kaslr.c 12.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * kaslr.c
 *
 * This contains the routines needed to generate a reasonable level of
 * entropy to choose a randomized kernel base address offset in support
 * of Kernel Address Space Layout Randomization (KASLR). Additionally
 * handles walking the physical memory maps (and tracking memory regions
 * to avoid) in order to select a physical memory location that can
 * contain the entire properly aligned running kernel image.
 *
 */
12
#include "misc.h"
13
#include "error.h"
14

15 16
#include <asm/msr.h>
#include <asm/archrandom.h>
17
#include <asm/e820.h>
18

19 20 21 22 23 24 25
#include <generated/compile.h>
#include <linux/module.h>
#include <linux/uts.h>
#include <linux/utsname.h>
#include <generated/utsrelease.h>

/* Simplified build-specific string for starting entropy. */
26
static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
27 28
		LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#define I8254_PORT_CONTROL	0x43
#define I8254_PORT_COUNTER0	0x40
#define I8254_CMD_READBACK	0xC0
#define I8254_SELECT_COUNTER0	0x02
#define I8254_STATUS_NOTREADY	0x40
static inline u16 i8254(void)
{
	u16 status, timer;

	do {
		outb(I8254_PORT_CONTROL,
		     I8254_CMD_READBACK | I8254_SELECT_COUNTER0);
		status = inb(I8254_PORT_COUNTER0);
		timer  = inb(I8254_PORT_COUNTER0);
		timer |= inb(I8254_PORT_COUNTER0) << 8;
	} while (status & I8254_STATUS_NOTREADY);

	return timer;
}

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
static unsigned long rotate_xor(unsigned long hash, const void *area,
				size_t size)
{
	size_t i;
	unsigned long *ptr = (unsigned long *)area;

	for (i = 0; i < size / sizeof(hash); i++) {
		/* Rotate by odd number of bits and XOR. */
		hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
		hash ^= ptr[i];
	}

	return hash;
}

/* Attempt to create a simple but unpredictable starting entropy. */
static unsigned long get_random_boot(void)
{
	unsigned long hash = 0;

	hash = rotate_xor(hash, build_str, sizeof(build_str));
70
	hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
71 72 73 74

	return hash;
}

75 76
static unsigned long get_random_long(void)
{
77 78 79 80 81
#ifdef CONFIG_X86_64
	const unsigned long mix_const = 0x5d6008cbf3848dd3UL;
#else
	const unsigned long mix_const = 0x3f39e593UL;
#endif
82 83 84 85
	unsigned long raw, random = get_random_boot();
	bool use_i8254 = true;

	debug_putstr("KASLR using");
86 87

	if (has_cpuflag(X86_FEATURE_RDRAND)) {
88 89 90 91 92
		debug_putstr(" RDRAND");
		if (rdrand_long(&raw)) {
			random ^= raw;
			use_i8254 = false;
		}
93 94 95
	}

	if (has_cpuflag(X86_FEATURE_TSC)) {
96
		debug_putstr(" RDTSC");
97
		raw = rdtsc();
98

99 100 101
		random ^= raw;
		use_i8254 = false;
	}
102

103 104 105
	if (use_i8254) {
		debug_putstr(" i8254");
		random ^= i8254();
106 107
	}

108 109 110 111 112 113
	/* Circular multiply for better bit diffusion */
	asm("mul %3"
	    : "=a" (random), "=d" (raw)
	    : "a" (random), "rm" (mix_const));
	random += raw;

114 115
	debug_putstr("...\n");

116 117
	return random;
}
118

119 120 121 122 123
struct mem_vector {
	unsigned long start;
	unsigned long size;
};

124 125 126 127 128 129 130 131
enum mem_avoid_index {
	MEM_AVOID_ZO_RANGE = 0,
	MEM_AVOID_INITRD,
	MEM_AVOID_CMDLINE,
	MEM_AVOID_BOOTPARAMS,
	MEM_AVOID_MAX,
};

132
static struct mem_vector mem_avoid[MEM_AVOID_MAX];
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

static bool mem_contains(struct mem_vector *region, struct mem_vector *item)
{
	/* Item at least partially before region. */
	if (item->start < region->start)
		return false;
	/* Item at least partially after region. */
	if (item->start + item->size > region->start + region->size)
		return false;
	return true;
}

static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
{
	/* Item one is entirely before item two. */
	if (one->start + one->size <= two->start)
		return false;
	/* Item one is entirely after item two. */
	if (one->start >= two->start + two->size)
		return false;
	return true;
}

