail(&en3->list, &sbi->extent_list);
		else
			list_move_tail(&en3->list, &sbi->extent_list);
	}
	if (den && !list_empty(&den->list))
		list_del(&den->list);
	spin_unlock(&sbi->extent_lock);

	/* 5. release extent node */
	if (en)
		kmem_cache_free(extent_node_slab, en);
	if (den)
		kmem_cache_free(extent_node_slab, den);

	if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
		__free_extent_tree(sbi, et, true);

	write_unlock(&et->lock);

	return !__is_extent_same(&prev, &et->largest);
}

unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
{
	struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
	struct extent_node *en, *tmp;
	unsigned long ino = F2FS_ROOT_INO(sbi);
	struct radix_tree_root *root = &sbi->extent_tree_root;
	unsigned int found;
	unsigned int node_cnt = 0, tree_cnt = 0;
	int remained;

	if (!test_opt(sbi, EXTENT_CACHE))
		return 0;

	if (!down_write_trylock(&sbi->extent_tree_lock))
		goto out;

	/* 1. remove unreferenced extent tree */
	while ((found = radix_tree_gang_lookup(root,
				(void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
		unsigned i;

		ino = treevec[found - 1]->ino + 1;
		for (i = 0; i < found; i++) {
			struct extent_tree *et = treevec[i];

			if (!atomic_read(&et->refcount)) {
				write_lock(&et->lock);
				node_cnt += __free_extent_tree(sbi, et, true);
				write_unlock(&et->lock);

				radix_tree_delete(root, et->ino);
				kmem_cache_free(extent_tree_slab, et);
				sbi->total_ext_tree--;
				tree_cnt++;

				if (node_cnt + tree_cnt >= nr_shrink)
					goto unlock_out;
			}
		}
	}
	up_write(&sbi->extent_tree_lock);

	/* 2. remove LRU extent entries */
	if (!down_write_trylock(&sbi->extent_tree_lock))
		goto out;

	remained = nr_shrink - (node_cnt + tree_cnt);

	spin_lock(&sbi->extent_lock);
	list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
		if (!remained--)
			break;
		list_del_init(&en->list);
	}
	spin_unlock(&sbi->extent_lock);

	while ((found = radix_tree_gang_lookup(root,
				(void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
		unsigned i;

		ino = treevec[found - 1]->ino + 1;
		for (i = 0; i < found; i++) {
			struct extent_tree *et = treevec[i];

			write_lock(&et->lock);
			node_cnt += __free_extent_tree(sbi, et, false);
			write_unlock(&et->lock);

			if (node_cnt + tree_cnt >= nr_shrink)
				break;
		}
	}
unlock_out:
	up_write(&sbi->extent_tree_lock);
out:
	trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);

	return node_cnt + tree_cnt;
}

unsigned int f2fs_destroy_extent_node(struct inode *inode)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct extent_tree *et = F2FS_I(inode)->extent_tree;
	unsigned int node_cnt = 0;

	if (!et)
		return 0;

	write_lock(&et->lock);
	node_cnt = __free_extent_tree(sbi, et, true);
	write_unlock(&et->lock);

	return node_cnt;
}

void f2fs_destroy_extent_tree(struct inode *inode)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct extent_tree *et = F2FS_I(inode)->extent_tree;
	unsigned int node_cnt = 0;

	if (!et)
		return;

	if (inode->i_nlink && !is_bad_inode(inode) && et->count) {
		atomic_dec(&et->refcount);
		return;
	}

	/* free all extent info belong to this extent tree */
	node_cnt = f2fs_destroy_extent_node(inode);

	/* delete extent tree entry in radix tree */
	down_write(&sbi->extent_tree_lock);
	atomic_dec(&et->refcount);
	f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
	radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
	kmem_cache_free(extent_tree_slab, et);
	sbi->total_ext_tree--;
	up_write(&sbi->extent_tree_lock);

	F2FS_I(inode)->extent_tree = NULL;

	trace_f2fs_destroy_extent_tree(inode, node_cnt);
}

bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
					struct extent_info *ei)
{
	if (!f2fs_may_extent_tree(inode))
		return false;

	return f2fs_lookup_extent_tree(inode, pgofs, ei);
}

void f2fs_update_extent_cache(struct dnode_of_data *dn)
{
	struct f2fs_inode_info *fi = F2FS_I(dn->inode);
	pgoff_t fofs;

	if (!f2fs_may_extent_tree(dn->inode))
		return;

	f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);

	fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
							dn->ofs_in_node;

	if (f2fs_update_extent_tree(dn->inode, fofs, dn->data_blkaddr))
		sync_inode_page(dn);
}

void init_extent_cache_info(struct f2fs_sb_info *sbi)
{
	INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
	init_rwsem(&sbi->extent_tree_lock);
	INIT_LIST_HEAD(&sbi->extent_list);
	spin_lock_init(&sbi->extent_lock);
	sbi->total_ext_tree = 0;
	atomic_set(&sbi->total_ext_node, 0);
}

int __init create_extent_cache(void)
{
	extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
			sizeof(struct extent_tree));
	if (!extent_tree_slab)
		return -ENOMEM;
	extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
			sizeof(struct extent_node));
	if (!extent_node_slab) {
		kmem_cache_destroy(extent_tree_slab);
		return -ENOMEM;
	}
	return 0;
}

void destroy_extent_cache(void)
{
	kmem_cache_destroy(extent_node_slab);
	kmem_cache_destroy(extent_tree_slab);
}