156
/*
157 158 159
 * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T).
 * The mem_avoid array is used to store the ranges that need to be avoided
 * when KASLR searches for an appropriate random address. We must avoid any
160
 * regions that are unsafe to overlap with during decompression, and other
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
 * things like the initrd, cmdline and boot_params. This comment seeks to
 * explain mem_avoid as clearly as possible since incorrect mem_avoid
 * memory ranges lead to really hard to debug boot failures.
 *
 * The initrd, cmdline, and boot_params are trivial to identify for
 * avoiding. The are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
 * MEM_AVOID_BOOTPARAMS respectively below.
 *
 * What is not obvious how to avoid is the range of memory that is used
 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
 * the compressed kernel (ZO) and its run space, which is used to extract
 * the uncompressed kernel (VO) and relocs.
 *
 * ZO's full run size sits against the end of the decompression buffer, so
 * we can calculate where text, data, bss, etc of ZO are positioned more
 * easily.
 *
 * For additional background, the decompression calculations can be found
 * in header.S, and the memory diagram is based on the one found in misc.c.
 *
 * The following conditions are already enforced by the image layouts and
 * associated code:
 *  - input + input_size >= output + output_size
 *  - kernel_total_size <= init_size
 *  - kernel_total_size <= output_size (see Note below)
 *  - output + init_size >= output + output_size
187
 *
188 189 190 191 192
 * (Note that kernel_total_size and output_size have no fundamental
 * relationship, but output_size is passed to choose_random_location
 * as a maximum of the two. The diagram is showing a case where
 * kernel_total_size is larger than output_size, but this case is
 * handled by bumping output_size.)
193
 *
194
 * The above conditions can be illustrated by a diagram:
195
 *
196 197 198 199 200 201 202
 * 0   output            input            input+input_size    output+init_size
 * |     |                 |                             |             |
 * |     |                 |                             |             |
 * |-----|--------|--------|--------------|-----------|--|-------------|
 *                |                       |           |
 *                |                       |           |
 * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
203
 *
204 205
 * [output, output+init_size) is the entire memory range used for
 * extracting the compressed image.
206
 *
207 208
 * [output, output+kernel_total_size) is the range needed for the
 * uncompressed kernel (VO) and its run size (bss, brk, etc).
209
 *
210 211 212
 * [output, output+output_size) is VO plus relocs (i.e. the entire
 * uncompressed payload contained by ZO). This is the area of the buffer
 * written to during decompression.
213
 *
214 215 216
 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
 * range of the copied ZO and decompression code. (i.e. the range
 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
217
 *
218 219 220
 * [input, input+input_size) is the original copied compressed image (ZO)
 * (i.e. it does not include its run size). This range must be avoided
 * because it contains the data used for decompression.
221
 *
222 223 224
 * [input+input_size, output+init_size) is [_text, _end) for ZO. This
 * range includes ZO's heap and stack, and must be avoided since it
 * performs the decompression.
225
 *
226 227 228
 * Since the above two ranges need to be avoided and they are adjacent,
 * they can be merged, resulting in: [input, output+init_size) which
 * becomes the MEM_AVOID_ZO_RANGE below.
229
 */
230
static void mem_avoid_init(unsigned long input, unsigned long input_size,
231
			   unsigned long output)
232
{
233
	unsigned long init_size = boot_params->hdr.init_size;
234 235 236 237 238 239
	u64 initrd_start, initrd_size;
	u64 cmd_line, cmd_line_size;
	char *ptr;

	/*
	 * Avoid the region that is unsafe to overlap during
240
	 * decompression.
241
	 */
242 243
	mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
	mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
244 245

	/* Avoid initrd. */
246 247 248 249
	initrd_start  = (u64)boot_params->ext_ramdisk_image << 32;
	initrd_start |= boot_params->hdr.ramdisk_image;
	initrd_size  = (u64)boot_params->ext_ramdisk_size << 32;
	initrd_size |= boot_params->hdr.ramdisk_size;
250 251
	mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
	mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
252 253

	/* Avoid kernel command line. */
254 255
	cmd_line  = (u64)boot_params->ext_cmd_line_ptr << 32;
	cmd_line |= boot_params->hdr.cmd_line_ptr;
256 257 258 259
	/* Calculate size of cmd_line. */
	ptr = (char *)(unsigned long)cmd_line;
	for (cmd_line_size = 0; ptr[cmd_line_size++]; )
		;
260 261
	mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
	mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
262

263 264 265
	/* Avoid boot parameters. */
	mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
	mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
266 267 268
}

/* Does this memory vector overlap a known avoided area? */
269
static bool mem_avoid_overlap(struct mem_vector *img)
270 271
{
	int i;
272
	struct setup_data *ptr;
273 274 275 276 277 278

	for (i = 0; i < MEM_AVOID_MAX; i++) {
		if (mem_overlaps(img, &mem_avoid[i]))
			return true;
	}

279
	/* Avoid all entries in the setup_data linked list. */
280
	ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
281 282 283
	while (ptr) {
		struct mem_vector avoid;

284
		avoid.start = (unsigned long)ptr;
285 286 287 288 289 290 291 292
		avoid.size = sizeof(*ptr) + ptr->len;

		if (mem_overlaps(img, &avoid))
			return true;

		ptr = (struct setup_data *)(unsigned long)ptr->next;
	}

293 294 295
	return false;
}

296
static unsigned long slots[KERNEL_IMAGE_SIZE / CONFIG_PHYSICAL_ALIGN];
297
static unsigned long slot_max;
298 299 300 301

static void slots_append(unsigned long addr)
{
	/* Overflowing the slots list should be impossible. */
302
	if (slot_max >= KERNEL_IMAGE_SIZE / CONFIG_PHYSICAL_ALIGN)
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
		return;

	slots[slot_max++] = addr;
}

static unsigned long slots_fetch_random(void)
{
	/* Handle case of no slots stored. */
	if (slot_max == 0)
		return 0;

	return slots[get_random_long() % slot_max];
}

static void process_e820_entry(struct e820entry *entry,
			       unsigned long minimum,
			       unsigned long image_size)
{
	struct mem_vector region, img;

	/* Skip non-RAM entries. */
	if (entry->type != E820_RAM)
		return;

	/* Ignore entries entirely above our maximum. */
328
	if (entry->addr >= KERNEL_IMAGE_SIZE)
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
		return;

	/* Ignore entries entirely below our minimum. */
	if (entry->addr + entry->size < minimum)
		return;

	region.start = entry->addr;
	region.size = entry->size;

	/* Potentially raise address to minimum location. */
	if (region.start < minimum)
		region.start = minimum;

	/* Potentially raise address to meet alignment requirements. */
	region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);

	/* Did we raise the address above the bounds of this e820 region? */
	if (region.start > entry->addr + entry->size)
		return;

	/* Reduce size by any delta from the original address. */
	region.size -= region.start - entry->addr;

	/* Reduce maximum size to fit end of image within maximum limit. */
353 354
	if (region.start + region.size > KERNEL_IMAGE_SIZE)
		region.size = KERNEL_IMAGE_SIZE - region.start;
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375

	/* Walk each aligned slot and check for avoided areas. */
	for (img.start = region.start, img.size = image_size ;
	     mem_contains(&region, &img) ;
	     img.start += CONFIG_PHYSICAL_ALIGN) {
		if (mem_avoid_overlap(&img))
			continue;
		slots_append(img.start);
	}
}

static unsigned long find_random_addr(unsigned long minimum,
				      unsigned long size)
{
	int i;
	unsigned long addr;

	/* Make sure minimum is aligned. */
	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);

	/* Verify potential e820 positions, appending to slots list. */
376 377
	for (i = 0; i < boot_params->e820_entries; i++) {
		process_e820_entry(&boot_params->e820_map[i], minimum, size);
378 379 380 381 382
	}

	return slots_fetch_random();
}

383 384 385 386 387
/*
 * Since this function examines addresses much more numerically,
 * it takes the input and output pointers as 'unsigned long'.
 */
unsigned char *choose_random_location(unsigned long input,
388
				      unsigned long input_size,
389
				      unsigned long output,
390 391
				      unsigned long output_size)
{
K
Kees Cook 已提交
392
	unsigned long choice = output;
393
	unsigned long random_addr;
394

395 396
#ifdef CONFIG_HIBERNATION
	if (!cmdline_find_option_bool("kaslr")) {
397
		warn("KASLR disabled: 'kaslr' not on cmdline (hibernation selected).");
398 399 400
		goto out;
	}
#else
401
	if (cmdline_find_option_bool("nokaslr")) {
402
		warn("KASLR disabled: 'nokaslr' on cmdline.");
403 404
		goto out;
	}
405
#endif
406

407
	boot_params->hdr.loadflags |= KASLR_FLAG;
408

409
	/* Record the various known unsafe memory ranges. */
410
	mem_avoid_init(input, input_size, output);
411 412

	/* Walk e820 and find a random address. */
K
Kees Cook 已提交
413
	random_addr = find_random_addr(output, output_size);
414
	if (!random_addr) {
415
		warn("KASLR disabled: could not find suitable E820 region!");
416 417 418 419
		goto out;
	}

	/* Always enforce the minimum. */
420
	if (random_addr < choice)
421
		goto out;
422

423
	choice = random_addr;
424 425 426
out:
	return (unsigned char *)choice;
}